
Citation: Hao, H.; Lv, S.; Wang, F.

Optimal Planting Density and

Nutrient Application of Soybeans: A

Case Study in Northeastern China.

Agronomy 2023, 13, 2902. https://

doi.org/10.3390/agronomy13122902

Academic Editors: Thomas

Alexandridis, Mavromatis Theodoros

and Vassilis Aschonitis

Received: 7 November 2023

Revised: 23 November 2023

Accepted: 23 November 2023

Published: 26 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

agronomy

Article

Optimal Planting Density and Nutrient Application of Soybeans:
A Case Study in Northeastern China
Huicheng Hao 1,* , Shixin Lv 1 and Fulin Wang 2

1 College of Engineering, Northeast Agricultural University, Harbin 150030, China; shixin_lv@163.com
2 College of Modern Agricultural Equipment, Xihua University, Chengdu 610039, China;

fulinwang1462@126.com
* Correspondence: hchao@neau.edu.cn

Abstract: In the context of the Chinese government’s policy guidance, there is black soil protection
and ecological environment protection. The purpose of this paper is to solve the problem that the soil
ecology of the black soil in Northeast China is changing year by year, and it is necessary to explore
the sowing and fertilization strategy under the new situation; most Chinese growers rely excessively
on their personal experience in the process of soybean sowing and fertilization. In this study, we
used “Heihe 43” soybeans and used regression experimental design methods to analyze the effects of
planting density, nitrogen, phosphorus, and potassium fertilizer application on soybean yield and
to determine the optimal planting density and fertilizer ratios. The study reveals that the optimal
soybean planting density in Northeast China is 45.37 × 104 plants/ha, with nitrogen at 98.4 kg/ha,
phosphorus at 218.96 kg/ha, and potash at 47.62 kg/ha. Under these conditions, soybean yields can
reach 3816.67 kg/ha. This study can provide a theoretical method for decision-making to obtain the
optimal planting density and fertilizer ratio for different regions of the farming system.

Keywords: soybean cultivation; field trials; nitrogen; phosphorus and potassium fertilizer application;
sowing density; second-order orthogonal rotation composite regression design; D-optimal regression
experimental design

1. Introduction

China’s soybean self-sufficiency is insufficient, and it is overly dependent on imports.
China’s dominance in the global soybean trade, accounting for approximately 66% of it,
has placed substantial pressure on global food supply chains [1]. In recent years, China
has significantly bolstered its agricultural support, accompanied by a continuous evolution
of relevant policies. China’s Central Document No. 1 of 2022 proposes to vigorously
implement the soybean and oilseed production capacity enhancement project. The agri-
cultural sector has increasingly prioritized collaboration with agricultural institutions for
experiments related to crop cultivation and fertilization [2,3], with a particular focus on
major grain crops like soybeans [4], maize [5], rice [6,7], and wheat [8], especially within
the context of planting and fertilization experiments. According to the 2020 statistics from
the Food and Agriculture Organization (FAO) of the United Nations, global agricultural
fields received a total application of 85 million metric tons of nitrogen (N), 7 million metric
tons of phosphorus (P), and 12 million metric tons of potassium (K). Nitrogen utilization
efficiency ranged from 50% to 62% of the applied nitrogen. However, China significantly
surpasses other agricultural powerhouses in fertilizer use. Excessive fertilizer application
in China has escalated production costs, posing challenges to carbon peaking and carbon
neutrality goals. Crop fertilizers, especially nitrogen (N), phosphorus (P), and potassium (K)
fertilizers, exhibit low utilization rates. In China, nitrogen utilization efficiency (NUE) for
crop production is notably lower, approximately 30%, compared to the global average [9].
China faces the highest nitrogen surplus worldwide, with over 50% of nutrient substances

Agronomy 2023, 13, 2902. https://doi.org/10.3390/agronomy13122902 https://www.mdpi.com/journal/agronomy

https://doi.org/10.3390/agronomy13122902
https://doi.org/10.3390/agronomy13122902
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/agronomy
https://www.mdpi.com
https://orcid.org/0000-0002-6820-8305
https://orcid.org/0000-0003-3879-6924
https://doi.org/10.3390/agronomy13122902
https://www.mdpi.com/journal/agronomy
https://www.mdpi.com/article/10.3390/agronomy13122902?type=check_update&version=1


Agronomy 2023, 13, 2902 2 of 21

applied to land as fertilizers going to waste. This wastage leads to soil compaction [10]
and disrupts the native soil ecological equilibrium [11]. The black soil of Northeast China
is one of only four black soils in the world and one of the major grain-producing areas in
China, but it is facing degradation problems caused by wind and water erosion, organic
matter decline, and soil sloughing. Optimizing fertilizer application strategies can reduce
the transfer of chemical fertilizers into the soil, reduce environmental pollution, and protect
the soil ecology of the Northeast black soil. Implementing appropriate planting densities
can enhance resource utilization [12] (e.g., light, moisture, and nutrients) by crops, thereby
increasing fertilizer efficiency and reducing waste. This, in turn, can significantly enhance
soybean yields [13].

Chinese agriculture grapples with challenges due to its widely dispersed land, making
it difficult to establish specific fertilization standards as guidelines. Furthermore, a lack of
technical support personnel leaves farmers relying solely on their individual experiences
for planting and fertilizing. As a result, a contradiction exists between theoretical concepts
of planting and fertilization in China and the practical realities of local agricultural practices,
as well as the level of scientific and technological advancement in the region. Innovation
in planting and fertilization theories is imperative to promote the healthy and sustainable
development of eco-friendly agriculture. This innovation must be grounded in the local
context, considering factors such as soil conditions, crop varieties, and production costs [7].

In 2008, Oz, M. conducted a field experiment to investigate the impact of soybean
planting density and nitrogen application rates on soybean yield. The experiment featured
the soybean variety A-3935 and was conducted at four different planting densities and
four distinct nitrogen fertilizer application levels. The study assessed parameters such
as plant height, minimum pod height, per-plant branching count, per-plant pod count,
per-plant yield, harvest index, hundred-seed weight, and soybean production [14]. In
2009, Goncalves, R. J. D. and Abreu, A. D. B. conducted field experiments to evaluate the
performance of various common soybean cultivars under varying growth habits, different
fertilizer application rates, and various planting densities. Subsequently, they developed
corresponding fertilization strategies [15]. In 2016, Ferreira, A. S. et al. conducted two field
experiments using a randomized complete block design to assess the influence of nitrogen
on soybean grain yield, yield components, as well as oil and protein concentrations across
various planting densities and two nitrogen fertilizer levels [16]. In 2018, a field experiment
was conducted to evaluate the interactive effects of seeding rate and phosphorus (P)
and potassium (K) fertilization on growth, grain yield, and protein and oil content in
soybeans [17]. In 2021, Xu, C. L. et al. conducted a two-year field experiment to investigate
the impact of planting density on soybean plant growth and yield components. They
analyzed the relationship between photosynthetic rates, dry matter accumulation, and
yield under different planting densities and plant distributions [18]. In 2021, Salvagiotti F
and Magnano L curated an extensive dataset spanning from 2009 to 2018, encompassing
critical agricultural parameters, including soybean seed yield, total biomass at physiological
maturity, and data on the absorption of essential nutrients such as nitrogen (N), phosphorus
(P), potassium (K), and sulfur (S) [19].

Some scholars have primarily focused their research on the impact of soybean yield
from various perspectives, including cultivar improvement [20,21], crop rotation patterns,
and tillage methods [22–25], fertilization and nutrient management [26,27], pest and disease
control, as well as temperature and precipitation [28,29]. In recent years, China’s black soil
ecosystems have deteriorated due to soil erosion and land degradation, particularly soil
environmental pollution resulting from the use of chemical substances such as fertilizers
and pesticides in agricultural production [30,31]. To investigate optimal planting density
and fertilizer application rates under diverse soil conditions, this study addresses the preva-
lent practice among the majority of Chinese growers, who traditionally rely on empirical
methods for both fertilization and seeding. Often, these practices exceed optimal thresholds
for fertilizer application, resulting in seed and fertilizer waste, soil compaction [10], envi-
ronmental pollution, increased production costs, and adverse effects on both the quality
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and yield of harvests. This research aims to tackle the issues impacting the progress of
sustainable agricultural development in China. In the experimental zone of Shanhe Farm in
Nenjiang County, Heihe City, Heilongjiang Province, located in the northeastern region of
China, foundational data were collected using experimental methods. Employing nonlinear
regression analysis, we constructed a seeding and fertilization model with soybean yield
as the optimization objective and three types of fertilizer application rates and planting
density as experimental factors. Subsequently, this model underwent optimization to
determine the optimal planting density, nitrogen, phosphorus, and potassium fertilizer
application rates that maximize soybean yield. This research endeavor aims to provide
decision-making support for seeding and fertilization practices, guiding judicious fertilizer
application at the local level and furnishing a framework for achieving yield maximization.
Rational seeding and fertilization not only unlock the full potential of crops and reduce
costs but also contribute to the equilibrium of the soil ecosystem [31].

2. Materials and Methods
2.1. Experimental Design

In this study, the experimental site was carefully chosen within the Shanhe Farming
Experimental Zone, located in Nenjiang County, Heihe City, Heilongjiang Province, China.
The coordinates of this site are approximately 49◦15′54′′ N latitude and 125◦44′53′′ E lon-
gitude. This site boasts annual average precipitation ranging from 480 to 490 millimeters
and enjoys a solar radiation duration of 2500 to 2800 h per year. Moreover, the annual
average accumulated temperature above 0 ◦C, known as effective growing degree days,
hovers around 1900 ◦C, with a frost-free period extending approximately 110 to 120 days.
Notably, the Shanhe Farming Experimental Zone is characterized by flat terrain and pri-
marily comprises meadow black calcareous soil. The soil organic matter content within
this zone falls within the range of 4% to 6%. On 25 October 2019, the experimental field
was plowed and harrowed. On 20 April 2020, plots were divided in the experimental field.
The dimensions of the experimental plot measure 139 m in length and 33 m in width, with
specific parameter settings outlined in Table 1. Throughout this research, “Heihe 43” soy-
bean seeds were employed—a cultivar consistently cultivated within the Shanhe Farming
area. The germination period of soybean “Heihe 43” lasts 5–7 days, the growing period
is 80–120 days, the flowering period is 20–30 days, and the fruiting period is 30–40 days.
In this study, all plots in the same block group were sown on one day, and the field was
sown on 28 April 2020. Nitrogen fertilizer was administered in the form of urea (46% N),
phosphorus fertilizer as ammonium phosphate (18% N and 46% P), and potassium fertilizer
as potassium sulfate (60% K). The germination rate of the seeds reached 93%. Cultivation
management in this field trial started on 4 May 2020 and ended on 28 September 2020,
which was about 5 months. The harvesting date of this trial was from 28 September to
1 October 2020, and the soybeans were harvested by hand. This experiment adhered to
international standards and best practices, with the selected site being ideally suited to
fulfill the study’s objectives.

Table 1. Experimental site parameter configuration table.

Experimental Field
Dimensional Parameters Experimental Field Trial Plot Aisle Plantation

Conservation

Area 4587 m2 4 × 3.3 = 13.2 m2

Length 139 m 4 m
Width 33 m 1.1 m × 3 ridge = 3.3 m 1.1 m 1.1 m × 1 row = 1.1 m

Residential Area
Configuration

Number of ridges Width of ridges Number of Rows on
the Ridge Row Spacing

3 1.1 m 3 rows 0.25 m

The experimental area was partitioned into 26 primary zones aligned with the plowing
direction. Starting from the outermost perimeter, every three ridges were designated
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as subzones, each surrounded by protective rows. As a result, each primary zone was
further subdivided into five subzones, resulting in a total of 130 subzones. Two subzones
were intentionally left vacant at one end of the experimental site, while the remaining
128 subzones were meticulously utilized for implementing the 128 experimental treatments.
This allocation also determined the placement of the aisles. The precise layout of the
experimental field is depicted in Figure 1.
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2.2. Field Experimental Design

When harvesting a specific crop, it holds the potential to impact or even disrupt
neighboring crops, thereby exerting an influence on the final yield [32]. This research
employed a block sampling approach to minimize field disturbance during crop field trials.
Specifically, contiguous blocks within the field were selected for indoor seed examinations
and other assessments to minimize overall crop disturbance. A comparison with non-block
sampling methods, exemplified in Figure 2a, clearly highlights that the depicted technique
resulted in the highest degree of plant disruption, yielding a maximum disruption ratio of
9 between the disturbed plant area and the sample size. Conversely, utilization of the block
sampling method with a sample shape approximating a square led to the least overall plant
disturbance. For instance, in the case of grid-based systematic sampling, as illustrated in
Figure 2b, the disruption ratio was reduced to 2.78 [33]. Therefore, this study used the
sampling method in Figure 2b.

Diverse factors, encompassing climate, crop types, and geographical and historical
environments, contribute to variations in soil nutrient content and ecosystem charac-
teristics [34,35]. To minimize experimental error, the entire test field in this study was
subdivided into multiple large plot groups. In the preceding year, maize was cultivated in
the experimental field. The experimental design and implementation plan for the selected
plots can be found in Table 2. Climate variability exerts a profound influence on both the
magnitude and stability of crop yields [36]. Factors such as sunlight exposure [37–40],
temperature [28], and precipitation [29,41] significantly impact soybean production.

Table 2. Table of partial plot experimental design and implementation plan.

Test Number
Planting
Density

(104 plants/ha)
Seed Interval (cm) Row Interval (m) Urea

(kg/ha)

Diammonium
Phosphate

(kg/ha)

Potassium
Sulfate
(kg/ha)

88 35 7.8 0.25 139.36 147.45 12.85
89 35 7.8 0.25 57.91 137.24 25.72
90 35 7.8 0.25 21.62 98.92 12.85
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In September 2019 (one year before the official trial), this study pre-treated the trial
plots using farm machinery and equipment, including deep plowing, fine harrowing,
and leveling, to make the condition of the soil in each plot at the time of the experiment
essentially the same. As a result of these treatments, it was assumed in this study that the
organic matter content of the soil in each plot was uniform. The organic matter content of
the soil (including sunshine, temperature, precipitation, etc., in each plot in the experimental
field) was used as the same experimental conditions in this study, in this context, to study
soybean yield about the number of inorganic fertilizers (urea, diamine, potassium sulfate)
applied and the planting density.

The experiment took place in 2020 at the Shanhe Agricultural Experimental Zone of
Nenjiang County, Heihe City, Heilongjiang Province, China. Precipitation in Nenjiang
County is predominantly concentrated from June to September, accounting for approxi-
mately 80% of the annual precipitation. Notably, the months of July and August experience
the highest levels of precipitation. Conversely, the period from November to February
exhibits cold climatic conditions, rendering it unsuitable for agricultural production activi-
ties. Temperature patterns, including average high and low temperatures, as well as total
precipitation for Nenjiang County from March to October, are illustrated in Figure 3.
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Figure 3. Annual temperature and total precipitation data for Nenjiang County in 2020.

This study was divided into a total of four types of regression experimental design:
single-factor experimental design, four groups; quadratic orthogonal rotating combination
design, two groups of replicates; D-optimal regression design, one group; and random
regression, one group. The single-factor regression design experiments consisted of four
groups as follows: nitrogen, phosphorus, and potassium three-factor regression design
experiments numbered 98~107, 108~117, and 118~127 in that order, and sowing density
experiments numbered 88~97; two groups of replicated experimental design numbered
16~51 and 52~87; D-optimal experiments numbered 1~15; and a blank control experiment
numbered 128.

2.3. Collection of Basic Data

This experiment was conducted in 2018 and 2019 as a two-year pre-experiment aimed
at obtaining the optimal range of values for the single-factor test and laying the foundation
for determining the 0-level values of nitrogen, phosphorus, and potassium fertilizer ap-
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plication and planting density in the second-order orthogonal rotating composite design.
In 2020, the experimental steps of harvesting, threshing, and indoor drying and weighing
were used to obtain the basic data of the field trial, construct the regression equation model,
carry out the quantitative analysis, and optimize the solution [42]. In this study, models
were tested, constructed, and optimized using Design Expert 13 software for two sets of
replicated experimental data from quadratic orthogonal rotated combinatorial design and
one set of experimental data from D-optimal regression. They fitted to one-factor four sets
of data using Origin 2022 software.

3. Data Analysis and Processing Results
3.1. Single-Factor Regression Design Implementation Data

Fundamental research data concerning soybean yield were obtained by conduct-
ing measurements within specific land parcels classified by unique numerical identifiers.
Figure 4 depicts the correlation between soybean yield, planting density, and fertiliza-
tion levels.
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and soybean yield.

By examining the relationship diagram presented in Figure 4, which illustrates the
correlation between planting density, fertilizer application rates, and soybean yield, it
becomes evident that an incremental increase in planting density and fertilizer application
rates leads to a gradual enhancement in soybean yield, ultimately reaching the maxi-
mum potential for soybean growth. Simultaneously, when planting density surpasses
46.35 × 104 plants/ha, the application rates of nitrogen, phosphorus, and potassium ex-
ceed 69.81 kg/ha, 169 kg/ha, and 25.29 kg/ha, respectively. Beyond these thresholds, the
yield gradually diminishes, becoming a limiting factor.
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3.2. Data Processing and Model Optimization in Single-Factor Regression Experiments
3.2.1. Data Processing and Model Optimization in Regression Experiments on Planting
Density Effects

The experimental design employed to assess the unifactorial impact of planting density
on crop yield underwent rigorous statistical analysis. The results of the parameter tests
about the influence of planting density on crop yield are detailed in Table 3.

Table 3. Model parameter examination table for the relationship between planting density and yield.

Source DF Sum of Squares Mean Square F Value Prob > F

Model 2 58,690.851 29,345.425 55.41 5.112 × 10−5 Significant
Error 7 3707.219 529.603
Total 9 62,398.07

Based on the data presented in Table 3, the column depicting variation probabilities,
it is evident that the overall variation probability of the model is less than 0.0001. This
finding indicates the significance of the relationship between soybean yield and planting
density factors. Conducting examinations on other model parameters allows us to derive
conclusions with a high degree of concordance between the regression equation and actual
observations. A summary of the obtained model can be found in Table 4, while the model
coefficients and corresponding t-test results are provided in Table 5.

Table 4. Model summary of the relationship between planting density and yield.

R R-Square Adj. R-Square

0.97 0.941 0.924

Table 5. Table of model coefficients and parameter tests.

Non-Standardized Coefficients
t-Value Prob > |t|

Value Standard Error

x1 37.01 3.924 9.432 3.14 × 10−5

x1
2 −0.40 0.046 −8.613 5.673 × 10−5

Intercept 2045.19 78.744 25.973 3.208 × 10−5

Whereas x1 represents planting density (104 plants/ha), x2 signifies nitrogen fertilizer
application rate (kg/ha), x3 denotes phosphorus fertilizer application rate (kg/ha), and x4
signifies potassium fertilizer application rate (kg/ha).

Obtained regression equation:

_
y = −0.40x1

2 + 37.01x1 + 2045.19 (1)

Based on the actual conditions at Shanhe Farm, the range of values for planting density
was determined. A model was constructed using a regression equation [43] that captures
the relationship between planting density and yield. Subsequently, the model was subjected
to mathematical analysis and solution.{

_
y = −0.40x1

2 + 37.01x1 + 2045.19
21.43 < x1 < 62.68

(2)

Solution: {
Yield

_
y = 2902.85

Planting density x1 = 46.35
(3)
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Within the experimental parameters of this study, the optimal planting density for
achieving the highest yield was determined to be 46.35 × 104 plants/ha, resulting in a peak
yield of 2902.85 kg/ha.

3.2.2. Data Processing and Model Optimization in Regression Experiments on Nitrogen
(N) Efficiency

Table 6 presents the parameter testing results for assessing the influence of nitrogen
(N) fertilizer application on crop yield. These results were determined through a nitrogen
efficiency regression trial design and subsequent calculations.

Table 6. Table of the model parameters of the relationship between nitrogen (N) factor and yield.

Source DF Sum of Squares Mean Square F Value Prob > F

Model 2 309,809.7 154,904.851 83.793 1.289 × 10−5 Significant
Error 7 12,940.62 1848.66
Total 9 322,750.3

The data presented in Table 6 demonstrates that the variation probability, as indicated
in the corresponding column, is less than 0.0001. This finding suggests a substantial
correlation between soybean yield and nitrogen fertilizer factors. Upon closer examination
of the model, it becomes evident that the regression equation aligns favorably with real-
world observations.

The obtained model summary is presented in Table 7, while the model coefficients
and t-test results are available in Table 8.

Table 7. Model summary of the relationship between nitrogen (N) factor and yield.

R R-Square Adj. R-Square

0.98 0.960 0.948

Table 8. Model coefficient and parameter test table of the relationship between nitrogen (N) factor
and yield.

Non-Standardized Coefficients
t-Value Prob > |t|

Value Standard Error

x2 624.65 51.624 12.1 6.014 × 10−6

x2
2 −4.47 0.377 −11.881 6.8 × 10−6

Intercept −18,647.34 1760.135 −10.594 1.46 × 10−5

The regression equation for determining the relationship between nitrogen fertilizer
application rates and crop yields:

ŷ = −4.47x2
2 + 624.65x− 18, 647.34 (4)

Considering the particular conditions at the Shanhe Farming Experimental Zone, we
determined a range of nitrogen fertilizer application values. Afterward, we developed a re-
gression equation using the collected yield data, which was then followed by computational
modeling and solution. {

ŷ = −4.47x2
2 + 624.65x− 18, 647.34

58.70 < x2 < 78.48
(5)

Solution: {
Yield ŷ = 3157.39
nitrogen f ertiliser x2 = 69.81

(6)
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When all other influencing factors are maintained at zero levels, the optimal nitrogen
fertilizer application rate is determined to be 69.81 kg/ha, resulting in a maximum yield of
3157.39 kg/ha.

3.2.3. Data Processing and Model Optimization in Regression Experiments on Phosphorus
(P) Efficiency

After performing calculations about the experimental design for phosphate (P) effi-
ciency regression, we present the model parameters employed to examine the influence of
phosphate fertilizer application rates on crop yield in Table 9.

Table 9. Table of the model parameters of the relationship between phosphorus (P) factor and yield.

Source DF Sum of Squares Mean Square F Value Prob > F

Model 2 195,752.45 97,876.226 36.555 1.972 × 10−4 Significant
Error 7 18,742.52 2677.503
Total 9 214,494.97

According to the data presented in Table 9, the column depicting variation probabili-
ties reveals an overall variation probability of approximately 0.0002 for the model. This
suggests a significant relationship between soybean yield and the phosphorus fertilizer fac-
tor. Further examination of other model parameters yields a favorable conclusion regarding
the model’s regression equation and its alignment with real-world conditions.

The model summary can be found in Table 10, while the model coefficients and t-test
results are presented in Table 11.

Table 10. Model summary of the relationship between phosphorus (P) factor and yield.

R R-Square Adj. R-Square

0.955 0.913 0.888

Table 11. Model coefficient and parameter test table of the relationship between phosphorus (P)
factor and yield.

Non-Standardized Coefficients
t-Value Prob > |t|

Value Standard Error

x3 5.34 0.701 7.621 1.241 × 10−4

x3
2 −0.02 0.003 −6.103 4.896 × 10−4

Intercept 2520.03 42.989 58.62 1.103 × 10−10

In this academic paper, we present the regression equation that illustrates the correla-
tion between the application rates of phosphorus fertilizer and crop yields.

ŷ = −0.02x3
2 + 5.34x3 + 2520.03 (7)

Based on the actual conditions of the Shanhe Farming Experimental Zone, the range
of phosphorus fertilizer application rates was determined. A regression equation was
constructed based on the obtained yield data, and subsequent computational analysis was
performed to derive the model.{

ŷ = −0.02x3
2 + 5.34x3 + 2520.03

0 < x3 < 262.50
(8)

Solution: {
Yield ŷ = 2973.84
Phosphate f ertiliser x3 = 169

(9)
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When maintaining all other variables at their baseline levels, the optimal rate of
phosphorus fertilizer application is established at 169 kg/ha. This point corresponds to the
maximum observed yield, reaching a value of 2973.84 kg/ha.

3.2.4. Data Processing and Model Optimization in Regression Experiments on Potassium
(K) Efficiency

Table 12 presents the results of the analysis of model parameters, which assess the
influence of potassium (K) fertilizer application rates on crop yield. These assessments
were conducted using a potassium efficiency response regression experimental design.

Table 12. Table of the model parameters of the relationship between potassium (K) factor and yield.

Source DF Sum of Squares Mean Square F Value Prob > F

Model 2 1,169,660.934 584,830.467 41.407 1.322 × 10−4 Significant
Error 7 98,868.068 14,124.01
Total 9 1,268,529.002

As indicated by the data in Table 12, the variation probability column, the overall
variation probability of the model is approximately 0.0001. This result suggests that there
is a significant relationship between soybean yield and potassium fertilizer factors. Further
examination of other aspects of the model yields the conclusion that the regression equation
exhibits a good fit with real-world conditions.

The model-derived summaries can be found in Table 13, while the model coefficients
and the results of t-tests are presented in Table 14.

Table 13. Model summary of the relationship between potassium (K) factor and yield.

R R-Square Adj. R-Square

0.96 0.922 0.9

Table 14. Model coefficient and parameter test table of the relationship between potassium (K) factor
and yield.

Non-Standardized Coefficients
t-Value Prob > |t|

Value Standard Error

x4 67.8 8.047 8.426 6.536 × 10−5

x4
2 −1.34 0.148 −9.07 4.057 × 10−5

Intercept 2268.22 98.735 22.973 7.507 × 10−8

Regression equation of estimating the relationship between potassium fertilizer appli-
cation rates and crop yields:

ŷ = −1.34x4
2 + 67.8x4 + 2268.22 (10)

Based on the actual conditions at Shanhe Farming Experimental Zone, the range of
potassium fertilizer application rates was determined. A regression equation for yield was
established using the obtained data and subsequently solved through mathematical modeling.{

ŷ = −1.34x4
2 + 67.80x4 + 2268.22

0 < x4 < 52.50
(11)

Solution: {
Yield ŷ = 3125.48
Potassium f ertiliser x4 = 25.29

(12)
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With all other factors at their baseline values, when the potassium fertilizer application
rate is 25.29 kg/ha, at which point the maximum yield reaches 3125.48 kg/ha.

3.3. Second-Order Orthogonal Rotational Composite Design
3.3.1. Data from the First Set of Experimental Implementations in a Second-Order Orthogonal
Rotational Composite Design

The single-factor regression design only provides insights into the individual impacts
of planting density, nitrogen fertilizer, phosphorus fertilizer, and potassium fertilizer on
soybean yield. However, during the soybean cultivation process, these four factors exhibit
interactions with each other. To investigate the combined effects of these interacting fac-
tors on soybean yield, we employed a quadratic orthogonal rotation regression design to
compute the coded levels and spacing values for each factor. In contrast to single-factor
regression experimental designs, the quadratic orthogonal rotation regression design intro-
duces interactions between pairwise factors, with a focus on representing a comprehensive
surface model within the coding range.

Under the coding scheme, where ‘A’ represents planting density, ‘B’ represents nitro-
gen fertilizer, ‘C’ represents phosphorus fertilizer, and ‘D’ represents potassium fertilizer;
under the actual value scheme, where ‘x1’ represents planting density, ‘x2’ represents nitro-
gen fertilizer, ‘x3’ represents phosphorus fertilizer, and ‘x4’ represents potassium fertilizer,
quadratic square terms were centered as follows:

x′αj = x2
αj −

1
n

n

∑
α

x2
αj = x2

αj −
1

36
× 24 = x2

αj − 0.667 (13)

In this study, “n” represents the number of experiments, with “n” equal to 36. Specif-
ically, 12 repetitions of experiments were conducted at the center point of the 0-level,
resulting in the establishment of the experimental design matrix. Subsequently, based on
the quadratic orthogonal rotation regression design matrix, an experimental plan imple-
mentation schedule was developed, and a partial sample table is presented in Table 15.

Table 15. Partial actualizing data of design test plan.

Test
Number

Factor x1
(104 plants/ha)

Factor x2
(kg/ha)

Factor x3
(kg/ha)

Factor x4
(kg/ha)

Yield
(kg/ha)

16 50 95.16 198.76 39.65 3453.47
17 50 44.84 101.24 20.35 3354.23
18 55 70 150 30 2845.73

3.3.2. Processing and Model Optimization of the First Set of Experimental Data in a
Second-Order Orthogonal Rotatable Design

The data from the quadratic orthogonal rotational regression tests were processed,
and the model parameters and parameter test tables obtained are shown in Table 16.

Table 16. Quadratic orthogonal rotation regression design of the first set of the experimental model
parameter test table.

Source Sum of Squares DF Mean Square F Value Prob > F

Model 1.59 × 106 14 1.13 × 105 19.16 <0.0001 Significant
A 27,983.88 1 27,983.88 4.73 0.0412
B 2.89 × 105 1 2.89 × 105 48.85 <0.0001
C 89,773.09 1 89,773.09 15.18 0.0008
D 18,186.32 1 18,186.32 3.08 0.0941

AB 4312.55 1 4312.55 0.7292 0.4028
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Table 16. Cont.

Source Sum of Squares DF Mean Square F Value Prob > F

AC 12,327.66 1 12,327.66 2.08 0.1636
AD 1.29 × 105 1 1.29 × 105 21.81 0.0001
BC 2.17 × 105 1 2.17 × 105 36.69 <0.0001
BD 1.20 × 105 1 1.20 × 105 20.24 0.0002
CD 1702.39 1 1702.39 0.2879 0.5972
A2 1.37 × 105 1 1.37 × 105 23.22 <0.0001
B2 87,763.04 1 87,763.04 14.84 0.0009
C2 4.51 × 105 1 4.51 × 105 76.24 <0.0001
D2 1926.45 1 1926.45 0.3257 0.5742

Residual 1.24 × 105 21 5914.04
Lack of Fit 54,421.12 10 5442.11 0.858 0.5916 Not significant
Pure Error 69,773.69 11 6343.06
Cor Total 1.71 × 106 35

As shown in the F-value column of Table 16, the influence factors of the four factors
on yield are as follows: planting density is 4.73, nitrogen fertilizer is 48.85, phosphorus
fertilizer is 15.18, and potash fertilizer is 3.08. It can be seen that the magnitude of the
factors contributing to yield is nitrogen fertilizer (N) > phosphorus fertilizer (P) > planting
density > potassium fertilizer (K).

As indicated in Table 16, the variance probabilities of the model as a whole are less
than 0.0001, signifying the significant regression relationships between the yield and the
variables x1, x2, x3, and x4. Conducting an overall model, the F-test reveals that the Lack of
Fit of model inadequacy is not significant. This suggests that the derived equation aligns
well with the actual scenario and is deemed valid.

Under the coding scheme, where A represents planting density, B signifies nitrogen
fertilizer, C represents phosphorus fertilizer, and D stands for potassium fertilizer, we
derive the yield regression equation within the framework of the coding system:

y = 3082.16 + 34.15A + 109.71B + 61.16C
+27.53D− 16.42AB− 27.76AC− 89.8AD
+116.45BC + 86.5BD + 10.32CD
−65.51A2 − 52.37B2 + 118.7C2 + 7.76D2

(14)

We established the model by removing non-significant terms (p > 0.05) from the yield
regression equation. These excluded terms encompassed the first-order effect of potassium,
as well as the interaction terms between planting density and nitrogen, planting density
and phosphorus, and phosphorus and potassium, along with the second-order effect of
potassium. Due to their orthogonality, it is evident that these exclusions do not influence
the remaining coefficients. Subsequently, we conducted optimization calculations. The
results of the variance analysis and F-test are presented in Table 17.

Table 17. Table of quadratic orthogonal rotation design of the first set of test model parameter tests.

Source Sum of Squares DF Mean Square F Value Prob > F

Model 1.57E + 06 10 1.57 × 105 27.11 <0.0001 Significant
A 27,983.88 1 27,983.88 4.84 0.0372
B 2.89 × 105 1 2.89 × 105 49.99 <0.0001
C 89,773.09 1 89,773.09 15.54 0.0006
D 18,186.32 1 18,186.32 3.15 0.0882

AD 1.29 × 105 1 1.29 × 105 22.33 <0.0001
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Table 17. Cont.

Source Sum of Squares DF Mean Square F Value Prob > F

BC 2.17 × 105 1 2.17 × 105 37.55 <0.0001
BD 1.20 × 105 1 1.20 × 105 20.72 0.0001
A2 1.37 × 105 1 1.37 × 105 23.77 <0.0001
B2 87,763.04 1 87,763.04 15.19 0.0006
C2 4.51 × 105 1 4.51 × 105 78.02 <0.0001

Residual 1.45 × 105 25 5778.55
Lack of Fit 74,690.16 14 5335.01 0.8411 0.6261 Not significant
Pure Error 69,773.69 11 6343.06
Cor Total 1.71 × 106 35

Considering the presence of nitrogen elements in the diamine-based fertilizers em-
ployed, due consideration was given to this factor during the execution of the experiments.
An inconsistency was observed between the numerical values of fertilizer application
quantities in the experimental data table and the levels of the factors. As a result, the model
was constructed using factor levels as independent variables to ensure alignment with the
experimental design scheme. The ranges for the application rates of nitrogen, phosphorus,
and potassium fertilizers, as well as planting density, were determined based on the actual
conditions at Shanhe Farm. A coding scheme was established using the obtained yield
regression equation and subsequently solved. Finally, actual values for fertilizer application
rates and planting density were obtained through numerical conversion.

ŷ = 3087.33 + 34.15A + 109.71B + 61.16C + 27.53D
−89.8AD + 116.45BC + 86.5BD− 65.51A2 − 52.37B2

+118.7C2

−2 < A, B, C, D < 2

(15)

Solution: 
Yield ŷ = 3703.76
Planting density x1 = 45.61
Nitrogen f ertiliser x2 = 104.42
Phosphorus f ertiliser x3 = 202.31
Potassium f ertiliser x4 = 43.45

(16)

In the context of agricultural research, it has been observed that the nonlinear fitting
model yields superior results. Specifically, when considering planting density, nitrogen
fertilizer application, phosphorus fertilizer application, and potassium fertilizer application
at values of 45.61 × 104 plants/ha, 104.42 kg/ha, 202.31 kg/ha, and 43.35 kg/ha, respec-
tively, the maximum crop yield is achieved at 3703.76 kg/ha. This underscores the efficacy
of nonlinear modeling techniques in optimizing crop yield under varying agricultural
input conditions.

3.3.3. Data from the Second Set of Experimental Implementations in a Second-Order
Orthogonal Rotational Composite Design

To mitigate the inadvertent errors introduced by experimental randomness, we im-
plemented a strategy involving the conduction of duplicate trials across two distinct
experimental groups. Table 18 presented herein comprises a subset of the data derived
from the execution of the second set of trials.
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Table 18. Partial actualizing data of design test plan.

Test
Number

Factor x1
(104 plants/ha)

Factor x2
(kg/ha)

Factor x3
(kg/ha)

Factor x4
(kg/ha)

Yield
(kg/ha)

52 50 95.16 198.76 39.65 3486.8
53 50 44.84 101.24 20.35 3160.65
54 55 70 150 30 2853.97

3.3.4. Processing and Model Optimization of the Second Set of Experimental Data in a
Second-Order Orthogonal Rotatable Design

Upon processing the data from the secondary orthogonal rotational regression experi-
ment, the model parameters and parameter validation table can be found in Table 19.

Table 19. Quadratic orthogonal rotation regression design of the second set of experimental model
parameter test tables.

Source Sum of Squares DF Mean Square F Value Prob > F

Model 1.36 × 106 14 97,270.43 28.37 <0.0001 Significant
A 32,410.56 1 32,410.56 9.45 0.0058
B 2.87 × 105 1 2.87 × 105 83.57 <0.0001
C 1.57 × 105 1 1.57 × 105 45.73 <0.0001
D 26,573.41 1 26,573.41 7.75 0.0111

AB 1109.56 1 1109.56 0.3236 0.5755
AC 3889.39 1 3889.39 1.13 0.2989
AD 1.42 × 105 1 1.42 × 105 41.31 <0.0001
BC 85,141.4 1 85,141.4 24.83 <0.0001
BD 68,754.08 1 68,754.08 20.05 0.0002
CD 1114.56 1 1114.56 0.3251 0.5746
A2 1.85 × 105 1 1.85 × 105 54.02 <0.0001
B2 19,588.47 1 19,588.47 5.71 0.0263
C2 3.53 × 105 1 3.53 × 105 102.88 <0.0001
D2 284.21 1 284.21 0.0829 0.7762

Residual 72,003.15 21 3428.72
Lack of

Fit 43,048.41 10 4304.84 1.64 0.2158 Not
significant

Pure
Error 28,954.73 11 2632.25

Cor Total 1.43 × 106 35

As depicted in Table 19, the impact factors of the four factors on yield, denoted
as F-values, are as follows: planting density at 9.45, nitrogen fertilizer at 83.57, phos-
phorus fertilizer at 45.73, and potassium fertilizer at 0.0111. Consequently, it can be
inferred that the contribution order of these factors to yield is as follows: nitrogen fertilizer
(N) > phosphorus fertilizer (P) > planting density > potassium fertilizer (K).

As shown in Table 19, the variation probability in the column for Model 19 is less
than 0.0001, indicating an exceedingly significant regression relationship between yield
and factors A, B, C, and D. Conducting an overall model F-test reveals that the variability
probability of the model’s lack of fit is not significant. This suggests that the obtained
equation aligns well with the actual circumstances and is indeed applicable.

The regression equation for yield in the second experimental group:

ŷ = 3102.59 + 36.75A + 109.26B + 80.83C
+33.27D− 8.33AB− 15.59AC− 94.09AD
+72.95BC + 65.55BD− 8.35CD
−76.08A2 − 24.74B2 + 104.99C2 − 2.98D2

(17)
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By the yield regression equation, a model was constructed by eliminating non-significant
terms. Specifically, the interactive terms between planting density and nitrogen, planting
density and phosphorus, and phosphorus and potassium were removed, along with the
quadratic term for potassium. Given their orthogonality, it is evident that the removal of
these terms does not impact the other coefficients. The variance analysis results and F-test
for the second set of experiments are presented in Table 20.

Table 20. Table of quadratic orthogonal rotation regressive design replication to yield model parameter test.

Source Sum of Squares DF Mean Square F Value Prob > F

Model 1.36 × 106 10 1.36 × 105 43.22 <0.0001 Significant
A 32,410.56 1 32,410.56 10.33 0.0036
B 2.87 × 105 1 2.87 × 105 91.36 <0.0001
C 1.57 × 105 1 1.57 × 105 50 <0.0001
D 26,573.41 1 26,573.41 8.47 0.0075

AD 1.42 × 105 1 1.42 × 105 45.16 <0.0001
BC 85,141.4 1 85,141.4 27.15 <0.0001
BD 68,754.08 1 68,754.08 21.92 <0.0001
A2 1.85 × 105 1 1.85 × 105 59.06 <0.0001
B2 19,588.47 1 19,588.47 6.25 0.0194
C2 3.53 × 105 1 3.53 × 105 112.48 <0.0001

Residual 78,400.87 25 3136.03
Lack of

Fit 49,446.13 14 3531.87 1.34 0.316 Not
significant

Pure
Error 28,954.73 11 2632.25

Cor Total 1.43 × 106 35

By the actual conditions observed at the Mountain River Farm, we determined the
ranges of nitrogen (N), phosphorus (P), and potassium (K) fertilizer application rates, as
well as planting densities. Subsequently, we established an encoding-based modeling
framework utilizing regression equations derived from the obtained crop yields. These
equations were subsequently solved to derive practical values for both fertilizer application
rates and planting densities through numerical conversion.

ŷ = 3100.6 + 36.75A + 109.26B + 80.83C
+33.27D− 94.09AD + 72.95BC + 65.55BD
−76.08A2 − 24.74B2 + 104.99C2

−2 < A, B, C, D < 2

(18)

Solution: 
Yield ŷ = 3816.67
Planting density x1 = 45.37
Nitrogen f ertiliser x2 = 98.4
Phosphorus f ertiliser x3 = 218.76
Potassium f ertiliser x4 = 47.62

(19)

In the realm of agricultural research, it has been observed that nonlinear regression
models exhibit superior performance in optimizing crop yield. Notably, when the planting
density, nitrogen fertilizer application rate, phosphorus fertilizer application rate, and potas-
sium fertilizer application rate are set at 45.37 × 104 plants/ha, 98.4 kg/ha, 218.96 kg/ha,
and 47.62 kg/ha, respectively, the maximum achievable yield stands at 3816.67 kg/ha.
This outcome underscores the significance of employing nonlinear fitting techniques in
agricultural yield optimization studies.
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3.4. Implementation Data for D-Optimal Regression Experimental Design

In this study, we conducted an experimental design to optimize soybean yield. Given
the high requirement for the goodness of fit of the regression equation and the challenge of
dealing with a large number of experimental treatments, we employed the D-optimization
regression approach as delineated in prior works [44–46]. This method not only ensures
precise parameter estimation but also reduces the requisite number of experimental data
points, thus resulting in a cost-effective approach from an experimental perspective. A
subset of the experimental designs and corresponding data samples are presented in
Table 21 for reference.

Table 21. Actualizing data of design test plan.

Test
Number

Factor x1
(104 plants/ha)

Factor x2
(kg/ha)

Factor x3
(kg/ha)

Factor x4
(kg/ha)

Yield
(kg/ha)

1 35 139.36 147.46 12.85 2602.61
2 55 118.38 201.09 19.72 2834.55
3 35 21.62 98.91 12.85 2318.74

3.5. Data Processing and Model Optimization in D-Optimal Regression Experiments

Processing of D-optimal regression experimental data yields model parameters and
parameter test results, as shown in Table 22.

Table 22. D-optimal regression design model parameter test table.

Source Sum of Squares DF Mean Square

Model 1.49 × 106 14 1.07 × 105

A 2.63 × 105 1 2.63 × 105

B 43,389.17 1 43,389.17
C 1419.02 1 1419.02
D 20,874.21 1 20,874.21

AB 47,390.93 1 47,390.93
AC 3.55 × 105 1 3.55 × 105

AD 1.58 × 105 1 1.58 × 105

BC 1.28 × 105 1 1.28 × 105

BD 888.91 1 888.91
CD 1.9 × 105 1 1.9 × 105

A2 35,823.18 1 35,823.18
B2 12,369.3 1 12,369.3
C2 15,809.88 1 15,809.88
D2 6152.91 1 6152.91

Cor Total 1.49 × 106 14

In light of the actual conditions observed at the Shanhe Farm, we derived the ranges
for nitrogen (N), phosphorus (P), and potassium (K) fertilizer application rates as well as
planting densities. Subsequently, a regression equation for yield was established, encoded
as Model (20), based on the data presented in Table 22. This model was then subjected
to computational analysis, culminating in the attainment of practical values for fertilizer
application rates and planting densities through numerical conversion.

Because the design scheme falls under a saturated design and no replicates have
been introduced, the remaining degrees of freedom are zero. Consequently, conventional
methods for conducting significance tests on the equation are not applicable. Instead, the
goodness-of-fit Chi-squared test method, comparing observed values to predicted values,
was employed for verification.

Following the Chi-squared test between the predicted values and the observed values
using Design Expert 13, it was observed that the predicted values align well with the
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observed values. This observation suggests that the regression equation is by real-world
conditions. Thus, we obtain the following result:

ŷ = 3053.28 + 215.92A + 68.76B + 12.43C
+47.69D− 81.40AB− 222.94AC− 148.79AD
+142.23BC + 11.86BD + 173.40CD− 140.57A2

−86.68B2 − 98C2 + 61.13D2

−1 < A, B, C, D < 1

(20)

Solution: 
Yield ŷ = 3482.76
Planting density x1 = 35
Nitrogen f ertiliser x2 = 118.38
Phosphorus f ertiliser x3 = 201.09
Potassium f ertiliser x4 = 47.15

(21)

In the realm of agricultural research, it has been empirically established that nonlin-
ear regression models yield superior fitting outcomes. Specifically, when considering the
variables of planting density, nitrogen application, phosphorus dosage, and potassium sup-
plementation at rates of 35 × 104 plants/ha, 118.38 kg/ha, 201.09 kg/ha, and 47.15 kg/ha,
respectively, the resultant maximum yield attains 3482.76 kg/ha. This finding underscores
the efficacy of nonlinear regression as an optimal approach for modeling and predicting
crop yield responses to various agronomic inputs.

4. Discussion

In this study, a comprehensive analysis was conducted to assess the impact of four fac-
tors: nitrogen (N), phosphorus (P), potassium (K) fertilizer application rates, and planting
density on soybean yield. Additionally, the study examined the effects of individual factors,
pairwise combinations of factors, and multiple factors and their interactions on soybean
yield. The order of influence of these four factors on soybean yield was as follows: nitrogen
fertilizer (N) > phosphorus fertilizer (P) > planting density > potassium fertilizer (K). It was
also observed that there was a significant interaction between fertilizer application rates
and planting density. Single-factor experiments in this study indicated that soybean yield
decreased with increasing planting density and nitrogen application.

When considering the interactions between factors, orthogonal rotation combination
experiments were performed at a significance level of α = 0.05. In the first group of
experiments, it was found that the factor contribution rate of the interaction between N and
P was 37.55, which was greater than the factor contribution rate of the interaction between
planting density and K (22.33) and the interaction between N and K (20.72). In the second
group of experiments, the factor contribution rate of the interaction between planting
density and K was 45.16, higher than the factor contribution rate of the interaction between
N and P (27.15) and the interaction between N and K (21.92). Both sets of experiments
indicated that the interaction between planting density and K, as well as the interaction
between N and P, had a greater impact on soybean yield compared to the interaction
between N and K. Furthermore, interactions involving planting density with N, planting
density with P, and P with K did not have a significant impact on soybean yield at a
significance level of α = 0.05.

In addition, this study concluded that the influence of nitrogen on soybean yield
was greater than that of phosphorus. Salvagiotti F’s experiments highlighted the critical
importance of crop yield and nutrient uptake rates for achieving a more sustainable farming
system [19]. Zhou Jing et al. conducted field experiments on the growth of soybeans
and wheat in the northeastern region of China over two consecutive crop seasons [47].
The findings of these aforementioned studies align consistently with the outcomes of
our experiment.
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The limitations of conducting seeding and fertilization experiments only once or twice
are apparent, particularly in regions like Heilongjiang Province, China, which experiences a
single annual cropping season. It takes several years to refine a model for a specific crop, a
characteristic inherent to field experiments. In further collaboration with the Shanhe Farm,
we plan to undertake multi-year soybean seeding and fertilization experiments at Shanhe
Farm’s test fields. The accumulated data will be instrumental in enhancing the model
derived from this research. As the data gradually improves, optimization objectives such
as ‘maximizing economic efficiency’, ‘facilitating management’, or ‘enhancing ecological
conditions’ can be incorporated into the model. Additionally, future research will focus on
fertilization ratios under different regional and soil conditions. Furthermore, numerous
factors can influence final crop yields, including uncontrollable elements such as light
intensity, precipitation, and pest species. In-depth investigations in these areas represent
promising directions for future research. Additionally, this study employed quadratic
modeling for the data. When experimental conditions are constrained, it may be worthwhile
to explore alternative modeling approaches in future investigations.

5. Conclusions

In the context of advocating for sustainable agricultural development in China, em-
phasizing low carbon emissions and the “Three Reductions” initiative, this study focuses
on soybeans as its subject of investigation. We have designed an experimental scheme
to examine the relationship between soybean nutrients, planting density, and yield. The
experimental trials were conducted at the Shanhe Farm in Nenjiang County, Heihe City,
Heilongjiang Province, China, involving seeding and fertilization procedures. Based on the
results obtained from these seeding and fertilization experiments, we have constructed a
soybean planting model, which defines the relationship between yield, planting density,
and the application of three key fertilizers. Subsequently, we optimized this soybean
planting model. By aiming to maximize yield, we have identified a cultivation strat-
egy that offers relative superiority. This optimal combination entails a planting density
of 45.37 × 104 plants/ha, nitrogen application at 98.4 kg/ha, phosphorus application at
218.96 kg/ha, and potassium application at 47.62 kg/ha. The significance of the four ex-
perimental factors on soybean yield is ranked as follows: nitrogen fertilizer > phosphorus
fertilizer > planting density > potassium fertilizer. This research not only establishes a
theoretical foundation for practical seeding and fertilization practices but also furnishes a
scientific basis for determining the optimal planting density and fertilizer ratios in different
geographical regions’ agricultural cultivation systems. Furthermore, it serves as a crucial
decision-making tool to guide soil testing and tailored fertilization strategies, ultimately
leading to the maximization of crop yields. Rational seeding and fertilization practices, as
outlined in this study, not only harness the full potential of crops but also curtail production
costs while preserving the ecological balance of soil ecosystems. This approach aligns
seamlessly with China’s sustainable development strategy.
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