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Abstract: Harvesting in soft-fruit farms is labor intensive, time consuming and is severely affected
by scarcity of skilled labors. Among several activities during soft-fruit harvesting, human pickers
take 20–30% of overall operation time into the logistics activities. Such an unproductive time, for
example, can be reduced by optimally deploying a fleet of agricultural robots and schedule them
by anticipating the human activity behaviour (state) during harvesting. In this paper, we propose
a framework for spatio-temporal prediction of human pickers’ activities while they are picking
fruits in agriculture fields. Here we exploit temporal patterns of picking operation and 2D discrete
points, called topological nodes, as spatial constraints imposed by the agricultural environment.
Both information are used in the prediction framework in combination with a variant of the Hidden
Markov Model (HMM) algorithm to create two modules. The proposed methodology is validated
with two test cases. In Test Case 1, the first module selects an optimal temporal model called as
picking_state_progression model that uses temporal features of a picker state (event) to statistically
evaluate an adequate number of intra-states also called sub-states. In Test Case 2, the second
module uses the outcome from the optimal temporal model in the subsequent spatial model called
node_transition model and performs “spatio-temporal predictions” of the picker’s movement while the
picker is in a particular state. The Discrete Event Simulation (DES) framework, a proven agricultural
multi-robot logistics model, is used to simulate the different picking operation scenarios with and
without our proposed prediction framework and the results are then statistically compared to each
other. Our prediction framework can reduce the so-called unproductive logistics time in a fully
manual harvesting process by about 80 percent in the overall picking operation. This research also
indicates that the different rates of picking operations involve different numbers of sub-states, and
these sub-states are associated with different trends considered in spatio-temporal predictions.

Keywords: agricultural automation; human motion prediction; hidden markov models; robot fleet
management; precision farming

1. Introduction

Precision agriculture concept is based on information-intensive agriculture, prescrip-
tion farming and identification of suitable tools to minimize cost through enhanced pro-
ductivity while simultaneously conserving the resources [1]. Nowadays, cost-effective
intelligent systems based on automation and robotics technologies are needed for improved
performance in agricultural fields. Such cutting-edge solutions must also be inherently safe
and reliable for human and environment [2,3]. Harvesting operations in agricultural farms
are not only about safely picking up the crop yields but also about optimal resource man-
agement and operational logistics planning. These concerns are more critical in soft-fruit
farms, as the short-shelf life of the fruits, that requires transportation of picked fruits to a
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cold storage facility as soon as possible. During picking operations, human pickers spend
around 20–30% of the overall working time just in logistics activities such as transportation
and unloading, where they walk with trays of picked fruits and empties by moving back
and forth from the crop to the storage location [4,5]. Shortage of skilled farm workers is
another major difficulty faced by many commercial soft-fruit growers around the world,
resulting in fruits left unpicked, especially during worst-case scenarios like economic crisis
and pandemic [6].

Though farming systems employ large-sized machines like tractors, nearly 10% of
the field area is used for operating these machines for logistics operations [7]. Hence, the
usage of small size robots, or even a fleet of them, has an advantage over conventional farm
vehicles for better utilization of the agricultural land area. Moreover, modular autonomous
robots such as the Thorvald platform can be easily reconfigured for different in-field tasks
and do not demand for any special arrangements [8].

An initial Wizard-of-Oz (WoZ) study in [9] was conducted with the Thorvald robot
in a real strawberry farm in the presence of human pickers (Figure 1), to check the advan-
tages that a robot brings to workers during harvesting. The authors evaluated how an
autonomous robot for in-field transportation system would assist fruit pickers and what
benefits this solution could provide to the production process. The in-field transportation
is still an open problem for the production of various fruit crops (e.g., strawberries, rasp-
berries, apples), which demand the deployment of sustainable management approaches
for robot fleets in real field applications [10]. Optimal management of multi-robot systems
is the key idea to reduce operating time of harvesting and, thus, deploying these robots
based on spatio-temporal predictions of harvesting events would improve efficiency of the
human pickers and eventually benefit the farmers.

(a) (b)
Figure 1. The Thorvald robot in the evaluation environment interacting with the pickers: (a) in a
strawberry open field; (b) in a strawberry polytunnel [9].

The conceptual idea of using a fleet of coordinated vehicles for agricultural tasks is
not a novelty. Many research groups are developing fleet management systems for dealing
with task management, motion planning, traffic control, data analysis, and fleet monitoring
(e.g., battery levels, mission status, robots locations and so on). In [11] the authors discuss
some hardware architectures for robot fleets to improve reliability, lower development
costs, and allow software integration from different developers. Three different hardware
topologies for fleets of robots were introduced to reduce the computing system to a mini-
mum: central-external controller, central-internal controller and immerse controller. In [12],
the authors address the design, development, testing and assessment of a new generation
of heterogeneous robot fleets (ground and aerial), equipped with innovative sensors, en-
hanced end-effectors, and improved decision-making algorithms for effective weed and
pest management in the crop fields. A novel augmented reality system is proposed in [13]
to help farmers supervise the operation of autonomous agricultural machinery towards ef-
ficient fleet management and safe operation based on situational awareness. A cloud-based
in-field fleet coordination system for multiple sequential operations on large-scale farms is
introduced in [14], wherein the authors developed a collaborative self-driving operating
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system for fleet management using a strip-state updating algorithm for successive field
operations under an optimal strategy for conditioning the waiting time between sequen-
tial operations. Following this trend, fleets of autonomous robots designed to monitor
plants, eliminate weeds and harvest crops with human awareness can definitely become
commercially available in the coming years.

1.1. Problem Formulation

The main motivation for this work comes from the RASberry project, a.k.a. Robotics
and Autonomous Systems for Berry Production, that aims to develop an autonomous fleet
of robots operating in human-assisting environments for agricultural farms of strawberry
production [7]. The tasks available in the field are shared among the fleet of robots which are
governed by a central coordination system to ensure an optimized task distribution across
the entire fleet. To optimize the number of robots in a fleet and their workflow, the fleet
coordination component must learn how to anticipate human worker needs and optimize
the spatial distribution of robots available for a picker. According to [4], autonomous robots
were provided “on-demand” of pickers for in-field logistics. They have used an online
mobile-based application to request, cancel or to get the status of a particular transportation
robot. We suspect that the “on-demand” policy in in-field logistics is prone to human
errors with inability to use digital devices, or waste in time for pickers while waiting
for robot to reach to them. To overcome this, a key idea for an improvement in in-field
logistics is shown in Figure 2, that emphasizes sending a robot to the picker’s location by
“anticipating-demand” instead of “on-demand” while they are in picking operation. This
solution aims to get rid of the portable digital device and is also capable of reducing the
pickers’ waiting time for a robot.

Figure 2. Overview of the anticipatory scheduling strategy in a real strawberry cultivation field.

1.2. Related Works

Deploying fleet of robots is a cutting-edge solution, which is predominant in ware-
house industries [15] but with still few applications in agriculture [16]. Much of the existing
works in agri-robotics mostly address problems of path planning, and goal assignment of
multiple robots and farm vehicles [17,18], with a few use cases on human-robot assistance.

Agriculture is not a money driven industry, which means it also asks for productivity
gain on each cost invested in the implementation of robots on the field [2]. Indeed, different
regions have distinct field characteristics, and infrastructure. Under such a dynamic
environment, a faster analysis tool would help in exploration of different processes and
operation in in-field logistics before actually deploying the robots. In this context, the
Discrete Event Simulation (DES) framework is adopted from [4], to model the picking
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scenarios in presence of soft-fruit human pickers and fleet of robots and validating our
prediction framework.

Spatio-temporal predictions in agricultural fields are discussed mainly for crop man-
agement and yield estimation [19–21]. Still, there is not much concern regarding the
modeling of the human picker’s motion in constrained agricultural environments. In a
recent work [22], the authors have developed a prediction approach for localising and
tracking human pickers inside polytunnels using a novel Topological Particle Filter (TPF)
algorithm. However, this solution is still limited to “on-demand” calling a robot for trans-
port assistance. Our proposed prediction framework is working towards the automatic
calling of the robot by “anticipating-demand”.

According to [23], machine learning-based methods were applied for human motion
prediction integrated with video data or used for other forecasting applications. However,
such methods have a few common pitfalls such as hyper-parameter tuning, depth and
complexity of the models. Recently, there is a growing interest in dynamic object motion
prediction based on Bayesian approaches for efficient human-robot collaboration [24,25],
combined with optimal motion planning and collision-free trajectory generation for mobile
robots [26,27].

Hidden Markov Models (HMMs) [28], a particular case of Bayesian network, are
attractive for the modeling of the state progression [29]. However, conventional HMMs
has the limitation of dealing with irregularly sampled continuous-time data such as in
our case of picking operation performed by human pickers. Based on proven research on
similar type of data in medical applications of diseases progression [30–32], human and
vehicle motion prediction [33], and human-motion recognition [34], we propose the use
of a Continuous-time HMM (CtHMM) for the spatio-temporal prediction framework for
different picking scenarios.

1.3. Our Proposal and Contribution

The proposed spatio-temporal prediction framework consists of two prediction mod-
els: one is called picking_state_progression model and other is called node_transition model.
The former predicts the temporal dynamics of harvesting activities (tray_full_time) and the
latter predicts the spatial dynamics for individual pickers (tray_full_node). The validation of
the prediction framework is carried out by using the DES framework [4] fed with data from
real harvesting operations. Then, two test cases are considered: in Test Case 1, we have the
picking_state_progression model working for a given average picking_time to observe how
efficiently a temporal progression of a state can be predicted, without loosing too much of
information over a period of time. In Test Case 2, the temporal prediction outcome obtained
from the picking_state_progression model and the mean_picking_rate are given as input in the
node_transition model, to predict picker’s location in a 2D discretized topological map of
the agricultural field. The relation between the picking_time and mean_picking_rate is given
as follows: the picking_time for a “tray-full event” is equal to the topological node-to-node
distance divided by the mean_picking_rate multiplied by the farm yield.

In this work, our main contributions are as follows: (i) develop a spatio-temporal
prediction framework of the picker activity status by exploiting the constrained 2D discrete
map information of the environment called topological map and using statistical learning
methods. This model should investigate the possible progression of a state and accordingly
making anytime prediction of the location of the pickers; (ii) based on simulations with
real-field data through case studies, we have also analyzed the feasibility of our prediction
models in reducing unproductive time such as, transportation time or waiting time of
human pickers during picking operation along the crop fields.

This paper is organized as follows: in Section 2, we present the system overview,
followed by a brief discussion on the topological map and a state abstraction for the picking
operation. Section 3 presents the proposed spatio-temporal prediction framework, the states
of the individual CtHMMs and the predictions obtained from the CtHMMs; in Section 4,
we introduce the experimental evaluation and the analysis of the simulation results for
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two case studies; Section 5 finally presents the concluding remarks and perspectives for
future works.

2. System Overview

In this section, an overview of the whole field picking operation for the RASberry use
case and some of the necessary tools to achieve this goal are reported, which are needed to
better understand the evaluation of the results.

2.1. The Topological Map

In the DES framework, the agricultural field is discretized into a 2D topological
map [35], which is a graph of discrete points located in a 2D space called as topological
nodes. A general representation of the topological map is shown in Figure 3, where a
topological node is denoted as a waypoint node. According to [36], it provides a unified
system that can tackle different challenges in terms of continuous navigation of autonomous
robot in agriculture field. It can be described as a tuple T = 〈N, E, A, nav〉, where N is
a set of physical location points {n1, n2, · · · , nκ}, κ is the total number of locations, and
E ⊆ N × N shows the set of possible edges connecting the nodes element i-th row and j-th
column of E, defined as:

Eij =

{
1 , if ni connects to nj ,
0 , elsewhere .

(1)

Figure 3. General representation of the topological map and the logical template of a farm field using
the DES framework in [4].

The navigation from one topological node to another is possible only if an edge exists
between them. Here, A is the set of actions performed by robots to navigate by mapping of
each edge to navigation action, nav. The picking process is discretized by looking at the
changes in the picker activities while moving from one topological node to another.

2.2. A State Abstraction for Picking Operation

To better understand the distinct states of human pickers in a real-time fruit picking
operation, below we discuss manual and robot-assisted picking operation procedures. The
picking operation protocols are almost similar for different fruit picking environment such
as strawberry polytunnels or apple orchards. The operation is described as follows: at the
outset of picking operation, a group of human pickers are assigned to a certain row of an
agriculture farm. They will start picking fruits in tray by moving forward or backward
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(i.e., ascending or descending order respectively, of topological map node IDs) in a given
crop row. When a tray is full (called a “tray-full event”), in manual operation Figure 4, they
themselves will transport and unload the tray by moving to the local storage. However,
in robot-assisted operation Figure 5, they will push a button interface of an in-house app
called CAR (Call-A-Robot) system on a mobile device and wait for the robot to come to
nearby location [22]. Then, the pickers get the service in transportation and unloading
of the fruit tray(s). In both cases, after finishing unloading the tray, they resume picking
again from the last position they were picking, or in a new row if the previous row is
finished. This cycle of events repeats until the harvesting tasks is completed for all crop
rows in the field. For the sake of simplicity, we have assumed that the robot speed and the
transportation speed of the human picker are the same.

Figure 4. An example of demo manual picking operation in apple orchard: (a) Picker is picking;
(b) Pickers are moving back and forth for loading/unloading trays; (c) Local storage.

Figure 5. An example of demo robot-assisted picking operation in apple orchard: (a) Picker is
picking; (b) CAR system calling robot; (c) Picker is waiting for robot; (d) Unloading full tray on robot;
(e) Local storage.

The bottleneck problem in both manual and robot-assisted picking operations is that
the pickers have to spend significant time on unproductive activities, either transporting
trays or waiting for the robot to arrive respectively. Reducing the time of unproductive activ-
ities forms the basis for the evaluation of our proposed anticipatory scheduling framework.

Categorizing the Picker’s States

According to [4], we have categorised pickers activities into six states from the real-time
data observations in RASberry use-case picking operation as Idle, Transportation, Picking,
Unloading, Loading, and Waiting, as shown in Figure 6a. Among all states, Picking (or picking
state) is found to be the dominant one which depicts the time duration of a “tray-full event”
(or tray_full_time) and all other states are highly dependent on it. Thus, in this work, we
are concerned with modeling picking_state_progression for prediction. An example of time
duration of each picker’s state is shown in Figure 6b.
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(a) (b)
Figure 6. Categorizing the picker’s states: (a) discrete states of picker in robot-assisted picking
operation; (b) an example graph showing time duration of each states in a picking operation.

3. A Topological Map-Based Spatio-Temporal Prediction Framework

This section presents the proposed spatio-temporal prediction framework for the
RASberry use case, discussing the details of the individual CtHMMs and the system
architecture processes for “tray-full events” predictions used in our test case studies.

3.1. Spatio-Temporal Prediction Modules

As shown in Figure 7, our prediction framework consists of two modules each with a
particular CtHMM. The first module comprises the picking_state_progression model, which
outputs the expected time of filling up of a tray as well as predicts temporal progression
with respect to percent filling of a tray, for a given average picking_time as input. Here,
we assume that every state (e.g., the picking state) is associated with a probability of
transition to another state, which is a function of state duration and resets to zero once a
transition to another state occurs. Therefore, without loss of generality, we consider that the
picking_state_progression as an exponential function defined by the mean of resident time in
a state. Being a dominant state, it has high chances of self-transition for input picking_time.
Then, the picking_time is discretized into several segments called sub-states. The sub-states
imply that the state of picker will exhibit the same behavior for a certain period. Then, each
sub-state signifies the percentage of the tray that is full at a given time in the future. These
achieved sub-states correspond to “hidden states” of the picker. Later, we will determine
the number of such sub-states required in the spatial prediction model using a statistical
model evaluation method.

Figure 7. Proposed prediction framework: tray_full_node and tray_full_time are the spatio-temporal
predictions of “tray-full events”.

The second module comprises the node_transition model, which predicts topologi-
cal node location for input temporal progression of a tray and mean_picking_rate. The
node_transition model is a spatial prediction model created by exploiting the discrete nodes
of the topological map of a given agricultural field into a CtHMM and using it to predict
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the picker location at any time in the future. In the next section, we will explain in detail
both individual CtHMMs.

3.2. Design of Individual CtHMMs

Each CtHMM model represents the sequence of observed feature vectors correspond-
ing to each hidden state, considering an emission probability. A graphical representation of
a general model state transition is shown in Figure 8. A CtHMM can be represented as a
tuple λ= 〈SS, A, π, O, B〉 for state transition at each unit of time t [37]. These parameters for
our models are defined in what follows: SS is the set of hidden states SS={ss1, ss2, · · · , ssn}
and n is the number of states in the hidden state sequence. For the picking_state_progression
model, ssi∈SS is the i-th sub-state within the picking operation starting from an empty tray
and ending with a “tray-full event”, which is equivalent to a fixed progression of filling
a tray. In the node_transition model, these hidden states are the topological nodes in the
environment (node_ID), representing the spatial position of the picker. The initial state or
prior probability vector π∈R1×n is given by:

πi = P(ssi) , i = 1, · · · , n , (2)

which determines in which state ssi the picking process begins. A ∈ Rn×n is the state
transition matrix where its entries aij provide the transition probability from state ssi to
state ssj as:

aij = P(ssj | ssi) , ssi , ssj∈SS , (3)

where the state transition coefficients satisfy

aij≥0 , i, j = 1, · · · , n , and Σn
j=1(aij) = 1 , ∀ssi ∈ SS . (4)

Figure 8. State transition model used in the proposed spatio-temporal prediction framework.

Here, O is the set of observable states O={o1, o2, · · · , oT} or observations, where T is
the number of samples in the observed response sequence. For the picking_state_progression
model, ok ∈O is the k-th observation (emission) within the picking operation, which is
equivalent to the percentage of picking progress and denoted by x. In the node_transition
model, these observable states are the topological node location denoted by node_ID. For
every hidden state, B∈Rn×(n+1) is an output observation distribution whose entries bik
provide the emission probability as:

bik = P(ok | ssi) , ok∈O , ssi∈SS . (5)

3.3. Predictions from the CtHMMs

The overall processes involved in the prediction from either of the CtHMM are shown
in Figure 9. In this case study, data from the harvesting operation of a commercial straw-
berry production field were collected from devices such as cameras, Garmin GNSS receiver,
and CAR system [22]. The data from all the sensors were processed to extract the times-
tamps of each picker activity. For example, we have visually inspected and fetched the time
duration of a tray full event by tracking each picker in the video manually. Similarly, we
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have processed GNSS timestamps as well as CAR system timestamps to classify different
picker activities. More details about the CAR system can be found in [22]. After that,
temporal features were extracted and mapped to different picker’s state (see Figure 6a).
Next, the average picking_time for a tray and the mean_picking_rate are fed into the CtHMM
for picking_state_progression and node_transition models respectively. The parameters of the
CtHMM are calculated using the aforementioned Equations (2)–(5). From our proposed
architecture, the objective is to predict “when” and “where” a picker would fill a complete
tray with respect to the topological node location, given the observations of the picker’s
current picking progress.

Figure 9. Processes of the prediction framework: from a real-world picking process to the event
prediction.

Since the sub-state driven models are nearly nested, it is expected that the more
complex model with higher number of hidden states would have larger posterior likelihood,
and at least a good fit, as the simple model. However, the main questions that arise when we
apply CtHMM are: (i) how to enquire the certainty of the state posterior distribution of the
observation sequences from different sub-state models and accordingly choose an optimal
model with suitable number of hidden states? And (ii) how to get the ‘best-fit’ hidden state
sequence SS = {ss1, ss2, · · · , ssn} of the given observation sequence O = {o1, o2, · · · , oT}
and parameters of the sub-state model λ?

The first problem is solved using the Kullback–Leibler divergence (KLD) method as
being suitable for model comparison in the Bayesian framework, that intuitively measures
how much a given arbitrary distribution is away from the true distribution [38]. Basically,
it computes the information loss in the fitted model relative to that in the reference model
and is denoted as:

KL(p||q) =
{∫ ∞
−∞ p(x) · ln(p(x)/q(x)) dx otherwise ,

∞ if p 6=0 , q=0 .
(6)

where p(x) is represents the “true” distribution of data (observation) and q(x) represents
the approximation (model) of p(x). In this paper, KLD is compared against uniform
distribution q(x) , which is defined as a 1-D array of n samples with an equal probability
of 1/n. Apparently, the model with minimum KLD index is considered as the optimal
choice. However, in this paper, the threshold KLD index is set close to 1 for a model with
a given sub-state size and picking operation time interval, to be considered a good fit.
In other words, a simpler model with less number of sub-states is compromised with a
complex model with more number of sub-states only if the KLD value is found within
range 1 ± 0.05. The second problem is solved by using the Viterbi algorithm which is based
on the maximum likelihood estimation (MLE) [39]. Next, we will present two case studies
and their corresponding experimental analysis.
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4. Experimental Evaluation

In this section, we present the experimental evaluation to demonstrate the effectiveness
and feasibility of the proposed prediction framework. We have carried out multiple DES
trials with prediction models running on the Ubuntu 16.04 LTS operating system based-
workstation with Intel® CoreTM i7-7500U CPU and 16 GB RAM. Our DES framework
follows the picking protocols from the RASberry use case for picking operation, as discussed
in Section 2.2. The DES framework codes were written in Python, enabling easy integration
with the Robot Operating System (ROS) framework [40]. The DES trials with/without
prediction framework have adopted and initialized the field variables, according to the DES
framework explained in [4], as follows: normalized farm yield as 0.0650± 0.0013 crates
per discrete node distance, picker’s normalized picking_rate and transportation_rate as
0.0375± 0.0007 ms−1 and 1.00± 0.02 ms−1 respectively. In our experiments, we are using
6 rows of an open rectangular field of strawberry plants, each row 120 m long and separated
by 1.5 m with equidistant topological node-to-node distance of 5 m. The resulting topology
(see Figure 3) of the site corresponds to a comb pattern with the main transportation route
containing the local store connecting starting points of all rows. On average, the simulations
reported in this work took approximately 13–15 min to simulate all the events of roughly
2 :30 h clock time.

Our CtHMM-based prediction framework predicts the next “tray-full event” for
each of the pickers not only based on field conditions, but also based on their individual
conditions (e.g., tray start node, time and picking directions, pickers having a break, and so
on). These predictions are made periodically to incorporate any changes in the conditions
of individual pickers. For example, after each picker completes a “tray-full event” in
the field, the mean_picking_rate and average picking_time for that tray are calculated from
their tray_start_node, tray_start_time, tray_full_node and tray_full_time, and are used to
have a better mean rate to be used for future predictions. The actual tray_full_node and
tray_full_time are obtained from the CAR system which is used by the picker to call for a
robot in regular operations and as a monitoring system when robots are allocated based on
the predictions. The experimental tests were carried out and the analysis of the results are
presented in the following subsections.

4.1. Test Case 1: To Choose an Optimal Picking_State_Progression Model

We will first explain in details the parameters chosen for the picking_state_progression
model and then, in the later part, we show the analysis of the experiment outcome. In this
experiment. we want to get the optimal number of hidden states (sub-states) for a given
picking_time in order to achieve an optimal model.

Accordingly, the picking_time is divided into n sub-states where each sub-state means
100/n % of a “tray-full event” occurrence. Once picker is in picking state, he/she would be
in such a state till a tray is finished, which means the sub-state transition always happens
in forward direction. Since the tray filling is naturally progressive, the given sub-state
transition probability in the model, denoted by the state transition matrix A, is cyclic,
having an extremely low probability in the reverse direction.

The output observation distribution B is set for the prediction model such that each
sub-state has 70% of probability to emit itself as an observation, another 10% for each
neighbouring sub-state and 0.1% for all observations, to ensure numerical stability. We also
include 10% change for occurrence of “unknown” noisy observation, which each node is
equally likely to emit in prediction. The initial state probability π is set uniformly as 1/n,
for each hidden state (sub-state).

To validate our picking_state_progression model, several runs on DES framework were
executed considering different number of sub-states. First, we start with a random sub-
state size of 5, and the corresponding graph results for each test run with sub-state size
incremented up to 30 are plotted in Figure 10. Then, the goodness of the fit to the data is
checked using the Viterbi algorithm. The log-likelihood distribution is then inferred using
KLD analysis. For the sake of simplicity and practical aspects, we have only considered few
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situations to demonstrate the KLD analysis. According to Figure 10 and from the results
shown in Table 1, for a picker’s mean_picking_rate equal to 0.0375 ms−1 and the prediction
time interval 9, the KLD value for the prediction model with number of sub-states 30 was
found to be closer to the true distribution than in other cases.

Figure 10. KLD analysis for changes in the number of sub-states.

Table 1. Changes in the KLD value versus the number of sub-states.

Number of Sub-States 10 15 20 25 30

KLD Value 0.46 0.60 0.71 0.92 1.006

4.2. Test Case 2: Spatio-Temporal Predictions of the Picker’s Motion

Based on the results obtained from Test Case 1, a picking_state_progression model with
30 substates is combined with node_transition model to make the complete “tray-full event”
prediction in Test Case 2. Here, it is assumed that the picker is following the picking protocol
(see Section 2.2). The CtHMM parameters (A, π, B) used in this model are calculated as the
same way as in Test Case 1.

To check the accuracy of the predictions, the DES framework was run with both
CtHMMs and analyzed against the actual data obtained from the DES running based on the
manual picking operation, with two pickers. The prediction results were evaluated with
respect to the occurrence of a “tray-full event” for a single picker and the overall picking
operation with multiple pickers, to understand the feasibility of using an anticipatory
scheduling strategy. In this work, our focus is on reducing the time consumption in
logistics operations based on the human picker’s activities predictions, although the DES
trials are executed with robots equal to the number of pickers in each farm row, as shown
in Figure 3. However, the explicit evaluation of an optimal number of robots required to
assist the human pickers in the field, the task allocation, and the concerns regarding the
scheduling of robots are out of the scope of this work for now.

Here, for the sake of better understanding, we will adopt the acronyms mentioned
in detail in Table 2: tray_ f ull_time (TFT); prediction_time_error (PTE); transportation_time
per tray (TTT); number of average nodes covered per “tray-full event” (ANCT); Node
transition time (NTT); average “tray-full event” time (ATT); average process completion
time (APCT); save on transportation time (STT); frequency of occurrence (FoO); percentage
average error (PAE).
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Table 2. List of Acronyms and Abbreviations used in the text with their definition.

Acronym Definition Description

TFT Tray Full Time Time taken to fill a tray, denoted by tray_full_time.

PTE Prediction Time Error Difference between actual and predicted tray_ f ull_time (TFT),
denoted by prediction_time_error .

TTT Transportation Time per Tray Travel time taken by picker to unload a full fruit tray to the local
storage, denote by transportation_time.

ANCT Average Nodes Covered per
“tray-full event” Nodes distance on an average a picker covers for filling up a tray.

NTT Node Transition Time Time taken by a picker while picking, to move from one node to its
subsequent node.

ATT Average “tray-full event” Time For overall process, an average time taken by a picker to fill a tray.

APCT Average Process Completion Time For overall process, an average time taken to pick a complete farm.

STT Save on Transportation Time Based on the usage of the prediction model, a reduction in
transportation time.

FoO Frequency of Occurrence Likeliness of an event to occur.

PAE Percentage Average Error For overall process, the absolute difference between actual and
predicted values in percent.

4.2.1. Analysis for a Single Picker

As mentioned previously, this analysis is needed for a specific CtHMM model with
mean_picking_rate, and it would keep providing the same results for the same picking
start node and time. Otherwise, different CtHMM models can be created for different
pickers based on their picking dynamics or changes in field dynamics (say, changes in
node-to-node space), resulting in changes in “tray-full event” prediction (and consequently
PTE) as well. As shown in Table 3, it is observed that a picker with an Id 00 starts picking
at 1.9 s in forward direction from row_ID 00 and node_ID 00. Then, Tray 1 is anticipated
to finish in 2096.7 s, but actually it takes 2114.9 s with same number of covered nodes, 16,
and so on. Similarly to the real appointed nodes row_IDs, the picker is predicted to cover
3 rows (row_ID 00, 02, 04) and to finish 7 full trays in total completion time of 15,680.1 s
whereas in actual it takes 15,686.2 s. The predicted forward (F) and reverse (R) directions
for picking trays are found to be same as the actual data. However, in few cases of the
predicted “tray-full event” (e.g., Tray No. 2, 3, 6), the node_IDs are found to be deviated by
±1 node from the actual tray full node location of a picker. If the predicted node is ahead
of actual node, for example Tray No. 2 and 3, the PTE per tray is always found negative.
Such a value came up as a result of an extra prediction time used to cover one extra node.
Otherwise, when the predicted node is equal to (or less than) the actual node, PTE gives
mostly positive value, except for a few cases (e.g., Tray 4). It is worth mentioning that
reducing the distance between adjacent topological nodes from 5 m (say, 2.5 m) can also
reduce this negative PTE.



Agronomy 2022, 12, 1299 13 of 18

Table 3. Analysis of the “tray-full event” for a picker (Id 00).

Start Prediction Actual PTE per Tray

End End End End prediction_time_error
Tray
No. row_ID node_ID Time (s) Direction row_ID node_ID Time (s) Direction row_ID node_ID Time (s) Direction Time (s)

1 00 00 1.9 F 00 16 2096.7 F 00 16 2114.9 F 18.9
2 00 16 2393.6 F 02 08 4630.3 F 02 07 4475.5 F −154.5
3 02 07 4664.7 F 02 23 6764.5 F 02 22 6641.3 F −123.2
4 02 22 6978.1 F 02 11 8949.0 R 02 11 8935.6 R −13.4
5 02 11 9163.8 R 04 04 11,138.5 F 04 04 11,150.2 F 11.7
6 04 04 11,311.9 F 04 19 13,281.5 F 04 20 13,399.4 F 117.9
7 04 20 13,718.8 F 04 13 15,680.1 R 04 13 15,686.2 R 6.1
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In our case, as a convention, when applying an anticipatory scheduling strategy with
robots, a negative value of PTE is called as picker_waiting_time for the robot (e.g., Tray No.
2, 3, 4), whereas a positive value is called as robot_waiting_time (e.g., Tray No. 1, 5, 6, 7) for
the picker. It is worth noticing that, we are concerned in this work only for saving the
picker_waiting_time and not the robot_waiting_time. However, for deploying an optimized
anticipatory scheduling of the robot fleets for human pickers both waiting times need to be
considered in a next work.

The predicted results for human-robot interaction based on an anticipatory scheduling
are evaluated, as shown in Table 4. These results show us how much probable STT can be
achieved, according to the predicted node_ID for a “tray-full event” and PTE. Then, four
main prediction classes were observed. In Class 1, a robot can be sent to the actual current
node of a picker and wait till he/she finishes a tray. Then, the picker can unload to the robot
without even travelling much distance with a filled tray. In Class 2, the picker might need
to travel just about one node (i.e., about 5 m) to unload, and can save on transportation
time by avoid travelling all the way to the local storage. In Class 3 and Class 4, the picker
will be waiting for a short period of time, till a robot reaches to the picker’s current node
location. This waiting time would be extremely small (e.g., PTE of Tray 4) in comparison to
the average TTT.

Table 4. Class categorization of “tray-full event” Predictions based on PTE values.

Class Pred. Act. PTE Who’s Empirical FoONode Node per Tray (s) Waiting % STT (Approx.)

1 same same 0 < PTE ≪ TTT Robot 100 High
2 behind ahead 0 < PTE ≤ TTT Robot (80, 100) High
3 ahead behind −2TTT ≪ −PTE < −TTT Picker Not Applicable Medium
4 same same −TTT ≪ PTE < 0 Picker (85, 100) Low

Considering the transportation speed 1.0± 0.02 ms−1 for a picker, as discussed earlier,
the TTT is calculated as approximately 121.57± 13.39 s to unload 7 trays. Hence, for all
classes, % STT per tray is obtained by using the following relation:

STT(%) =
TTT− PTE

TTT
× 100 . (7)

In Class 3, a robot is predicted to be sent to a node located ahead the actual picker
location (e.g., Tray 2, 3). Then, a robot can not obviously pass the picker, but it needs to stop
at the picker’s current tray full node. The PTE value in such classes consists of an “offset” of
an extra predicted Node Transition Time (NTT). Here, NTT is defined as “how much time a
picker takes to move from one node to its subsequent node while picking”, being calculated as:

NTT =
TFT

ANCT
. (8)

When removing the NTT from PTE it will provide us the PTE value (picker_waiting_time
or robot_waiting_time) for the predicted node which should be the same as the picker’s
actual “tray-full event” node. The actual NTT and predicted NTT are normally distributed
as 146.57 ± 5.70 s and 129.22 ± 7.28 s respectively. Thus, for a particular situation like
Tray 2, PTE is found as −25.2 s instead of −154.5 s. However, for such classes in general,
picker_waiting_time is normally distributed as 17.35± 2.23 s. Correspondingly, considering
the situation where a predicted node is either the same as or ahead of picker’s actual tray full
node, % STT per tray is calculated by using Equation (7), as approximately 85.72± 0.37%.
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4.2.2. Analysis for an Overall Picking Operation

According to the prediction analysis shown in Table 5, for the overall picking process
of 7 tray full events with two pickers, the predicted APCT were 15,787.85± 142.48 s. On
average, this value is 0.38 % more than the actual APCT, which is 15,726.02± 56.28 s. The
increase in the predicted APCT was expected as a result of the randomly distributed picking
and transportation rates. Based on the “tray-full event” analysis of the whole process, the
predicted ANCT by an average picker to fill a tray is approximately 16.07± 0.82 with an ATT
normally distributed as 2255.26 ± 26.78 s. On the contrary, in actual, ATT is approximately
2246.57± 11.37 s and ANCT is approximately 15.78± 0.80. Hence, based on the PAE value
of the overall process, the predicted picking process is approximately 0.38± 1.09% slower
than the actual picking process. In addition, the predicted process shows an “offset” node
coverage of approximately 1.8± 0.10 %, which means 0.28± 0.03 number of nodes more
than the actual number of nodes to fill a tray.

Table 5. Overall Picking Operation Analysis Matrix with Values Expressed as mean± std.

Prediction Actual PAE

APCT (s) 15,787.85± 142.48 15,726.02± 56.28 0.38± 0.77
ANCT 16.07± 0.82 15.78± 0.80 1.8± 0.10
ATT (s) 2255.26± 28.78 2246.57± 11.37 0.38± 1.09

Based on the predicted and actual values of ATT, the PTE value is calculated as
picker_waiting_time of 8 s with a little deviation of 24.64 s. Hence, this ensures that the
PTE value is falling into an acceptable category of Class 1, 2, or 4, where either picker
has to wait at the “tray-full event” node for a while or travel a few meters of distance,
in order to unload a tray. Accordingly, based on the estimated values of TTT and PTE
for the overall process, the % STT is calculated by using Equation (7), as approximately
79.74± 9.70. Additionally, considering the safety of the picker while interacting with robot
under an anticipatory scheduling strategy, the error in node prediction is found within the
acceptable range.

It is worth mentioning that the current pilot study is conducted to check the feasibility
of the proposed prediction framework for fruit picking operations. It is also intended to
create a baseline prediction model against manual picking operation. Here, running the
DES framework for manual operation implies that the robots are included and sent to the
picker’s location as/when they call for a robot. Conversely, running the DES framework
with CtHMMs implies that the robots are included and sent to the picker’s location in
advance by anticipating the requirement of the robot during the picking operation. Future
research work will focus on implementing autonomous robot-assisted picking operations,
with and without an anticipatory scheduling framework. Furthermore, the DES framework
can be extended to include a fleet of robots with a high number of pickers in the operation.
Please see [4] for allocating logistics tasks to a fleet of robots. It is noteworthy that our
prediction framework can be easily extended to a large number of human pickers. We can
also group pickers with similar picking rates together and use a single model for making
predictions for each of them.

5. Conclusions and Perspectives

In this work, we have presented a preliminary study for developing the anticipatory
scheduling of robots in the agricultural field to assist human pickers in various operations.
The utilization of the DES framework allows the systematic analysis of different picking
scenarios based on predictions. Based on our simulation results for an individual picker, at
each “tray-full event”, the prediction methodology has depicted four classes, with respect
to the predicted and actual node location in the topological map. Three classes (1, 2 and
4) have proved to be favorable for the anticipatory scheduling when the expected node is
located ahead or at the same node as the actual node of the picker.
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Spatial and temporal predictions using two CtHMMs have been shown to be quite
effective with small error in operating time of approximately 0.38% greater than in the
actual case for the overall picking process. An average picker is predicted to cover just
0.28± 0.03 number of extra nodes to fill a tray picking in similar direction as that of the
actual case. Another advantage of this study is that scheduling a robot based on our
prediction model may reduce the transportation time approximately by 79.74± 9.70%, on
overall picking operation. In our case studies on real-world farms, it was observed that
the pickers hardly ever take a break until the harvesting operation is completed, and this
is not considered in the evaluations. Even if a picker takes a break from the harvesting
operation, due to the periodic predictions being made with our spatial-temporal prediction
framework, predictions for the individual pickers who are taking a break can be removed
from this particular round of predictions. We believe that reducing transportation time
can improve the utilization of human pickers in agricultural fields and help reduce their
physical strain.

The main outcomes of this work are quite promising and allow us to glimpse future
applications of such an event prediction framework for human-robot collaboration in
manufacturing and autonomous driving in urban environments. In the future, the focus
would be to implement our prediction model in different agricultural fields to analyze the
effectiveness of the anticipatory scheduling strategy in real-time and real-world scenarios.
Further extending this work, we intend to improve our prediction framework, including
other picker states such as Idle, Transportation, Loading, and Unloading.
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