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Abstract: Timely forecasting of aboveground vegetation biomass is crucial for effective management
and ensuring food security. However, research on predicting aboveground biomass remains scarce.
Artificial intelligence (AI) methods could bridge this research gap and provide early warning to
planners and stakeholders. This study evaluates the effectiveness of deep learning (DL) algorithms in
predicting aboveground vegetation biomass with limited-size data. It employs an iterative forecasting
procedure for four target horizons, comparing the performance of DL models—multi-layer perceptron
(MLP), long short-term memory (LSTM), gated recurrent unit (GRU), convolutional neural network
(CNN), and CNN-LSTM—against the traditional seasonal autoregressive integrated moving average
(SARIMA) model, serving as a benchmark. Five limited-size vegetation biomass time series from
Kenyan grasslands with values at 15-day intervals over a 20-year period were chosen for this purpose.
Comparing the outcomes of these models revealed significant differences (p < 0.05); however, none of
the models proved superior among the five time series and the four horizons evaluated. The SARIMA,
CNN, and CNN-LSTM models performed best, with the statistical model slightly outperforming
the other two. Additionally, the accuracy of all five models varied significantly according to the
prediction horizon (p < 0.05). As expected, the accuracy of the models decreased as the prediction
horizon increased, although this relationship was not strictly monotonic. Finally, this study indicated
that, in limited-size aboveground vegetation biomass time series, there is no guarantee that deep
learning methods will outperform traditional statistical methods.

Keywords: aboveground vegetation biomass; time series modeling; deep learning; convolutional
neural network; long short-term memory; seasonal autoregressive integrated moving average;

Kenyan grassland

1. Introduction

Aboveground vegetation biomass is a key indicator of an ecosystem’s structure and
function. Early forecasting of aboveground vegetation biomass is crucial for vegetation
management and food security, as it could provide stakeholders and planners with an
important tool to make more informed decisions and strategically address potential issues
that could arise from shortages [1-3]. Furthermore, since aboveground vegetation biomass
provides vital ecosystem services, early forecasting of vegetation biomass is essential for
sustainable vegetation management [4,5]. Moreover, vegetation biomass management is
essential for climate change mitigation since it plays an important role in the carbon cycle
and the collection and storage of greenhouse gas emissions from a variety of human activ-
ities and industrial processes [2]. While aboveground vegetation biomass alone doesn'’t
store all emissions, it does significantly contribute to carbon sequestration, helping to offset
the impact of certain emissions. This underscores the significance of effective vegetation
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biomass management as a part of comprehensive climate change strategies. For these
reasons, aboveground vegetation biomass prediction has been the topic of multiple studies
and publications [6,7]. These studies have developed multiple statistical and physical-based
predictive models that achieved moderate to high levels of accuracy [2,8-10]. Despite en-
deavors to determine vegetation biomass indirectly via methods such as proxies or remote
sensing information as opposed to direct measurements, few studies have concentrated on
forecasting vegetation biomass in the near future (defined as 1-12 months) [11,12]. Fore-
casting approaches that have been utilized successfully in other disciplines (e.g., finance,
hydrology) could aid in addressing the existing gap in vegetation biomass forecasting
and provide early warning to pastoralists, farmers, planners, and other stakeholders on
vegetation deficits that could affect livelihoods and environmental conditions.

Artificial intelligence (Al) algorithms are being increasingly employed to estimate
future scenarios based on time series data in various fields such as finance [13,14], hy-
drology [15,16], and economics, among others [17]. Al algorithms can address complex
nonlinear problems by integrating several nonlinear transformations. Thus, Al techniques
have grown in popularity among academics in recent years as they have proven effective
in time series modeling by identifying patterns that humans may not see or perceive imme-
diately [18,19]. Furthermore, when new data becomes available, Al models can be updated,
allowing them to adapt and improve over time [19]. The debate about the superiority
of certain Al models over others is currently ongoing [20]. Prior studies have revealed
that the performance of a model is related to the time series characteristics [19,21]. In this
regard, previous studies agree that it is necessary to conduct additional research using
time series with distinct characteristics from diverse disciplines, evaluating various models,
and controlling the parameters and hyperparameters of these models in order to better
understand and evaluate the merits various AI models [19,22]. In this regard, AI models
for time series forecasting of aboveground vegetation biomass have not yet been explored.

Neural networks, integral to artificial intelligence, have evolved in time series analysis
with increasing efficiency. While early studies, like White’s on stock data [23], showed
modest accuracy, subsequent works [14,24] demonstrated significant improvements. De-
spite not being agriculture-focused, these studies highlighted the increasing effectiveness
of neural networks across diverse domains. As vast amounts of data become available,
breakthroughs in deep learning techniques and increased processing capacity of comput-
ers have enabled the development of more sophisticated neural network architectures,
resulting in improved accuracy and generalization of new data. The multilayer percep-
tron (MLP) model, for example, which includes several hidden layers in its architecture,
has been used successfully in finance, economics, hydrology, and energy-demand fore-
casting [25]. The long-term memory model (LSTM) that is characterized by capturing
long-term dependencies in time series has also performed well against other models in
various studies, such as those by [13] in economics and finance, [16] in hydrology and
others [26]. The Convolutional Neural Network (CNN) model, which was initially ap-
plied to image and video recognition, segmentation, and classification, has also proven
to be useful in time series analysis by capturing more relevant features without requiring
manual feature engineering [27]. CNN models outperform other DL models in studies
undertaken, for example, by [27] in finance, ref. [28] in crop price prediction, and [29] in
health care. More developed neural network approaches have involved hybrid models that
combined two or more different types of neural networks—and in some cases also statistical
models—to take advantage of the strengths of each model to produce a more powerful
and flexible hybrid [30,31]. While beyond the primary scope of this agriculture-focused
research, the hybrid CNN-LSTM model exhibits superior performance across diverse dis-
ciplines, including finance, environmental engineering, atmospheric sciences [32], and
soil sciences [30]. Similarly, across various domains—economics [33], production plan-
ning, finance, and climatology [34,35] —LSTM-ARIMA consistently demonstrates superior
predictive performance.
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The above-mentioned studies show that debates on best time series modeling continue
in diverse fields and are likely to continue for years to come. However, notwithstanding
the abundance of time series modeling research, there are limited studies where these
techniques have been applied to ecology, agriculture, and environmental sciences [36], and
to our knowledge, no studies using vegetation biomass time series. This study evaluates
established deep learning models (MLP, GRU, LSTM, CNN, CNN-LSTM), emphasizing
the hybrid CNN-LSTM for forecasting aboveground vegetation biomass with limited size
data and comparing them to the classic SARIMA model. Our analysis, based on diverse
neural network architectures, provides insights into handling dataset complexities. Widely
used as benchmarks [14,31], these models enable meaningful comparisons. Focused on
a specific problem domain with proven effectiveness [22,37,38], the selected DL models,
including MLP for simplicity, LSTM and GRU for sequential modeling, and CNN for spatial
dependencies, offer a comprehensive evaluation. The hybrid CNN-LSTM model integrates
spatial and temporal characteristics for a robust assessment [31].

2. Methodology
2.1. Aboveground Biomass Database

Aboveground biomass assessment employs techniques like clip harvesting and non-
destructive methods such as remote sensing and allometric equations. Monitoring stations,
strategically placed based on research goals and utilizing grid patterns or clustering, operate
at various scales, ranging from small plots to global observations through satellites [1,2,6].
For this study, the Food and Agriculture Organization (FAO) and Texas A&M AgriLife
Research (TAMU), in collaboration with the Kenya National Drought Monitoring Authority
(KNDMA), have implemented a significant number of monitoring sites for aboveground
biomass in grasslands and rangelands of Kenya. These monitoring sites are part of a
network of sites that comprise the Predictive Livestock Early Warning System in East
Africa [4,39]. Data from these sites were used to calibrate the Phytomass Growth Model
(PHYGROW) [39,40] and generate near-real-time aboveground vegetation biomass time
series in several strategic locations throughout Kenya [3,4]. The time series database em-
ployed for this study is accessible at https://github.com/noayarae/forecasting_biomass_
using_DL_models.git, accessed on 18 August 2023.

Five aboveground biomass time series were chosen for this study and will be referred
to as TS1, TS2, TS3, TS4, and TS5, respectively. These included values at 15-day intervals
(two values per month) from 14 January 2002 to 31 August 2022. Therefore, each time series
included 496 aboveground biomass values in kg/m?. The chosen time series were visually
scrutinized to confirm the absence of any irregularities or abnormal patterns, both in terms
of isolated events and chronological sequences. Figure 1 shows the evaluated aboveground
vegetation biomass time series. Significantly, these meticulously selected time series aptly
capture a broad spectrum of regional aboveground biomass production, with an average
low of 104.5 kg/m? and an average high of 3171.5 kg/m?, effectively representing the range
of production for the studied area.

2.2. Data Preprocessing

The time series {x1, xp,..., X196 } Were preprocessed by normalizing them to help
improve the model training process and to avoid issues such as vanishing gradients that
can speed up model convergence. Normalization also helps to reduce the sensitivity of the
model to the scale of the input features, improving the model’s generalization ability [41].
Normalization was accomplished by scaling between 0 and 1 using the following equation:

y= M)

Xmax — Xmin
where x is the time series value, y is the normalized value, x4y is the highest value of the
time series, and x,,;, the lowest value of the time series. For subsequent applications, if
new data aligns closely with the training set, the models can use the same normalization
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values. However, significant differences may warrant a re-evaluation and normalization
using relevant values. As the initial models were trained with limited data, incorporating
new data presents an opportunity for enhanced performance through retraining, ensuring
continued optimal accuracy.
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Figure 1. Aboveground vegetation biomass time series generated from calibrated PHYGROW model
simulations across five representative rangeland sites in Kenya. (a) Time series 1 (TS1), (b) Time series
2 (TS2), (c) Time series 3 (TS3), (d) Time series 4 (TS4), and (e) Time series 5 (TS5).

Transforming Time Series Data into Supervised Dataset

After normalizing, the time series were arranged to form a supervised database,
maintaining the time dependency. The last year of the time series (24 values in total) was
held out for the purpose of testing the model. The rest of the series (472 values) were
used to train the learning model. The first subset was formed by taking the first 25 values
{y1,Y2, ..., Y25}, of which the first 24 {y1,y2, ..., yo4} were taken as predictors and the
25th {y25} as targets. The second subseries was obtained by sliding forward one time step
in the full-time series and again taking 25 values ({y2,¥3, ..., y25} as predictors and the
25th {ya6} as targets. This process was repeated until the last value of the training series
was reached (Figure 2). Following this process, the number of subseries obtained was:
Ngg = Nypgin — w —out + 1.
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Figure 2. Using a sliding window to configure time series as a supervised data set.

2.3. Modeling, Prediction, and Tool Setup

The modeling process involved a sliding window of 24 data points representing the
historical aboveground biomass data over one year. The forecasting horizons included
6,12, 18, and 24 values, equivalent to 3, 6, 9, and 12 months, respectively. These forecast-
ing intervals were strategically chosen to align with the practical needs of stakeholders.
Farmers, ranchers, and decision-makers often require long-term forecasts (one year) for
planning purposes, while the 3-6-month forecasting intervals are critical for rapid decision-
making to mitigate issues such as forage scarcity impacting animal health. The horizons
were achieved using one-step ahead iterative prediction. Taking into account the range
of forecasting horizons and the number of time series, this study encompassed a total of
twenty cases, with each case involving twenty-five replications of forecasting to ensure a
reliable outcome. This comprehensive approach effectively covers a spectrum of decision
points, providing valuable insights applicable to various scenarios where timely actions
are paramount.

2.3.1. Iterative Forecasting Approach

The iterative method is a long-established technique for performing multi-step ahead
predictions. It takes the output of a one-step ahead prediction as input for the next step
prediction [18,42]. The equation to compute the first step ahead of prediction as a function
of the w preceding values is as follows:

y;+1 - f(yt, yt—ll yt—zf e 1yt—w+1) (2)

where w is the sliding window length. The next step y;,, would also be based on the
previous w values, including the newly predicted value y; ,

Yiro = f(y/t+1' YY1, Yi—w+s2) 3)

In general, the value of p-step ahead would be.

Yiep=f (J/prl, Yispor-- ,waw) )

2.3.2. Software and Computer Tools

This study utilized the NVIDIA RTX 4090 GPU, renowned for advanced architecture
and parallel processing, to accelerate computational tasks. Both the DL and SARIMA
models were implemented using the Python platform v3.9.13 [43]. The DL models were
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built using various open-access libraries, including scipy, keras, and tensorflow, while
the SARIMA model mainly relied on statsmodels. The codes developed for this study
are available at https:/ /github.com/noayarae/forecasting_biomass_using_DL_models.git,
accessed on 18 August 2023.

2.4. Learning Models—Model Implementation
2.4.1. Multilayer Perceptron (MLP)

The MLP is a type of artificial neural network composed of at least three layers: an
input layer, one or more intermediate hidden layers, and an output layer [44]. The output
at each hidden layer and in the output layer is computed as follows:

vi = f( L wh; h) )

where f is the activation function, ny is the number of neurons, w,l(\]] is the matrix of weights

between the i*" hidden layer and the (i + 1)”1 hidden layer, KX, is the output of the hidden
neuron, and y; is the vector of the output layer.

The learning process of the MLP algorithm consists of finding, using backpropaga-
tion, the weight values at each network connection (matrix of weights) to minimize the
error between the output layer values and the expected values. Before the MLP learning
process, the model underwent two-step manual tuning using GridSearchCV for optimal
hyperparameter selection. In the initial hyperparameter optimization step, crucial learning
parameters, including number of neurons, activation function, optimizer, learning rate,
batch size, and epoch, were finely tuned, with details in Table 1. Values were chosen within
literature-aligned ranges, ensuring relevance and comparability. For instance, the number
of neurons ranged from 50 to 400, activation functions included Relu, Sigmoid, and Tanh,
and learning rates varied from 0.001 to 0.01. Batch sizes of 16, 32, and 64 were considered,
with epoch numbers ranging from 100 to 500 and an early stopping of 30. In the second
step, focusing on model architecture refinement, 1- and 2-layer networks were explored
alongside dropout rates of 0, 0.1, 0.15, and 0.20. This comprehensive exploration, rooted
in existing research, ensures an optimal model configuration balancing complexity and
generalization, adhering to established practices in deep learning.

Table 1. Hyperparameters of the MLP, LSTM, and GRU models.

Hyperparameter. Model
MLP LSTM GRU
Number of layers 1 1 1
Number of hidden units (nodes) 200 100 100
Activation function Sigmoid Relu Relu
Optimizer Adam Adamax Adam
Learning rate 0.001 0.01 0.001
Batch size 64 64 64
Epochs 200 200 200
Early stopping (patient) 30 30 30
Dropout rate 0.15 0.15 0.15
Loss function mean_squared_error

2.4.2. Long Short-Term Memory (LSTM) Network

LSTM is an enhanced type of Recurrent Neural Network (RNN) designed to model
sequences and their dependencies accurately over a longer period, maintaining a single-cell
structure with several modifications to the standard RNN architecture. The LSTM architec-
ture addresses the inability of the standard RNN to remember long-term dependencies [45].
The LSTM cell features three gates, known as Forget, Input, and Output, that control the
flow of information. The Forget gate decides what information from the previous time step
to discard; the Input gate determines what new information to add/learn from the current
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input, and the Output gate regulates what information to pass to the next time step [18,46].
Figure 3 shows the LSTM model architecture.
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Figure 3. Long short-term memory network architecture.

As Figure 3 illustrates, in the first gate, the Forget gate, the LSTM decides what
information to discard from the cell state using the sigmoid function. This layer considers
the previous hidden state (S;_1) and the current input (x¢) and, through the sigmoid
function, outputs a value between 0 and 1 for each cell state in the long-term memory
(L¢—1). A value of 1 means to keep the information in its entirety, while a value of 0 means
to discard it completely.

In the second gate, the Input gate, the LSTM decides what new information to store
in the cell state through two sub-steps: first, the input gate layer uses a sigmoid function
to determine what percentage of the potential memory to add to the long-term memory.
Second, the LSTM uses a tanh function to combine the short-term memory and the input to
create a potential long-term memory. The product of the two sub-step outputs is added to
long-term memory to update it (L¢).

In the third gate, the Output gate, the short-term memory is updated. Here, the new
long-term memory is processed through a tanh function to find the potential short-term
memory. The LSTM then decides how much of this potential short-term memory has to
pass on by multiplying a percentage computed using a sigmoid function (Oy).

It is important to note that the LSTM memory cells utilize both addition and multi-
plication in transforming and transferring information. The use of addition is crucial in
helping to maintain a consistent error during backpropagation. Instead of affecting the
next cell state through the multiplication of the current state with new input, the two are
combined through addition in the Input gate. Meanwhile, the Forget gate continues to rely
on multiplication [46].

During the training process, the initial LSTM parameter values (weights and bias)
are generated arbitrarily. These parameters are updated via the standard gradient descent
method using the backpropagation algorithm. The performance of this algorithm is highly
dependent on the selection of optimal hyperparameters, which improves the accuracy of
time-series problems [18,45-47]. The LSTM hyperparameters were fine-tuned manually,
following a two-step process using GridSearchCV, mirroring the approach taken for MLP.
The optimization encompassed the following ranges for hyperparameters: number of
neurons (50 to 400), activation functions (ReLU, Tanh, and Sigmoid), optimizers (Adam
and Adamax), learning rate (0.001 to 0.01), batch sizes (16, 32, 64), the number of epochs
(100 to 500) with early stopping. Additionally, one-layer and two-hidden-layer networks
were assessed, considering dropout rates ranging from 0 to 0.2. Table 1 presents the
optimized values.
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2.4.3. Gated Recurrent Unit (GRU)

The GRU algorithm is an enhanced type of RNN that addresses the issue of vanishing
gradients in standard RNNs [18]. It accomplishes this by utilizing two types of gates—an
update gate and a reset gate—which are essentially two vectors that determine the relevant
information to be transmitted to the output. These gates can be trained to selectively retain
relevant information from previous time steps without losing value over time, as well as to
eliminate irrelevant information that hinders accurate prediction [48]. Figure 4 illustrates
this process:

| h
L
Fihal memory
(hidden state)

e

Resef] gate

I
|
e Updatelgate I
I
ry content
i
i
i
I
I

Xt1
Figure 4. Gated Recurrent Unit network architecture.

The Reset gate (1;) determines how much of the previous hidden state should be
forgotten and how much of the current input should be considered. The gate considers the
previous hidden state (h;_1) and the current input (x;) and, through the sigmoid function,
outputs a value between 0 and 1. The Update gate (z;) for long-term memory is computed
similarly but with different weights. This gate enables the model to decide the amount of
past information that should be propagated to the future time steps. The model can opt
to replicate all past information, thus eliminating the vanishing gradient problem [48,49].
In the next step, Current memory content, the content of a new memory (h}) (candidate
hidden state), is computed considering the reset gate output (r;), the prior memory (h;_1),
and the input (X;) through the tanh function that outputs a value between —1 and 1. The
Final memory (/;; hidden state) is computed using a single equation (Equation (6), where
the operator ® denotes the Hadamard product) to control both the historical information
(ht—1) and the new information coming from the candidate hidden state (h}) affected by a
factor formed by the update gate output (z;) as follows [48,50]:

hy IZt@ht_1+(1fzt)®h; (6)

For z; close to 0, the new hidden state relies mostly on the candidate state, while for
z¢ close to 1, it relies on the previous hidden state. Therefore, the value of z is critical
and ranges from 0 to 1. GRU hyperparameters were tuned in two steps, like MLP and
LSTM. Hyperparameters’ ranges included neurons (50-400 units), activations (Relu, Tanh,
Sigmoid), optimizers (Adam, Adamax), learning rates (0.001-0.01), batch sizes (16, 32, 64),
and epochs (100-500) with an early stop (20). Step two explored one/two hidden layers and
dropout rates (0-0.2). Optimization aimed at reducing errors and simplifying the model.
Table 1 contains optimized values.

2.4.4. Convolutional Neural Network (CNN)

The CNN algorithm is a neural network specialized in processing complex data.
Although widely used in image processing, CNN'’s algorithms have also shown excellent
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results in time series simulation [51]. In addition to the conventional MLP algorithm, the
CNN algorithm includes a convolution and pooling layer, which makes it a powerful
algorithm [52].

In contrast to the LSTM, which considers past information in a sequence-based context
window, the CNN considers past information through a context window that represents
the spatial relationships between values in the feature map. As a result, the convolutional
layers of the CNN can scan the input feature map and identify local patterns, using this
past information to construct a representation of the input.

CNN differs from the LSTM by considering past information via a spatial context
window instead of a sequential one. Thus, the convolution process in the CNN scans the
input feature map and identifies local patterns, forming a representation of the input by
utilizing this past information.

In the context of 1D CNNSs, time series are processed as one-dimensional data (1xN)
with a dedicated 1D kernel (1xK) and multiple channels (17) for diverse kernel training.
Post-convolution, pooling shrinks the series size, optimizing computational efficiency.
Subsequently, the resulting series is flattened to extract a single node for each value within
the generated series. Preserving both time and channel dimensions, this methodology
transforms time series into a format conducive to comprehensive feature extraction and
analysis within the 1D CNN framework, preserving both the time and channel dimensions.
Thus, the flattening process determines the neural network’s input nodes, computed as
the product of the length of the grouped series and the number of channels, expressed as

%) . The fully connected MLP layer utilizes the flattened data to produce the final

ni. (
Output (Figure 5).

Fully-connected Neural

Time subsenes
1XN
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Figure 5. Model architecture overview: CNN with MLP hidden layer, CNN-LSTM with LSTM
hidden layer.

The gradient descent optimization algorithm is used to update the parameters (weights
and biases) of the CNN during training to minimize the loss between the predicted and ac-
tual output for the training samples [53]. The CNN hyperparameters underwent a two-step
manual tuning process using GridSearchCV. In the initial step, various hyperparameters
were explored, including the number of neurons (50 to 400), activation functions (Relu,
Tanh, and Sigmoid), optimizers (Adam and Adamax), learning rates (0.001 to 0.01), batch
sizes (16, 32, 64), epoch numbers from 100 to 500 with early stopping set at 20. Regarding
convolution, considerations encompassed kernel sizes of 3 and 5, number of filters of 8 and
16, “same” padding for maintaining subsequent length, strides of 1 and 2, and pool sizes of
1 and 2. In the second step, the evaluation extended to one and two hidden layers, with
dropout rates ranging from 0 to 0.2. Hyperparameter optimization prioritized minimizing
error and model complexity. The optimized values are detailed in Table 2.
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Table 2. Hyperparameters of the CNN and CNN-LSTM models.
Hyperparameter Model
CNN CNN-LSTM
Convolution layer filters 16 16
Convolution layer kernel size 3 3
Convolution layer activation function Relu Relu
Convolution layer padding same same
Strides 1 1
Pooling layer pool_size 1 1
Pooling layer padding same same
Number of hidden layers 1 1
Number of hidden units MLP/LSTM layer 50 50
LSTM layer activation function Relu Relu
Batch size 64 64
Learning rate 0.01 0.001
Optimizer Adamax Adam
Loss function mean_squared_error
Epochs 100 100
Early stopping (patient) 20 20

2.4.5. The Hybrid CNN-LSTM Algorithm

The hybrid CNN-LSTM algorithm, useful for tasks involving sequential data such
as time series forecasting, combines the strengths of both the CNN and LSTM networks.
Here, the CNN layer is typically used to extract high-level features from the input sequence.
These features are then passed to the LSTM layer, which is responsible for modeling the
temporal dependencies between the features and producing the final output [54].

The key advantage of the hybrid CNN-LSTM algorithm is that it can effectively
capture both local and global dependencies in the input sequence [31]. The CNN layer is
able to capture local patterns and features within the sequence, while the LSTM layer is
able to model longer-term dependencies between these features. In addition, the hybrid
CNN-LSTM algorithm that typically trains end-to-end using backpropagation allows
the model to learn both the feature extraction and temporal modeling stages together,
resulting in improved performance as compared to traditional methods that use separate
feature extraction and modeling stages [55]. Overall, the hybrid CNN-LSTM algorithm is a
powerful tool for modeling complex sequential data and has been successfully applied in a
wide range of applications.

The convolution process by which the CNN-LSTM algorithm architecture incorporates
a LSTM network layer into the CNN algorithm architecture is illustrated in Figure 5. CNN-
LSTM hyperparameters were tuned in two steps with GridSearchCV, following a similar
approach to CNN. They were optimized within the same ranges as CNN, seeking to reduce
error and model complexity. Optimized hyperparameters are in Table 2.

2.4.6. Seasonal Autoregressive Integrated Moving Average (SARIMA)

The SARIMA model is an extended statistical technique of the ARIMA model that is
widely used to analyze and forecast time series data that exhibit seasonal behavior. The
SARIMA model consists of six parameters (p,d,q)(P, D, Q), that are used to estimate the
future value of a variable as a linear function of past observations and random errors. The
first three parameters (p, d, q) represent the non-seasonal components of the model and are
identical to those in the ARIMA model. The last three parameters (P, D, Q), represent the
seasonal components of the model and are used to model the seasonal behavior in the data.
As proposed in past studies [56], the method for creating the time series is as follows:

@p(B°) ¢(B) VE V* (X; — p) = Og(B°) 6(B) wy )
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where X; is the actual value (predicted value) and w; is the random error (non-stationary

time series), both at time t. ¢(B) =1 —¢ B —... — ¢pB’ and 6(B) =1+ 6,B + ...+ 6,B1
are the nonseasonal autoregressive and moving average components of order p and q,
respectively. ®@p(B*) =1— ®1B° — ... — ®pB and O (B°) = 14 01B° +... 4+ OgB are

the seasonal autoregressive and moving average components of order P and Q, respectively.
V? = (1 - B)and VP = (1 — B®) are the non-seasonal and seasonal difference components.
B¥X; = X,_ is the backshift operator. The aboveground biomass time series in this study
is a 15-day time step, hence the seasonal period is s = 24. The SARIMA model is estimated
using the Box-Jenkins methodology, which involves identifying the optimal values of
the model parameters based on Akaike Information Criterion (AIC) statistical test. The
SARIMA model parameters are shown in Table 3.

Table 3. Parameters of the SARIMA model.

SARIMA Model Parameters

Time Series (p,d,q) * (BD,Q)s.
TS1 1,1,3) (1,1,1)04
TS2 2,1,1) (2,1,1)24
TS3 (2,1,2) (1,1,1)p4
TS4 2,1,1) (1,1,1)24
TS5 (3,1,1) (1,1,1)24

2.5. Model Performance Evaluation
The model’s efficiency was assessed using the Root Mean Square Error (RMSE) as follows:

RMSE = (8)

where x; is the observed time series value at time i, £; is the estimated /forecast time series
value at time 7, and N is the number of time series data. RMSE values vary from 0 to oo,
using the same units as the variable being measured, with 0 indicating a perfect model
with zero prediction error.

In addition, the model’s performance in percentage terms was assessed using the
Mean Absolute Percentage Error (MAPE):

X — J?i
Xi

1 N
MAPE = 100N2i:1 ©9)

MAPE values vary from 0% to oo, with lower values indicating more accurate pre-
dictions and 0% being a perfect model with zero prediction error. MAPE values less than
5% suggest an acceptable level of forecast accuracy, while values between 10% and 25%
indicate low but acceptable accuracy, and values greater than 25% indicate an unreliable
model. On the Relationship among Values of the Same Summary Measure of Error).

Moreover, model error was assessed using the Symmetric Mean Absolute Percentage
(SMAPE):

N 2x — %

i 5 (10)
=1 x|+ [ %]

1

SMAPE = 100N2

Unlike the mean absolute percentage error, SMAPE has defined limits. The formula
mentioned yields outcomes ranging from 0% to 200%. SMAPE'’s bounded nature improves
forecast accuracy assessment by constraining extreme values for clearer error interpretation.
Furthermore, to rigorously compare RMSE values across distinct DL algorithms and
cases, we conducted the Analysis of Variance (ANOVA) statistical test. This method
revealed significant variations in RMSE outcomes, enhancing our understanding of relative
efficacy. Within each case, we compared average RMSEs from twenty-five replications
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using the CNN-LSTM algorithm with those from other DL algorithms, providing insights
into its performance against counterparts.

3. Results
Time Series Modeling

Figure 6 depicts a summary of the mean RMSE values reflecting the performance of
the models utilized for the various horizons assessed. As previously stated, this study
conducted twenty-five forecasts for each case, which involved five time series and four
horizons. Since the learning models have random components, the predicted series varied
among the twenty-five iterations. To address this, the RMSE values, as presented in Figure 6,
were averaged.

TS1

RMSE

TS2

500 +

o

4
200 4 QO Mp V CNN
- O LSTM Y% CNN-LSTM
1504 O—-- B O GRU <> SARIMA
T T T T
6 12 18 24
Forecast horizon
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350 4 300 4
250
300 -
A G 200 .
= =
o Ioa o
250 A 150 - .
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Figure 6. Performance of DL and statistical models in aboveground vegetation biomass time series

e

24

forecasting over four horizons. (a—e) correspond to time series TS1 to TS5, respectively.
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In order to evaluate whether there were differences in the performance of the models,
an ANOVA test was conducted on the RMSE values. The one-way ANOVA revealed
that, overall, significant differences in RMSE existed among all the models at the p < 0.05.
Nonetheless, some pairs of models demonstrated no significant difference in their perfor-
mance, as was the case with the MLP and CNN models when predicting the TS1 time series
for a one-year horizon. (f(4g) = 0.487, p = 0.97) (Figure 6a).

In terms of accuracy measured by RMSE, MAPE, and SMAPE, none of the six evalu-
ated models consistently demonstrated a significantly better performance across the five
time series and the four horizons assessed, totaling 20 cases. The three top-performing
models were the SARIMA, CNN, and CNN-LSTM models, with one of these three models
outperforming the others in most cases. The SARIMA model, for example, performed
better than all other models in eight cases. The CNN model outperformed the other models
in eight cases as well, and the CNN-LSTM model in four cases. Upon reviewing the top
runners-up, the CNN-LSTM model emerged as the leading contender, securing second
place nine times. This is evident in Table 4, where the top two models for each forecast
horizon within each time series are highlighted in bold. Notably, most of these highlighted
values correspond to the CNN, CNN-LSTM, and SARIMA models.

Table 4. Performance (RMSE, MAPE, and SMAPE) of all methods on the five aboveground vegetation
biomass time series. For each case, the two best-performing approaches were highlighted.

TS1 TS2 TS3 TS4 TS5

Model 6 12 18 24 6 12 18 24 6 12 18 24 6 12 18 24 6 12 18 24

Root Mean Square Error (RMSE)

MLP 36.8 56.7 72.7 97.0 236.2 274.4 3243 387.1 266.5 387.0 349.5 366.4 87.8 176.6 263.8 317.3 566.0 639.2 743.7 832.6
LSTM 410 78.0 93.6 122.1 3404 423.6 460.0 511.2 263.7 392.3 348.7 361.1 88.2 178.8 277.6 356.3 485.0 596.1 603.4 612.7
GRU 29.0 585 75.5 1116 357.6 310.6 307.8 392.1 254.1 393.1 350.7 367.0 48.8 108.2 190.0 2439 521.0 515.7 471.7 477.8
CNN 432 734 82.6 97.4 281.6 289.0 308.7 353.1 158.1 270.4 237.7 245.4 54.0 101.9 153.5 187.3 176.6 476.2 461.4 456.4
Egl.]:;[ 36.6 55.8 66.2 82.6 262.0 274.0 300.3 369.8 1919 307.4 262.8 265.6 62.8 108.1 165.3 201.9 165.6 468.8 470.1 483.8
SARIMA 27.2 37.7 75.2 103.3 154.2 155.4 271.4 326.3 159.6 390.3 360.7 376.9 23.5 82.2 190.4 2722 594.3 599.9 609.1 628.4

Mean Absolute Percentage Error (MAPE)

MLP 46 72 94 132 67 82 99 126 207 343 292 311 51 104 168 27 1089 772 759 84.0
LSTM 50 99 124 173 96 123 143 172 202 344 2838 304 52 105 175 239 856 659 594 596
GRU 38 74 98 153 103 89 92 127 192 343 2.1 310 28 62 117 162 98.8 652 520 512
CNN 53 92 109 137 82 87 95 116 112 26 185 194 32 59 96 125 304 325 304 316
o 45 69 85 114 77 8.1 94 123 141 263 206 214 38 65 106 137 2.1 321 320 347
SARIMA 3.2 a8 87 135 45 47 83 111 107 317 285 307 14 43 106 169 9.8 709 635 646

Symmetric Mean Percentage Error (SMAPE)

MLP 4.6 7.0 9.0 121 7.1 8.4 9.7 11.8 179 27.6 240 25.6 49 9.6 14.8 18.6 56.2 48.0 48.9 524
LSTM 5.0 9.3 11.6 15.5 10.3 12.5 14.1 16.3 17.5 27.7 237 252 49 9.6 15.0 19.3 524 452 41.7 42.6
GRU 3.8 7.0 9.2 13.7 11.0 9.3 9.3 120 16.8 27.7 24.1 25.8 2.8 58 10.6 14.3 53.8 424 35.8 35.5
CNN 53 8.6 10.1 12.4 8.8 9.2 9.7 11.3 10.0 19.0 15.9 16.7 3.1 5.7 8.8 11.2 34.2 389 34.7 33.8
ESI'NN-[ 45 6.6 8.0 10.5 8.1 8.4 9.3 11.7 126 22.0 17.5 18.4 3.7 6.3 9.9 125 247 34.4 359 36.7
SARIMA 3.1 4.7 8.0 122 4.6 4.8 7.9 104 9.7 254 235 255 14 4.1 9.6 14.8 46.8 37.0 373 40.6

The top two models for each forecast horizon within each time series are highlighted in bold.

In most instances, each model’s accuracy varied considerably depending on the
predicted horizon. In most cases, a positive relationship was found between the accuracy of
the model and the forecast horizon with p-values less than 0.05 in most cases. Despite the
upward trend in model performance on the horizon, this relationship was not monotonic.
In the time series TS3 (Figure 6¢), for example, the 18-month average RMSE was less than
the 12-month average RMSE (Table 4). Likewise, in the time series TS2 and TS5 (Figure 6b,e),
the slopes of RMSE values for certain models did not consistently rise with the increasing
forecast horizon.

In evaluating algorithm performance, we calculated average computational speeds
(training and testing) for MLP (17.355 s), LSTM (39.761 s), GRU (32.465 s), CNN (6.808 s),
CNN-LSTM (17.149 s), and SARIMA (29.082 s). It's noteworthy that the reported times
represent averages across multiple runs. The training phase consistently surpasses testing,
in line with literature findings. Importantly, these times exclude hyperparameter tuning, a
time-intensive process, particularly in deep learning, where extensive attention is required
due to the numerous hyperparameters. These insights offer a concise perspective on
algorithm efficiency for practical applications.
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4. Discussion

The first finding of this study is that the CNN-LSTM hybrid model did not exhibit
absolute superiority over other DL models or the statistical model in predicting vegeta-
tion biomass. This might suggest that the CNN-LSTM model did not have a significant
advantage over the other models in accurately predicting vegetation biomass within the
constraints of a limited dataset. Even though none of the models evaluated demonstrated
complete dominance, the SARIMA, CNN, and CNN-LSTM models exhibited better perfor-
mance compared to the other three models included in this study. Contrary to numerous
studies that claim the supremacy of DL models over classical statistical approaches, this
study shows that statistical models could still provide better or comparable predictions
than sophisticated models.

Several recent studies have reached similar findings. For instance, [19] found that
basic statistical models performed better than machine learning (ML) models and indicated
that complex models are not necessarily superior to simple forecasting models [19]. Other
research has demonstrated the superiority in predictive capabilities of statistical models
over ML models with respect to energy production [38], financial market data [57], health,
and cryptocurrency [58].

The disappointing performances of the DL models might be related to specific charac-
teristics of time series data, such as periodicity, seasonality, and noise [19,21,38], along with
factors such as the dataset size [19,37] and model parameters [58]. Since ML models involve
multiple nonlinear transformations, it would seem that they should prove superior to
statistical models; however, evidence from previous studies has indicated that ML models
cannot be generalized from small datasets—a limitation relative to traditional statistics.

Although both statistical models and DL models rely on data to make predictions,
ARIMA models concentrate on predicting future values based on past neighboring and
seasonally lagged data, while DL models employ sliding window data that undergoes
several optimized transformations during the model training process. When time series
data is limited in size, it may be insufficient to determine the optimal transformations and
identify the key predictor neighbors for accurate forecasting; consequently, model efficiency
may be compromised. Furthermore, the presence of noise and chaos in the time series
can add to the challenge of identifying the optimal transformations [57]. Likewise, the
prevailing conditions of intense drought during the last two years of the analyzed biomass
time series could be exerting a notable impact on the results of near-future forecasts
through ARIMA models and neural networks. The ARIMA model’s predictive accuracy,
for example, is largely dependent on historical patterns and trends. Given the extended
period of arid conditions, the model might overemphasize the significance of these dry
years in its predictions. Consequently, it could be producing forecasts that underestimate
the potential for variance, especially if the future is anticipated to be less drought-prone.
The performance of the deep learning algorithms may also have been hampered by a lack
of wet periods in the previous two years. Thus, the model might be struggling to generalize
effectively from such a narrow range of variation, potentially resulting in overly optimistic
or pessimistic predictions.

Cerqueira et al. similarly found that the ARIMA models are better than the ML models
when time series data is limited in size; their experiments considered a time series of 1000
values [37]. Other studies, such as that of Makridakis et al., have obtained similar results for
time series of between 1600 and 1800 values [19]. Similarly, Vabalas et al. showed limitations
in the performance of ML models based on a limited sample size [59]. These studies are
consistent with the findings of our study, which considered just 496 values with seasonality.
This logic is consistent with the fundamental principles of DL algorithms, indicating that
the size of the training dataset has a direct impact on their performance. A larger and more
diverse dataset enables algorithms to generalize and produce more accurate predictions,
whereas a small dataset may result in overfitting and poor performance on new data [19,42].

Additionally, this study found that, as with the other DL and statistical models, the
forecast accuracy of the CNN-LSTM model typically diminished as the forecast horizon
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increased. However, this relationship was not always monotonic, meaning that the decrease
in forecast accuracy was not consistent throughout the forecast horizon. There could be
instances where the accuracy of the forecast might increase, decrease, or stay the same as
the forecast horizon changes. The reason behind this non-monotonic relationship could be
due to several factors, including noise or underlying patterns in the data and the type of
forecasting model used. This is consistent with the results obtained, for example, by Zhang,
who employed SVR and found a non-monotonic relationship between MSE and the forecast
horizon in iterative forecasting. The iterative prediction approach, despite being simple
and practical, suffers from low performance over long periods due to the accumulation of
errors. The errors found in each step are included in the forecast of the next step as we feed
the model [19]. Although DL methods are sophisticated, the uncertainty characteristics
of vegetation biomass will lead to forecast errors and the propagation of errors in an
iterative forecast over a long horizon. In this regard, further exploration of DL models
that include non-iterative processes is required. These results underscore the dynamic
nature of vegetation biomass production across time scales. Climatic dynamics, including
precipitation changes, temperature fluctuations, and other growth-influencing factors,
might lead to varying predictability. DL models could be capturing these complexities,
explaining the non-monotonic forecast accuracy with changing horizons. This highlights
the need for further research to delve into these intricate relationships and their impact on
vegetation biomass fluctuations.

Finally, while sophisticated methods such as hybrid models have demonstrated out-
standing effectiveness in a variety of fields, this study did not replicate such results, instead
highlighting statistical models for forecasting vegetation biomass. The time series evalu-
ated in this study exhibit specific characteristics, and thus, the findings of this study are
limited to time series with these characteristics. In this sense, more studies on time series
forecasting using modern forecasting techniques for limited data sizes are clearly required.

5. Conclusions

This study assessed the effectiveness of DL models, including the hybrid CNN-LSTM,
for predicting aboveground vegetation biomass time series with limited size data, com-
paring their performance to the traditional SARIMA statistical model, which served as a
benchmark for evaluation. To conduct this assessment, we utilized five aboveground vege-
tation biomass time series datasets, consisting of values collected at 15-day intervals over a
20-year period from fields in Kenya. The outcomes of our study demonstrated significant
differences in the forecasting accuracy of the various models. The CNN-LSTM model was
not significantly more accurate than the other models; however, it did rank alongside the
SARIMA and CNN models as one of the three most reliable—with the statistical model,
SARIMA, slightly outperforming the other two. The LSTM and MLP were the least accurate
models. The moderate performance of the hybrid CNN-LSTM model could be attributed to
the specific characteristics of the data, as well as the limited size of the vegetation biomass
time series. These factors may have restricted the learning capacity of the model in spite of
its sophisticated prediction architecture. It is possible that the performance of the proposed
model could improve as larger quantities of aboveground vegetation biomass data are
collected in the future.

Furthermore, this study revealed that the accuracy of the hybrid CNN-LSTM model—
as well as the other models—differed significantly depending on the forecast horizon. As
the prediction horizon increased, the accuracy of the models tended to decrease, resulting
in larger forecast errors. Although there was a clear overall trend, the relationship between
forecast horizon and model accuracy was not strictly monotonic. Consistent with prior
research, the decline in model performance over longer forecast horizons could be attributed
to the cumulative error that occurs in the iterative prediction process.

Findings from this study may not be generalizable to other vegetation biomass time
series data with different characteristics and sample sizes. Meanwhile, based on our
outcomes, it is evident that with the limited size and specific characteristics of aboveground
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vegetation biomass time series, there is no guarantee that machine learning forecasting
techniques will outperform statistical methods. Moving forward, it would be beneficial
for future research to explore the application of more advanced machine learning models
on larger vegetation biomass time series datasets, including but not limited to algorithms
such as naive Bayes, gradient boosting algorithms, and Generative Adversarial Networks
(GAN:Ss). The inclusion of these advanced models could shed further light on their efficacy
in comparison to traditional statistical methods. For shorter time series, we recommend
continued evaluation of various methods to achieve acceptable levels of accuracy. Moreover,
future studies should explore diverse parameters unexplored here, such as the input
window length, which could significantly impact forecasting accuracy.
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