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Abstract: The consistently low yield turnout of maize on farmers’ fields owing to drought and
the nutritional challenges attributable to the consumption of white endosperm maize pose a major
threat to food and nutritional security in Sub-Saharan Africa (SSA). The objectives of this study
were to assess the performance of newly developed extra-early maturing orange hybrids under
managed drought and well-watered conditions, compare the outcomes of multiple-trait base index
and multi-trait genotype–ideotype distance index selection procedures, and identify drought-tolerant
hybrids with stable performance across contrasting environments for commercialization in SSA. One
hundred and ninety orange hybrids and six checks were evaluated under managed drought and
well-watered conditions at Ikenne for two seasons between 2021 and 2023. A 14 × 14-lattice design
was used for the field evaluations under both research conditions. Drought stress was achieved
by the complete withdrawal of irrigation water 25 days after planting. Results revealed significant
differences among the hybrids under drought and well-watered conditions. Grain yield, ears per
plant, and plant aspect under managed drought were correlated to the same traits under well-watered
conditions, suggesting that the expression of these traits is governed by common genetic factors.
Twenty-nine hybrids were identified as top-performing drought-tolerant hybrids by the multiple-
trait base index and the multi-trait genotype–ideotype distance index. Of the selected outstanding
29 hybrids, 34% were derived from crosses involving the tester TZEEIOR 197, demonstrating the
outstanding genetic potential of this inbred line. Further analysis of the 29 selected hybrids revealed
TZEEIOR 509 × TZEEIOR 197 as the hybrid that combined the most drought-tolerant adaptive
traits. However, the hybrids TZEEIOR 526 × TZEEIOR 97, TZEEIOR 384 × TZEEIOR 30, TZEEIOR
515 × TZEEIOR 249, TZEEIOR 510 × TZEEIOR 197, TZEEIOR 479 × TZEEIOR 197, and TZEEIOR
458 × TZEEIOR 197 were identified as the most stable hybrids across drought and well-watered
conditions. These hybrids should be extensively tested in multi-location trials for deployment and
commercialization in SSA.

Keywords: drought tolerance; multiple-trait base index; multi-trait genotype–ideotype distance
index; stability; sub-Saharan Africa

1. Introduction

Maize is a major crop for human consumption and as animal feed in sub-Saharan
Africa (SSA). The crop has the potential to combat the food insecurity and malnutrition
challenges presently facing the region. It currently provides 30% of dietary calories for
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millions of people in SSA [1]. Maize is cultivated on approximately 42.5 million hectares in
Africa [2]. Most of the varieties cultivated by farmers are deficient in essential micronutri-
ents, particularly vitamin A [3,4], which cannot be synthesized by the human body. The
essentiality of this nutrient is demonstrated by the vulnerability of people who depend
largely on maize for food to several diseases such as river blindness and diarrhea [5]. Vita-
min A deficiency (VAD) is also known to impair the functionality of the immune system,
increase susceptibility to diseases, and cause night or complete blindness and death from
severe illnesses [6]. Given its importance as a major staple cereal crop in African homes, it
is imperative to develop and commercialize improved maize genotypes biofortified with
essential nutrients such as provitamin A (PVA) with tolerance/resistance to major produc-
tion constraints faced by SSA farmers. These constraints include drought, low soil nitrogen
(low N), Striga hermonthica parasitism, fall armyworm infestation, and many diseases [7–9].
On farmers’ fields, these constraints usually occur jointly with devastating effects on maize
grain yield. This, coupled with the low genetic potentials of varieties cultivated by most
farmers has resulted in the low grain yields frequently observed in farmers’ field.

In the absence of other stress factors during the production cycle, drought is capable of
causing grain yield reduction between 40 and 90% depending on the stage of plant growth
and development when the drought occurs, and its severity [10–13]. The flowering (tassel
and silk emergence) and post-flowering (grain filling) stages are the major determinants of
photo-assimilate partitioning from the source to the sink and consequently the amount of
grain yields obtained at harvest. These stages are widely considered as the most sensitive
stages of maize development which, if affected by drought, can lead to considerable
reduction in maize production and productivity [14–17]. To address the dietary needs of
the populace in SSA and achieve increased maize productivity in the sub-region, it is of
utmost importance to develop new and improved maize hybrids that combine enhanced
levels of PVA and high levels of tolerance to drought for commercialization. Based on the
findings from some studies high PVA contents are correlated to the orange coloration of
the kernel endosperm [18,19]. Therefore, orange maize could be a source of PVA content to
address malnutrition. The first step to the realization of drought-tolerant PVA-rich maize
began in 2007 by the International Institute of Tropical Agriculture Maize Improvement
Program (IITA-MIP). The program had as its aim the development of extra-early and
early (80–85 and 90–95 days to maturity, respectively) varieties that combine high levels of
drought tolerance and provitamin A for SSA farmers. Through this program, numerous
extra-early inbred lines possessing drought tolerance genes and elevated levels of PVA were
developed, commercialized, and are presently serving as invaluable germplasm resource
for developing drought-tolerant PVA-rich hybrids in several national and international
breeding programs [20]. In SSA, hybrid development and commercialization are the major
focus of many breeding programs owing to the superior performance of hybrids over
open pollinated varieties (OPVs). When new hybrids are developed, it is important to
understand their responses to drought in multiple locations to identify tolerant hybrids for
commercialization. To achieve this goal, a good selection strategy is required.

Plant breeders usually develop new genotypes with superior performance by combin-
ing several desirable traits in these new genotypes [21]. The main difficulties that frequently
prevent breeders from selecting optimal genotypes using this approach are a definition of
the economic value of such traits and converting these into realistic economic weights [22].
These have been the major drawbacks of the commonly used the multiple-trait base index
(MBI) method. To overcome these limitations, a multivariate selection index, the multi-trait
genotype–ideotype distance index (MGIDI) has been developed [21]. This index takes
multicollinearity into account and identifies all variables that should be taken into ac-
count to lead to significant genetic gains from selection [21]. Using this selection approach
will enable maize breeders to identify genotypes that combine high yield potential with
valuable characters conditioning drought tolerance to mitigate the effects of drought on
maize production in SSA. This study was conducted to (i) assess the performance of newly
developed multiple stress-tolerant extra-early orange hybrids under managed drought and
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well-watered research conditions, (ii) compare the selection outcomes resulting from the
use of the MBI and the MGIDI, and (iii) identify outstanding drought-tolerant and stable
hybrids across drought stress and well-watered environments.

2. Materials and Methods
2.1. Genetic Material

In an effort by the IITA Maize Improvement Program (MIP) to develop multiple-stress-
tolerant and/or -resistant, extra-early maturing cultivars with elevated levels of PVA for
farmers in SSA, the extra-early Striga-resistant cultivar, 2004 TZEE-Y STR C4 was crossed
to Syn-Y-STR-34-1-1-1-1-2-1-B-B-B-B-B/NC354/SYN-Y-STR-34-1-1-1 (OR1) that possess
high levels of PVA, in 2007. This was aimed at incorporating genes conditioning high
β-carotene into 2004 TZEE-Y STR C4. The resulting F1 from this cross was taken through
a generation of backcrossing with 2004 TZEE-Y STR C4 to retrieve the recurrent parent
genome (2004 TZEE-Y STR C4). From the resulting BC1 generation, kernels with a deep
orange color were targeted for selection and advanced to F2 and F3 through inbreeding. At
F3, the lines characterized by intense orange coloration were selected for recombination to
form the extra-early PVA-rich cultivar 2009 TZEE-OR1 STR. This broad-based cultivar was
evaluated for under artificial Striga infestation and managed drought since 2010 and has
shown outstanding performance. The cultivar represent the first extra-early PVA maize
germplasm from where the first set of PVA inbreds development was initiated in 2011. As
of 2014, a total of 224 S6 inbreds characterized by a deep orange color were successfully
extracted from this broad-based population. The new inbreds were evaluated under
managed drought during the minor seasons of 2014 and 2015. Following the performance
assessment under managed drought, the inbreds were advanced to S7 and S8 and kernels
from the S8 were sampled for PVA analysis in the laboratory at the Food and Nutrition
Laboratory of IITA, Ibadan [20]. After the generation of the PVA inbred lines from the
extra-early PVA cultivar 2009 TZEE-OR1 STR, a new set of PVA inbred lines was generated
from the biparental populations of TZdEEI 12 × TZdEEI 95 and TZdEEI 7 × TZdEEI
12. The F1 hybrids from these crosses were advanced through several cycles of repeated
inbreeding and selection based on a deep orange kernel color. At the S5 stage, selected
lines were evaluated under combined heat and drought stress at Kadawa (Nigeria) in
2021 (Badu-Apraku Unpublished). Based on the performance, 27 inbred lines (11 from
TZdEEI 12 × TZdEEI 95 and 16 from TZdEEI 7 × TZdEEI 12) were selected. These inbred
lines plus nine other inbred lines extracted from 2009 TZEE-OR1 STR (making a total of
36 inbred lines) and five drought-tolerant inbred testers, are the genetic materials used
for the development of the new orange hybrids evaluated in this study. The pedigree
information of the inbreds is presented in Table S1.

2.2. Generation of Crosses

The 36 extra-early PVA inbred lines were crossed to the 5 drought-tolerant PVA testers
using the line by tester (L × T) design to generate 180 testcrosses at IITA-Ikenne breeding
nursery in 2021. In addition, the testers were crossed in a Diallel fashion to generate
10 hybrids, which were added to the testcross hybrids for this study. A total of 6 extra-early
normal yellow endosperm hybrids were included as checks to make 196 hybrids.

2.3. Field Evaluation

The 196 orange hybrids were evaluated for agronomic performance at Ikenne (7◦52′ N,
30◦44′ E, 61 m a.s.l., 1200 mm mean annual precipitation) under managed drought during
the dry seasons (November to February) of 2021–2022 and 2022–2023 and under well-
watered conditions during the rainy seasons (June to September) of 2022 and 2023. The
managed drought experiment was achieved by supplying 17 mm of sprinkler irrigation
water per week up to 25 days after sowing. The plants were allowed to depend on the
available soil moisture to reach physiological maturity. Plots consisted of single rows, each
3 m long, with inter- and intra-row spacing of 0.75 and 0.40 m, respectively. Three seeds
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were sowed per hole and the seedlings were thinned to two plants per hill two weeks
after sowing to give a final plant population density of 66,666 plants/ha. A 14 × 14 lattice
design with two replications was used for each experiment. Compound fertilizer, NPK
15:15:15, was applied at sowing at the rate of 60 kg/ha of N, P, and K for managed-
drought conditions while a similar rate of application was applied at 2 weeks after sowing
(WAS) for well-watered conditions. Top-dressing was performed using urea (46% N) at
the rate of 30 kg/ha N at 3 WAS for managed-drought conditions and 5 WAS for well-
watered conditions. Weed control was achieved with the application of an herbicide
formulation containing gramoxone and primextra at the rate of 5 L/ha as pre-emergence
while subsequent weed control was by hand weeding.

2.4. Data Collection

Observations were made on grain yield (GY), days to 50% anthesis (DA), days to 50%
silking (DS), anthesis–silking interval (ASI), plant height (PHT), ear height (EHT), ear per
plant (EPP), plant aspect (PASP), ear aspect (EASP), stay green characteristic (STGC), and
husk cover (HCV) as described in Table 1.

Table 1. Description of the measured traits of the extra-early PVA hybrids evaluated under drought
stress and well water conditions between 2021 and 2023.

Traits Stage Description

DA Flowering Number of days from sowing 50% of the plants in a row had
pollen shed

DS Flowering Number of days from sowing 50% of the plants in a row had
silk emergence

ASI Flowering The interval between 50% anthesis and silking

PHT Post flowering Distance in centimeters from the base of the plant and the first
tassel branch

EHT Post flowering Distance in centimeters between the base of the plant and the
uppermost ear

PASP Post-flowering
The general phenotypic appearance of the plants in a plot at 70 days
after sowing scored on a scale of 1–9, where 1 = excellent and
9 = very poor

HCV Post-flowering
The protective outer covering of the cob is scored on a scale of 1 to 9
at 70 days after sowing, where 1 = husks tightly arranged and
extended beyond the ear tip and 9 = ear tips exposed

STGC Post-flowering
The ability of the plant to retain the greenness of the leaves at 70 days
after sowing is scored on a scale of 1 to 9, where 1 = almost all leaves
green and 9 = virtually all leaves dead

EASP Harvest

The phenotypic appearance of the cob after harvest scored on a scale
of 1–9, where 1 = clean, uniform, large, and well-filled ears and
9 = ears with undesirable features, such as diseases, small ears, ears
rot and ears with poorly filled grains

EPP Harvest Calculated by dividing the number of ears harvested by the number
of plants from where the ears were harvested.

GY Harvest Computed from the weight of the shelled grain adjusted to 80%
shelling percentage and corrected for 15% moisture content

DA: days to anthesis; DS: days to silking; GY: grain yield; ASI: anthesis–silking interval; PHT: plant height; EHT: ear
height; PASP: plant aspect; EASP: ear aspect; EPP: ear per plant; HCV: husk cover; STGC: stay green characteristic.

2.5. Data Analysis

Combined analysis of variance (ANOVA) was conducted for each of the research
conditions using the mixed linear model (MLM) (Equation (1)) implemented in lmerTest
package in R software 4.3.1 [23]. In the MLM, a combination of year and research condi-
tion (managed drought or well-watered) was considered as an environment. Thus, four
environments namely, WW_22 (well-watered 2022), WW_23 (well-watered 2023), DS_22
(managed drought 2022), and DS_23 (managed drought 2023) were involved. Environment,
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block, and replications were considered as random effects while genotype was considered
as fixed effect. The model for the analysis of variance is expressed as:

Y = µ + Rep + Rep (Blk) + G + E + G × E + e (1)

where Y = phenotype; µ = mean of the trait; G = genotype; E = environment; Rep = replication;
Rep (Blk) = replication nested in block; G × E = genotype by environment interaction;
e = residual.

The best linear unbiased predictions (BLUPs) under both research conditions were
estimated from the ANOVA. The estimates were used to compute Pearson phenotypic
correlation between grain yield and other traits under each research condition and between
research conditions using the metan package v.1.18 [24]. The MGIDI proposed by Olivoto
and Nardino [21] was used to select maize hybrids that combine drought-tolerant adaptive
traits and high yield. The MGIDI is based on four principles namely (i) traits rescaling to
ensure they have a 0–100 range, (ii) accounting for correlation structure and dimensionality
reduction in the data, (iii) using desired traits value to plan ideotype, and (iv) computing
the distance between the planned ideotype and the genotype.

Traits rescaling was performed using the equation below

rXij =
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Following traits rescaling, explanatory factor analysis was carried out. The rescaled
values were first used to group correlated traits into factors before the factorial scores were
estimated for the traits using Equation (3) below.

X = µ + L f + e (3)

where X is a p × 1 vector of the observations that were rescaled; µ is a p × 1 vector of the
standardized means; L is a p × f matrix of the factorial loadings; f is a p × 1 vector of the
common factors; and e is a p × 1 vector of error.

For p and f, which represent the number of traits and common factors retained, respec-
tively, the correlation matrix of the rescaled values was used to generate the eigen values
and eigen vectors. For the initial loadings, factors with eigen values higher than one were
considered before the varimax rotation criteria was implemented for analytic rotation and
estimation of final loadings according to (Kaiser) [25]. The final scores were obtained using
Equation (4) below:

F = Z
(

AT R−1
)T

(4)

where F is a g × f matrix with the factorial scores; Z is a g × p matrix with the rescaled
means; A is a p × f matrix of canonical loading, and R is a p × p correlation matrix between
the traits. The g, f, and p represent the number of genotypes, the factor kept, and the traits
measured, respectively.

Ideotype planning was performed such that the ideotype has the highest rescaled
value of 100 for all the analyzed traits. The MGIDI was finally estimated using Equation (5).

MGIDI = ∑ f
i=1

[(
Yij − Yj

)2
]0.5

(5)
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where the MGIDI is the multi-trait genotype–ideotype distance index for the ith genotype;
Yij is the score of the ith genotype in the jth factor being g and f ; and Yj is the jth score of
the ideotype.

From the above equation, the lower the MGIDI score of a genotype, the closer the
genotype is to the ideotype. Thereafter, the proportion of the MGIDI of the genotypes
explained by the correlated factor is used to display the strengths and weaknesses of the
genotypes based on Equation (6).

wij =

√
D2

ij

∑
f
i=1

√
D2

ij

(6)

where wij is the proportion of the MGIDI of the ith genotypes explained by the correlated
jth factor; D2

ij is the distance between the ith genotype and the ideotype for the jth factor.
Data processing and the computation of the index were carried out using the Metan

package in R [24].
To ascertain the effectiveness of the MGIDI, the results obtained from the latter were

compared to those from a multiple-trait base index (MBI) proposed by Badu-Apraku
et al. [26] that incorporates grain yield, plant and ear aspects, stay green characteristic,
number of ears per plant, plant and ear height, husk cover, and anthesis–silking interval.
The MBI has been used for the selection of hybrids that combine drought tolerance with
outstanding yield performance based on Equation (7) below:

MBI = (2 × GY) + EPP + PHT + EHT − PASP − EASP − ASI − STGC − HCV (7)

where MBI = multiple-trait base index, GY = grain yield, EPP = ear per plant, PASP = plant
aspect, EASP = ear aspect, ASI = anthesis–silking interval, STGC = stay green characteristic,
HCV = husk cover, PHT = plant height, and EHT = ear height.

The traits used in the MBI were standardized to reduce the effects of different scales
of the traits. A positive MBI value indicates tolerance to drought while a negative value
indicates susceptibility to drought. Yield reduction attributable to drought stress was
estimated using Equation (8).

Yield reduction (YR %) =
(yield under well − watered − yield under managed drought)conditions

yield under well − watered conditions
× 100 (8)

Forty hybrids from the MGIDI selection comprising the 20 best, 10 average, and
10 worst performers were selected for GGE biplot analysis using Metan. The “mean vs.
stability” view of the GGE biplot was used to determine hybrids with stable and high
grain yields across managed drought and well-watered research conditions. The data were
neither transformed nor standardized and were environment centered. The model for the
GGE biplot is shown in Equation (9) below:

Yij − Yj = λ1εi1ηj1 + λ2εi2ηj2 + εij (9)

where Yij is the average yield of ith genotype in jth environment, Yj is the average yield
across genotypes in environment j, λ1 and λ2 are the singular values for principal compo-
nents I and II, respectively, εi1 and εi2 are the scores of the ith genotype for the principal
components I and II, ηj1 and ηj2 are the scores of the jth genotype for the principal compo-
nents I and II, and εij is the error associated with the ith genotype in jth environment.

Drought susceptibility index was calculated for the 196 hybrids to assess the tolerance
of the 196 hybrids using performance based on grain yield alone according to [27] as
shown below.

DSI = 1 −

(
YMD
YWW

)
1 −

(
XMD
XWW

) (10)
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where DSI: drought susceptibility index; YMD: grain yield under managed drought; YWW:
grain yield under well-watered conditions; XMD: mean of grain yield under managed
drought; XWW: mean of grain yield under well-watered conditions.

3. Results
3.1. Analysis of Variance for Grain Yield and Other Traits under Managed Drought and
Well-Watered Conditions

The ANOVA results across well-watered conditions presented in Table 2 revealed
significant (p < 0.05) genotype mean squares for all traits except EASP. Environment mean
square was significant (p < 0.05) for GY, ASI, PASP, and EPP. Under managed drought, a
significant (p < 0.001) genotype mean square was observed for all traits. The environment
mean square was significant (p < 0.05) for ASI and HCV, while genotype x environment
mean square was significant for ASI, PHT, EPP, and STGC (Table 3).

Table 2. Mean squares of grain yield and other measured traits across well-watered environments.

Source of Variation DF GY ASI PHT EHT PASP EASP EPP HCV

Environment (Env) 1 37,593,481 * 46.76 * 6.65 ns 50.26 ns 37.12 * 3.46 ns 1.25 * 3.71 ns

Genotype (Gen) 195 4,330,349 *** 0.71 ** 422.55 *** 192.61 *** 2.07 *** 0.85 ns 0.02 *** 7.19 ***
Env × Gen 195 1,174,838 ns 0.42 ns 67.95 ns 54.75 ns 0.65 ns 1.00 ns 0.01 ns 0.82 ns

Residual 1,108,155 0.40 69.28 52.12 0.89 0.75 0.01 0.84
Min 590.5 0.00 129.2 57 2 2 0.38 1
Max 10,064 4.00 213.8 180 8 8 1.27 8
Mean 5568 0.62 179.3 83.56 4.44 4.68 0.92 3.92

DF: degree of freedom; Env: environment; GY: grain yield; ASI: anthesis–silking interval; PHT: plant height; EHT:
ear height; PASP: plant aspect; EASP: ear aspect; EPP: ear per plant; HCV: husk cover; *, **, ***: significant at 0.05,
0.01 and 0.001 probability levels, respectively. ns: non-significant.

Table 3. Mean squares of grain yield and others agronomic traits across drought stress environments.

Source of Variation DF GY ASI PHT EHT PASP EASP EPP HCV STGC

Environment (Env) 1 1,560,132 ns 35.57 * 673.19 ns 2.05 ns 8.51 ns 2.45 ns 0.19 ns 81.67 *** 0.10 ns

Genotype (Gen) 195 1,464,750 *** 3.085 *** 485.84 *** 193.81 *** 1.55 *** 1.61 *** 0.05 *** 3.90 *** 1.93 ***
Env × Gen 195 979,359.6 ns 2.16 * 258.2 ** 70.25 ns 1.08 ns 1.15 ns 0.04 ** 0.95 ns 1.07 ***
Residual 835,346 1.57 ns 191.5 65.2 0.98 1 0.03 0.78 0.99
Min 0 0 65 34 2 1 0 1 2
Max 8407 9 205.8 128.4 9 9 1.17 8 9
Mean 2138.74 1.5 147.9 76.27 5.42 5.13 0.71 3.97 5.02

DF: degree of freedom; Env: environment; GY: grain yield; ASI: anthesis–silking interval; PHT: plant height;
EHT: ear height; PASP: plant aspect; EASP: ear aspect; EPP: ear per plant; HCV: husk cover; STGC: stay green
characteristic; *, **, ***: significant at 0.05, 0.01 and 0.001 probability levels, respectively; ns: non-significant.

3.2. Selection of Outstanding Orange Hybrids with Drought Tolerance Using the MGIDI
Selection Method

The MGIDI partitioned the measured traits into three factors. The first factor (FA1)
was correlated with GY, EPP, PASP, EASP, EPP, ASI, and STGC. The second factor (FA2)
was associated with HCV while the third factor (FA3) was correlated with PHT and EHT.
All the measured traits showed desirable predicted gains from selection observed in the
sense of selection and perfect goal. Generally, the MGIDI provided a total predicted gain
from selection of 11.96% for traits for which higher positive expression was desirable and
−16.65% for traits for which higher negative expression was desirable (Table 4). Using
a selection intensity of 15%, 29 hybrids comprising 28 new hybrids and one commer-
cial check (TZEEI 79 × TZEEI 82) were selected as drought-tolerant hybrids (Figure 1
and Table S2). Of the selected testcross hybrids, 10 hybrids (34%) were developed from
crosses involving the tester TZEEIOR 197. The best five hybrids based on the MGIDI were
TZEEIOR 510 × TZEEIOR 97, TZEEIOR 510 × TZEEIOR 249, TZEEIOR 321 × TZEEIOR
197, TZEEIOR 384 × TZEEIOR 30, and TZEEIOR 458 × TZEEIOR 197. Similarly, the worst
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five hybrids were TZEEIOR 523 × TZEEIOR 9A, TZEEIOR 221 × TZEEIOR 9A, TZEEIOR
24 × TZEEIOR 30, TZEEIOR 41 × TZEEIOR 30, and TZEEIOR 45 × TZEEIOR 30 (Table S2).

Table 4. Factorial loadings and predicted genetic gains of 196 orange hybrids based on the MGIDI.

Traits FA1 FA2 FA3 Xo Xs Predicted Gain Sense Goal

ASI −0.62 0.49 −0.13 1.51 1.49 −1.03 decrease 100
PHT −0.28 −0.33 0.80 147.87 148.24 0.25 increase 100
EHT −0.11 0.13 0.93 76.36 78.69 3.04 increase 100
HCV 0.00 −0.90 −0.02 3.97 3.57 −10.13 decrease 100
PASP −0.73 −0.20 0.41 5.42 5.41 −0.17 decrease 100
EASP −0.89 −0.08 0.19 5.13 5.06 −1.24 decrease 100
EPP −0.85 0.02 0.11 0.71 0.73 2.63 increase 100
GY −0.91 −0.02 0.19 2138.74 2267.90 6.04 increase 100
STGC −0.48 −0.47 0.27 5.02 4.82 −4.08 decrease 100

NB: bold values represent traits that are correlated to each of the factor analysis 1, 2, and 3. FA1: factor analysis;
FA2: factor analysis 2; FA3: factor analysis 3; Xo: population mean before selection; Xs: population mean of the
selected individuals; ASI: anthesis–silking interval, PHT: plant height, EHT: ear height, HCV: husk cover, PASP:
plant aspect, EASP: ear aspect, EPP: ear per plant, GY: grain yield, STGC: stay green characteristic.
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The result of the analysis to unmask the strengths and weaknesses of the selected
extra-early maize hybrids is presented in Figure 2. In this figure, the proportion of each
factor to the MGIDI accounts for the strengths and weaknesses. The red, green, and blue
lines represented the three factors, and the factor protruding the most to a genotype is
indicated as the strength of the genotype. Based on this, entry 121 had strength for FA1,
which is correlated to GY, EASP, PASP, EPP, and STGC. Entries 135, 86, 81, 70, 57, 47, and
164 had strength for FA2, which is correlated to PHT and EHT. Entries 22, 192, 19, 189, 173,
165, 159, 149, 144, 142, 120, 119, 118, 114, 110, 109, 106, 98, 93, 68, and 52 showed strength
for FA3, which is correlated to ASI and HCV (Table 5 and Figure 2).
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red, green and blue lines represent the three factors and the factor protruding the most t a genotype
is indicated as the strength of the genotype. The black broken circle shows the theoretical value if all
the factors contributed equally. _IOR: TZEEIOR.

Table 5. Factorial loadings, communalities and uniqueness of 29 selected orange hybrids based on
the multi-trait genotype–ideotype distance index.

Traits FA1 FA2 FA3 Communality Uniqueness

ASI 0.13 0.26 0.87 0.84 0.16
PHT 0.15 −0.84 −0.05 0.73 0.27
EHT −0.27 −0.71 0.10 0.59 0.41
HCV −0.02 0.36 −0.74 0.69 0.31
PASP 0.72 0.21 0.01 0.57 0.43
EASP 0.91 −0.06 0.03 0.82 0.18
EPP 0.74 0.00 0.14 0.57 0.43
GY 0.81 −0.08 0.19 0.69 0.31
STGC 0.38 0.09 −0.18 0.18 0.82

NB: bold values represent traits are correlated to each factor analysis 1, 2, and 3. FA1: factor analysis 1; FA2:
factor analysis 2; FA3: factor analysis 3; ASI: anthesis–silking interval, PHT: plant height, EHT: ear height,
HCV: husk cover, PASP: plant aspect, EASP: ear aspect, EPP: ear per plant, GY: grain yield, and STGC: stay
green characteristic.
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3.3. Selection of Drought-Tolerant Hybrids Using the Base Index Derived from Multiple Traits

Based on the multiple-trait base index (MBI) that integrated grain yield, plant aspect,
ear aspect, anthesis–silking interval, stay green characteristic, ears per plant, plant height,
ear height, and husk cover, 99 hybrids had positive selection base indices. The positive se-
lection base index varied from 0.06 for Entry 150 to 15.93 for Entry 121. Three checks (TZEEI
79 × TZEEI 82, TZdEEI 1 × TZdEEI 12, and TZEEIY Pop STR C5 × TZEEI 58) were identi-
fied as drought-tolerant hybrids among the six checks used in this study. The best five top-
performing hybrids under managed drought stress were hybrids TZEEIOR 509 × TZEEIOR
197, TZEEIOR 458 × TZEEIOR 197, TZEEIOR 510 × TZEEIOR 30, TZEEIOR 510 × TZEEIOR
97, and TZEEIOR 510 × TZEEIOR 249. Three of these five hybrids, namely TZEEIOR
510 × TZEEIOR 97, TZEEIOR 510 × TZEEIOR 249, and TZEEIOR 458 × TZEEIOR 197,
were also identified to be superior for drought tolerance using the MGIDI procedure. The
five worst hybrids under managed drought were hybrids TZEEIOR 41 × TZEEEIOR 30,
TZEEIOR 24 × TZEEIOR 30, TZEEIOR 221 × TZEEIOR 9 A, TZEEIOR 45 × TZEEIOR 30,
and TZEEIOR 525 × TZEEIOR 97 (Table S3). The selected hybrids from the MGIDI were
included in the list of the hybrids identified as drought–tolerant using the MBI without
consideration for selection intensity. However, when 15% selection intensity was applied
as performed for the MGIDI, 21 of 29 hybrids (72%) selected were similar to the selection
results from the MGIDI (Figure 3).

Agronomy 2024, 14, x FOR PEER REVIEW 11 of 20 
 

 

30, TZEEIOR 24 × TZEEIOR 30, TZEEIOR 221 × TZEEIOR 9 A, TZEEIOR 45 × TZEEIOR 
30, and TZEEIOR 525 × TZEEIOR 97 (Table S3). The selected hybrids from the MGIDI 
were included in the list of the hybrids identified as drought–tolerant using the MBI with-
out consideration for selection intensity. However, when 15% selection intensity was ap-
plied as performed for the MGIDI, 21 of 29 hybrids (72%) selected were similar to the 
selection results from the MGIDI (Figure 3). 

 
Figure 3. Venn diagram showing the similarity level (as the intersection) between the multiple-trait 
base index (MBI) and the multi-trait genotype–ideotype distance index (MGIDI) methods. 

3.4. Yield Performance and Grain Yield Reduction under Drought 
Under drought stress condition, grain yield ranged from 198 kg/ha for hybrid 

TZEEIOR 41 × TZEEIOR 30 to 4044 kg/ha for TZEEIOR 509 × TZEEIOR 197 with an aver-
age of 2139 kg/ha. The best-yielding hybrid (TZEEIOR 509 × TZEEIOR 197) had 34% 
higher grain yield than the best check (TZEEI 79 × TZEEI 82) that had a grain yield of 3015 
kg/ha. Under well-watered condition, grain yield varied from 1251 kg/ha for TZEEIOR 28 
× TZEEIOR 30 to 7455 kg/ha (TZEEIOR 509 × TZEEIOR 197) with a mean of 5568 kg/ha. 
The best check (TZEEIOR 12 × TZEEIOR 223) had a grain yield of 5732 kg/ha, which trans-
lates to 30% grain yield reduction compared to the best hybrid (Table S4). 

In general, the grain yield reduction in the hybrids under managed drought stress 
compared with that of the well-watered conditions varied from 35% for TZEEIOR 321 × 
TZEEIOR 249 to 89% for TZEEIOR 41 × TZEEEIOR 30 with an average of 61%. The grain 
yield reduction in the selected drought-tolerant hybrids from the MGIDI under drought 
compared to that of the well-watered varied from 36% for the check hybrid TZEEI 79 × 
TZEEI 82 to 69% for TZEEIOR 202 × TZEEIOR 9A. In addition, 10 (~35%) and 26 (~90%) 
hybrids from the MGIDI selection had better performance than the selected commercial 
check under managed drought and well-watered conditions, respectively. The yield ad-
vantage of the hybrids with better performance than the selected check was 12 and 33% 
under managed drought and well-watered conditions, respectively. For the selected hy-
brids from the MBI, grain yield reduction varied from 35% for TZEEIOR 321 × TZEEIOR 
249 to 62.71% for TZEEIOR 510 × TZEEIOR 197. Furthermore, 16 (~55%) and 27 (~93%) 
hybrids from the MBI selection had better performance than the selected commercial 
check under managed drought and well-watered conditions, respectively (Table 6). Con-
sidering hybrids grain yield potential under managed drought and well-watered condi-
tions alone, 25 of 29 hybrids selected by the MGIDI had drought susceptibility index (DSI) 

Figure 3. Venn diagram showing the similarity level (as the intersection) between the multiple-trait
base index (MBI) and the multi-trait genotype–ideotype distance index (MGIDI) methods.

3.4. Yield Performance and Grain Yield Reduction under Drought

Under drought stress condition, grain yield ranged from 198 kg/ha for hybrid TZEEIOR
41 × TZEEIOR 30 to 4044 kg/ha for TZEEIOR 509 × TZEEIOR 197 with an average of
2139 kg/ha. The best-yielding hybrid (TZEEIOR 509 × TZEEIOR 197) had 34% higher grain
yield than the best check (TZEEI 79 × TZEEI 82) that had a grain yield of 3015 kg/ha. Under
well-watered condition, grain yield varied from 1251 kg/ha for TZEEIOR 28 × TZEEIOR
30 to 7455 kg/ha (TZEEIOR 509 × TZEEIOR 197) with a mean of 5568 kg/ha. The best
check (TZEEIOR 12 × TZEEIOR 223) had a grain yield of 5732 kg/ha, which translates to
30% grain yield reduction compared to the best hybrid (Table S4).

In general, the grain yield reduction in the hybrids under managed drought stress com-
pared with that of the well-watered conditions varied from 35% for TZEEIOR 321 × TZEEIOR
249 to 89% for TZEEIOR 41 × TZEEEIOR 30 with an average of 61%. The grain yield reduc-
tion in the selected drought-tolerant hybrids from the MGIDI under drought compared
to that of the well-watered varied from 36% for the check hybrid TZEEI 79 × TZEEI 82
to 69% for TZEEIOR 202 × TZEEIOR 9A. In addition, 10 (~35%) and 26 (~90%) hybrids
from the MGIDI selection had better performance than the selected commercial check
under managed drought and well-watered conditions, respectively. The yield advantage
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of the hybrids with better performance than the selected check was 12 and 33% under
managed drought and well-watered conditions, respectively. For the selected hybrids
from the MBI, grain yield reduction varied from 35% for TZEEIOR 321 × TZEEIOR 249 to
62.71% for TZEEIOR 510 × TZEEIOR 197. Furthermore, 16 (~55%) and 27 (~93%) hybrids
from the MBI selection had better performance than the selected commercial check under
managed drought and well-watered conditions, respectively (Table 6). Considering hybrids
grain yield potential under managed drought and well-watered conditions alone, 25 of
29 hybrids selected by the MGIDI had drought susceptibility index (DSI) estimates lower
than the average DSI of the hybrid population (0.99). When similar observation was made
for the MBI, 26 of 29 hybrids had DSI estimates lower than the average DSI of the hybrid
population (Tables 5 and S2).

Drought stress reduced PHT by 17%, EHT by 9%, EPP by 22%, DP by 2%, but increased
ASI by 181%, DS by 0.2%, HCV by 7%, PASP by 25%, and EASP by 11% (Table S5).

Table 6. Grain yield (kg/ha) of selected drought-tolerant extra-early maturing hybrids identified
from both the MGIDI and the multiple-trait base index with a 72% level of similarity.

Entries Genotypes GY (kg/ha)
under MD

GY (kg/ha)
under WW YR% MBI MGIDI DSI

19 _IOR 202 × _IOR 9 A 2098 6714 68.75 5.39 * 2.65 1.12
22 _IOR 28 × _IOR 9 A 2501 5341 53.17 7.79 2.06 0.86
39 _IOR 314 × _IOR 97 3604 6993 48.46 8.38 3.37 * 0.79
47 _IOR 479 × _IOR 97 2858 5248 45.54 7.7 2.69 0.74
52 _IOR 523 × _IOR 97 3054 6386 52.17 10.5 2.12 0.85
57 _IOR 24 × _IOR 97 2503 4392 43.02 6.41 2.66 0.70
68 _IOR 526 × _IOR 97 3319 6436 48.43 9.69 2.07 0.79
70 _IOR 510 × _IOR 97 3569 7380 51.64 15.07 1.53 0.84
74 _IOR 321 × _IOR 249 3208 4918 34.78 9.31 2.89 * 0.56
81 _IOR 515 × _IOR 249 2917 6722 56.6 9.81 2.36 0.92
86 _IOR 540 × _IOR 249 2923 5818 49.76 9.02 2.6 0.81
92 _IOR 205 × _IOR 249 2559 5240 51.17 8.46 2.91 * 0.83
93 _IOR 24 × _IOR 249 1989 4367 54.46 2.29 * 2.83 0.88
98 _IOR 221 × _IOR 249 2157 5186 58.41 4.19 * 2.68 0.95

106 _IOR 510 × _IOR 249 3295 5846 43.64 12.15 1.85 0.71
109 _IOR 346 × _IOR 197 2438 6398 61.89 6.58 2.59 1.00
110 _IOR 321 × _IOR 197 3116 5714 45.46 11.24 1.9 0.74
114 _IOR 289 × _IOR 197 2873 7341 60.86 7.61 2.85 0.99
118 _IOR 458 × _IOR 197 3643 7062 48.42 15.91 2.06 0.79
119 _IOR 479 × _IOR 197 3074 6428 52.18 10.41 2.24 0.85
120 _IOR 513 × _IOR 197 2799 6953 59.75 6.03 * 2.85 0.97
121 _IOR 509 × _IOR 197 4044 7455 45.75 15.94 2.17 0.74
128 _IOR 205 × _IOR 197 2308 5990 61.46 6.71 2.95 * 1.00
135 _IOR 142 × _IOR 197 2578 5954 56.69 6.03 * 2.66 0.92
142 _IOR 510 × _IOR 197 2629 7051 62.72 8.9 2.42 1.02
144 _IOR 305 × _IOR 197 2648 5885 55 6.08 * 2.64 0.89
149 _IOR 384 ×_IOR 30 3415 6753 49.43 10.71 1.96 0.80
158 _IOR 509 × _IOR 30 3097 5469 43.37 6.84 3.01 * 0.70
159 _IOR 540 × _IOR 30 3261 7086 53.98 10.69 2.36 0.88
164 _IOR 202 × _IOR 30 2297 4918 53.29 8.97 2.08 0.87
165 _IOR 205 × _IOR 30 2360 6280 62.42 4.80 * 2.76 1.01
173 _IOR 381 × _IOR 30 3000 5898 49.13 6.97 2.67 0.80
175 _IOR 536 × _IOR 30 3498 7390 52.67 6.34 3.13 * 0.86
178 _IOR 525 × _IOR 30 3217 5618 42.73 8.85 3.17 * 0.69
179 _IOR 510 × _IOR 30 3805 6392 40.47 15.18 3.63 * 0.66
189 _IOR 197 × _IOR 249 2300 5464 57.91 4.53 * 2.78 0.94
192 TZEEI 79 × TZEEI 82 (CHK-2) 3015 4720 36.13 7.91 2.26 0.59

_IOR: TZEEIOR; GY: grain yield; YR: yield reduction; MBI: multiple-trait base index; MGIDI: multi-trait genotype–
ideotype distance index; DSI: drought susceptibility index; *: hybrids that were not selected as drought-tolerant
using the alternative selection method.
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3.5. Stability Analysis of Forty Orange Hybrids Comprising Best, Average, and Worst Performing
Genotypes across All Environments

The GGE biplot view of the 40 extra-early provitamin A hybrids comprising the
20 best, 10 average, and 10 worst performing hybrids from the MGIDI selection analyzed
for performance stability is presented in Figure 4. Approximately 95% of the variability in
grain yield of the orange hybrids was accounted for by the first two principal components.
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The best-yielding and most stable extra-early provitamin A hybrids were identified
using the “mean vs. stability” biplot view across the test environments. The vertical line
passing through the biplot origin is the average tester coordinate (ATC) which separates
the hybrids based on yield performance. The more the distance between the hybrid and the
ATC to the left, the better the yield performance of the hybrid and vice versa. The length of
the hybrid projection from the ATC abscissa (horizontal line) determines their stability. The
shorter the projection, the more stable the hybrid and vice versa. Based on these criteria,
the five top-yielding hybrids across the test environments in descending order included
TZEEIOR 509 × TZEEIOR 197, TZEEIOR 510 × TZEEIOR 97, TZEEIOR 458 × TZEEIOR
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197, TZEEIOR 510 × TZEEIOR 197, and TZEEIOR 540 × TZEEIOR 30. The most stable hy-
brids, however, were TZEEIOR 510 × TZEEIOR 197, TZEEIOR 384 × ZEEIOR 30, TZEEIOR
515 × TZEEIOR 249, TZEEIOR 526 × TZEEIOR 97, TZEEIOR 479 × TZEEIOR 197, and
TZEEIOR 458 × TZEEIOR 197. From this result, only hybrids TZEEIOR 510 × TZEEIOR
197 and TZEEIOR 458 × TZEEIOR 197 combine high-yielding character with high stability
across the test environment (Figure 4).

3.6. Phenotypic Correlations among Measured Traits under Managed Drought, Well-Watered, and
across Research Conditions

The relationships among measured traits in each of the managed drought and well-
watered conditions and across both research conditions are presented in Figure 5. Across
managed drought environments, GY had a significant (p < 0.001) positive correlation with
EPP (0.76), EHT (0.29), and PHT (0.38) and a significant (p < 0.001) negative correlations
with EASP (−0.90), PASP (−0.69), STGC (−0.45), ASI (−0.43) (Figure 5A). Under well-
watered conditions, significant (p < 0.001) positive correlations were obtained between GY
and EHT (0.39), PHT (0.36), and EPP (0.59) while significant negative correlations were
found between grain yield one hand and PASP (r = −0.71, p < 0.001,) and HCV (r = −0.15,
p < 0.05) on the other (Figure 5B). Grain yield under managed drought and well-watered
conditions had positive correlated (r = 0.49, p < 0.001,). EPP under managed drought had
a significant and positive correlation with EPP under well-watered conditions (r = 0.30,
p < 0.001) and PASP under managed drought showed significant positive correlation with
PASP under well-watered conditions (r = 0.2, p < 0.01) (Figure 5C).
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4. Discussion

Genetic variability is crucial for the improvement of desired traits in crop improve-
ment programs [28–30]. Significant genotype mean squares observed for grain yield and
other traits under the contrasting research conditions was indicative of the presence of
genetic variability among the extra-early orange hybrids under managed drought and well-
watered conditions. These results provide a basis for rapid genetic gains from selection and
identification of hybrids with desirable traits for each research condition [31,32]. Significant
environment mean squares observed for anthesis–silking interval and husk cover under
managed drought indicated that the difference in environmental conditions that prevailed
in the two years of evaluation affected these traits [33]. A similar trend of results was
observed for grain yield, anthesis–silking interval, plant aspect, and ears per plant under
well-watered conditions. The well-watered trials were carried out under rain-fed conditions.
Considerable variation in rainfall occurs from year to year in Nigeria, even for the same
site. Consequently, evaluation in several years is necessary, to expose materials being eval-
uated to the possible variation in rainfall, towards ensuring that materials that are selected
are productive under wide rainfall regimes. Significant genotype x environment mean
squares observed for anthesis–silking interval, plant height, ears per plant, and stay green
characteristic under managed drought indicated that the genotypes response pattern differ
under the two managed drought environments considered in this study. In contrast, the
lack of significant environment and genotype x environment interaction mean squares for
grain yield indicate that the relative performances of the genotypes were stable under the
managed drought condition investigated. This is also true for the well-watered condition
for which the mean squares for genotype by environment interactions were not significant.
These results indicate that plant traits differ in their response to environmental conditions.

In the present study, both the MGIDI and the MBI were each used to identify 29 geno-
types combining drought tolerance with high yield. Of the selected genotypes from
both selection procedures, 72% similarity was observed. As reported by several au-
thors [21,24,34,35], the multiple-trait base index is usually affected by multicollinearity of
traits which in turn affects the efficiency of selection. The MGIDI is, however, not affected
by traits multicollinearity making it a better selection procedure when ideotype design
is of major interest. In addition, the MGIDI provides knowledge of the strengths and
weaknesses of selected ideotype, which could guide plant breeders in identifying traits for
further improvement. The MGIDI has been used to develop climate-resilient maize hybrids
through the development of better selection approaches and optimization of breeding
strategies [36]. Improvement in crop performance, the goal of all plant breeding programs,
is usually pursued through the assembly in new varieties of genes for various desirable
plant traits associated with high grain productivity [37]. The selected 29 drought-tolerant
orange hybrids from the MGIDI comprised of 28 new hybrids and one commercial check.
The 10 and 26 hybrids ranked above this commercial check under managed drought and
well-watered conditions have an average yield advantage of 12% and 33%, respectively.
These hybrids show promise for commercialization in SSA, as they are not only drought-
escape as being extra-early genotypes, but also have the inherent ability to withstand
drought occurring during the growing season. These hybrids could also be useful for de-
veloping open-pollinated varieties, three-way and double cross hybrids for drought-prone
areas in SSA. Ten hybrids from those selected by the MGIDI had the tester TZEEIOR 197
as a parent. In a previous study [38], this tester was reported as an outstanding inbred
line with positive and significant general combining ability effects for grain yield under
drought. These results indicate TZEEIOR 197 to possess genes for drought tolerance as
well as show it as an excellent combiner that could be used for the development of more
drought-tolerant extra-early orange hybrids. In the present study, the superior combining
ability was further demonstrated by the fact that hybrid combinations involving this tester
were more in number than those from any other inbred tester among the selected hybrids
combining drought tolerance with high yield.
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Examination of the strengths and weaknesses of the MGIDI selected hybrids revealed
hybrid TZEEIOR 509 × TZEEIOR 197 as the only genotype associated with the first factor.
This factor correlates with high grain yield, increased ears per plant, and improved ear
and plant aspects under drought conditions, an indication that this hybrid has desirable
genes for these four traits under managed drought conditions. This provides a basis for
its high grain yield under drought stress as well as under well-watered environments.
Hybrids associated with the second factor could be selected and used as parent for plant
and ear height improvement while hybrids associated to the third factor could be used as
parent in a breeding program for the improvement of anthesis–silking interval and husk
cover improvement. The initiation of three-way and double-cross hybridization program
among these promising hybrids could further increase the number of hybrids with desired
performance under drought stress.

In this study, the extended anthesis–silking interval combined with reduction in ears
per plant, plant height, ear height and increased plant and ear aspects, and husk cover
observed under drought stress contributed to the reduction in grain yield under drought.
The imposed drought stress covered the flowering and grain filling periods. Increased
anthesis–silking interval is known to increase the incidence of barrenness [39,40]. The grain
yield loss obtained in the present study ranged from 35 to 89% with an average of 61%
under managed drought conditions. These yield losses fall within the range reported by
other authors [16,40–43]. The magnitude of grain yield reduction as a result of drought is
known to depend on the duration and intensity of the drought stress [44–47].

Given that the occurrence of drought is unpredictable and crop varieties must opti-
mize productivity under diverse environmental conditions, improved varieties must show
outstanding and stable performance under both drought and well-watered conditions. Hy-
brids that showed these attributes in the present study and whose superior performances
were stably expressed viz. TZEEIOR 509 × TZEEIOR 197, TZEEIOR 458 × TZEEIOR
197 and TZEEIOR 510 × TZEEIOR 97, have great potential for commercialization for
cultivation in drought-prone environments and qualify for more extensive testing under
diverse conditions.

Grain yield, plant aspect, and ears per plant under managed drought were correlated
to the same traits under well-watered conditions, suggesting that the expression of these
traits is governed by common genetic factors. Similar results have been reported by several
authors [41,48,49]. The presence of strong associations between grain yield and ears per
plant, plant and ear heights, anthesis–silking interval, plant and ear aspect, and the stay
green characteristic under managed drought are indicative of potential of the latter for use
as secondary traits in indirect selection in grain yield improvement. Similar results have
been found by Bankole et al. [50]. These traits have been used to develop selection index
for simultaneous improvement of grain yield and drought tolerance with considerable
success [51,52] In the present study, the relationship between grain yield and anthesis–
silking interval under well-watered conditions was not significant but significant under
managed drought conditions. These results are consistent with the findings of Bolanos and
Edmeades [53] and Bankole et al. [50] who reported that grain yield was weakly correlated
to anthesis–silking interval under optimum condition but both are strongly correlated
under moisture stress. Knowledge of trait correlations and how the relationships that they
define change under contrasting research conditions is useful in guiding plant breeders in
the implementation of a breeding program targeting improvements in one trait through
improvement in another that is easier to measure [36,54].

5. Conclusions

The results of this study revealed significant genetic variability among the newly
developed extra-early maturing orange hybrids. Some of the hybrids have considerable
potential for mitigating food insecurity and reducing malnutrition in SSA. The inbred
line TZEEIOR 197 possesses outstanding attributes for the development of extra-early
provitamin A-rich hybrids for drought-prone environments in SSA. Both the multiple-trait
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base index and the multi-trait genotype–ideotype distance index selection outcome showed
72% similarity. The hybrids TZEEIOR 509 × TZEEIOR 197, TZEEIOR 458 × TZEEIOR
197 and TZEEIOR 510 × TZEEIOR 97 were identified as the most outstanding drought-
tolerant hybrids based on the per se performance, yield stability analysis, and multiple-traits
genotype–ideotype distance index. These hybrids should be further tested in multiple stress
environments towards efforts to commercialize them in SSA. Additionally, the hybrids
could be used as parents for population development and extraction of new and improved
inbred lines for further development of new maize ideotypes for farmers in SSA.
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ideotype distance index (MGIDI); Table S3: Ranking of 196 hybrids using the multiple-trait base
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2022 and 2023 main seasons; Table S5: Trait reduction under managed drought compared to under
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