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Abstract: Maize yields perform differently in different environments, so the selection of suitable
genotypes in diverse environments is essential for variety selection to enable better site-specific
planting. Hence, the objective of the study was to estimate the productivity of 11 maize hybrids (G)
in 10 different environments (E) and select high-yield and stable varieties for adaptive cultivation in
2022 and 2023. The combined analysis of variance showed that G (4%), E (50%), and their interaction
(31%) had a significant effect (p < 0.01) on maize yield, with E factors contributing the most. In
addition, the average yield ranged from 9398 kg/ha to 10,574 kg/ha, and ZF-2208 and DY-519
performed relatively well in both years. The AMMI model showed that the varieties DY-213, DY-
605, and DY-519 had high and stable production in 2022, whereas it was ZF-2209 and LX-24 in
2023. The “W-W-W” biplot showed that DY-519 and JG-18 were the optimal varieties in 2022, and
ZF-2208 and ZF-2210 were optimal in 2023. The “mean vs. stability” biplot indicated that JG-18,
DY-605, and DY-213 (in 2022) and ZF-2208, LX-24, and ZF-2209 (in 2023) were the optimal varieties.
Additionally, both the discrimination and representative biplot and the ranking biplot reflected
that BinChuan and ShiDian (in 2022) and GengMa and YongSheng (in 2023) were the ideal test
environments. In conclusion, DY-519, DY-605, ZF-2208, and LX-24 hybrids could be used for variety
promotion. Moreover, BinChuan, ShiDian, GengMa, and YongSheng were the ideal test environments
for selecting varieties. Therefore, the AMMI model and GGE biplot can be used to complement each
other for a comprehensive evaluation of maize yield. In this way, excellent maize hybrids with high
yield and stability can be selected, which could promote the selection and popularization of varieties
and shorten the breeding process.

Keywords: maize hybrid; yield; AMMI; GGE biplot; G × E interaction

1. Introduction

Maize (Zea mays L.) is the most crucial cereal globally, providing 42% of the world’s
human food calorie consumption. Stable production ensures global food security [1].
By 2050, global food production will increase by 60% or even double to meet people’s
food needs. Maize is a major food crop in China, using 21% of the world’s maize area
and producing 260 million tons, which is 23% of the world’s supply. However, with
temperatures increasing, most areas are experiencing significant yield losses [2]. Food
security remains critical as the population grows, and fertilizer use in a changing climate
will reduce yields by close to 20% by 2099 [3]. In order to increase production, Chang et al.
and Huang et al. have predicted corn yield through a data-driven crop model and Bayesian
model [4,5].

GEIs can reveal the contribution of new varieties to performance and influence breed-
ing programs and resource allocation [6]. Crops are affected by genotype–environment
interactions (GEIs), which are caused by variations in the environmental conditions [7]. In
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multi-site trials, often due to GEIs, variety selection is inefficient and the relative ranking of
varieties varies according to the environment. So, it is necessary to analyze the interaction
caused by GE effects on yield [8].

GEIs are often thought of as the differential ordering of genotypes in different envi-
ronments. They can be used to predict the potential and effect of genotypes in different
environments [9]. Genotypes exhibit different behaviors in different environments, and
this interaction is critical for genotypes adapting to diverse environments [8]. Meanwhile,
GEIs are a key issue affecting thousand kernel weight, yield, and breeding for quality
traits in maize [10,11]. Currently, the AMMI model and the GGE biplot are statistical tools
which are commonly used in the analysis of multi-environmental trials [8,12]. Compared
to the AMMI model, the GGE biplot has a stronger regional genotype evaluation, but it is
slightly lacking in breeding programmers, and it is an improved version of AMMI [13,14].
Additionally, it can combine the gene main effect with the GE interaction at the same time,
so as to cluster the environments and divide the varietal eco-regions [8,15]. Moreover, this
methodology combines the mean values of yield and stability and transforms them into a
formula for graphical evaluation [16]. The GGE biplot can also be used for breeding-specific
combining ability and general combining ability evaluation [17], disease evaluations [18],
crop qualitative characteristics [19,20], and regional trial evaluations [21]. And the AMMI
model GGE biplot has now been applied to cotton [21], oat [22], pigeonpea [23], cow-
pea [24], bambara groundnut [25], grain sorghum [26], as well as maize [27,28]. In previous
studies, the yield of maize in one year was mostly analyzed by the AMMI model and GGE
biplot or by a single method, and few were analyzed by combining the two methods for
many years [11,29–32]. Combining the AMMI model with the GGE biplot can help us to
better understand the effects of gene–environment interaction, optimal genotypes, and
suitable environments on improving genotype yield [7,33].

Therefore, AMMI and the GGE biplot were used to analyze the yield of 11 maize
hybrids in 10 environments across two seasons to comprehensively evaluate the produc-
tivity and stability of the participating varieties, as well as the discriminatory power and
representativeness of the environment, which can guide the planting layout and the safe
production of maize, and then increase social and economic benefits.

2. Materials and Methods
2.1. Environments and Hybrids

The 11 maize hybrids have been grown at 10 locations in 2 seasons (2022 and 2023).
All of these 10 environments are located at mid-to-low altitudes in Yunnan, China, and the
detailed information of these sites is given in Table 1.
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Table 1. Basic information of the 10 test environments.

Locations
Time 2022 2023

Parameters March April May June July August September October March April May June July August September October

Binchuan TEMP (◦C) 15.8 15.9 18.0 20.0 21.4 21.3 19.2 16.5 15.3 18.2 19.6 20.4 21.4 20.6 19.8 17.0
E1 Min (◦C) 7.0 9.1 12.8 16.2 16.7 16.4 14.7 11.5 7.1 9.9 11.9 15.4 17.0 17.1 14.5 11.8

Max (◦C) 23.5 23.1 24.3 25.5 27.5 27.6 25.3 22.9 22.4 25.5 26.6 26.6 27.4 26.0 26.9 23.5
PRCP (mm) 0.2 1.1 3.4 4.2 3.9 4.3 3.3 2.1 0.3 0.7 2.5 9.7 3.9 9.8 6.8 4.0

RH (%) 47.7 63.8 72.5 76.3 73.7 74.9 78.0 77.3 42.8 43.8 52.8 72.4 73.3 82.0 74.6 73.0
Gejiu TEMP (◦C) 20.3 19.9 21.2 23.2 24.6 23.8 21.9 19.6 18.8 23.6 24.9 25.0 24.7 23.5 23.1 20.9

E2 Min (◦C) 14.8 14.6 17.3 19.8 20.4 19.9 18.1 15.5 13.4 17.6 19.7 20.8 20.8 20.4 19.6 17.0
Max (◦C) 27.2 26.2 27.2 28.4 31.0 30.0 27.6 25.1 26.3 30.8 31.4 31.5 30.5 29.1 28.7 26.7

PRCP (mm) 0.9 0.9 2.1 4.7 1.9 3.8 2.4 0.4 0.7 0.4 0.9 2.7 3.6 6.0 1.1 1.1
RH (%) 61.8 62.2 70.3 73.1 69.6 73.5 74.7 70.1 62.4 51.4 57.7 66.6 70.5 79.7 72.1 73.4

Gengma TEMP (◦C) 20.8 20.5 22.5 22.9 24.8 24.1 23.3 21.4 19.6 23.1 24.6 24.7 24.3 23.8 24.0 21.3
E3 Min (◦C) 11.9 14.3 18.1 20.1 20.2 20.3 19.2 16.8 11.9 15.3 17.6 20.7 20.7 21.1 19.7 17.1

Max (◦C) 30.0 29.5 29.0 28.4 32.3 31.2 30.7 28.2 28.3 32.1 32.2 32.2 30.6 29.6 31.4 28.4
PRCP (mm) 1.0 1.8 3.4 8.1 3.0 6.9 5.6 3.0 1.0 0.6 3.7 5.4 5.4 7.5 5.0 1.6

RH (%) 51.2 65.7 74.7 84.9 76.0 81.5 78.7 78.0 50.9 45.7 56.3 74.9 80.0 86.2 77.9 80.6
Guangnan TEMP (◦C) 19.1 18.6 19.2 23.9 24.9 23.8 21.4 18.3 17.1 22.2 24.2 23.8 25.3 23.5 22.3 19.3

E4 Min (◦C) 12.5 12.3 15.6 19.9 20.6 19.7 17.5 14.2 11.5 15.7 18.6 19.7 20.8 20.1 18.5 14.7
Max (◦C) 27.3 25.9 25.2 29.1 31.7 30.4 27.1 23.3 24.2 30.4 31.5 30.4 31.3 29.1 28.0 25.5

PRCP (mm) 1.1 2.0 13.4 1.8 1.6 4.5 3.6 2.0 0.6 0.2 1.2 3.5 5.4 8.8 2.3 1.5
RH (%) 64.3 64.9 78.9 71.3 69.6 75.8 77.9 74.5 66.5 57.0 61.6 69.5 69.0 79.8 76.3 75.7

Jingdong TEMP (◦C) 21.2 21.9 23.6 23.6 25.3 24.6 23.9 22.2 20.0 23.9 24.6 24.9 24.9 24.1 24.4 22.9
E5 Min (◦C) 13.3 15.2 19.6 20.9 21.1 21.2 19.8 17.9 12.2 15.2 18.3 21.2 21.4 21.5 20.4 19.1

Max (◦C) 30.7 30.3 30.2 28.7 31.8 31.1 30.3 28.4 29.3 33.3 32.4 31.2 30.9 29.3 30.9 29.1
PRCP (mm) 1.1 2.1 7.3 10.4 5.0 6.0 7.7 3.3 0.1 0.1 4.2 9.6 7.7 9.4 3.1 3.4

RH (%) 57.7 65.5 76.6 87.0 78.5 83.0 79.8 80.5 58.2 47.5 64.7 78.8 76.3 83.3 75.2 77.0
Jinghong TEMP (◦C) 24.7 24.5 25.5 26.2 27.6 26.4 26.1 24.5 23.9 27.6 27.4 27.4 27.6 26.5 27.0 25.7

E6 Min (◦C) 17.5 18.1 21.7 22.9 23.3 22.7 22.0 20.1 16.5 19.8 21.4 23.7 23.6 23.4 22.8 21.7
Max (◦C) 33.8 33.1 32.7 32.1 34.8 33.4 32.5 31.0 33.2 38.0 36.2 34.3 34.4 32.2 33.8 31.9

PRCP (mm) 1.5 2.2 5.7 6.0 1.8 12.8 4.4 3.1 1.0 0.8 2.2 2.8 2.5 4.3 2.5 3.1
RH (%) 60.3 64.3 75.9 80.2 73.0 78.9 76.4 74.1 55.9 44.8 62.2 75.3 74.2 82.3 74.8 76.2

Mile TEMP (◦C) 17.1 16.5 17.7 21.0 22.0 21.9 19.6 16.6 16.0 20.4 22.2 21.8 22.5 21.6 20.4 17.4
E7 Min (◦C) 9.4 9.3 13.8 17.4 17.3 17.9 15.7 12.4 8.9 12.3 15.6 17.7 18.1 18.0 15.4 12.9

Max (◦C) 25.3 24.2 23.7 26.2 28.8 28.2 25.4 22.1 24.2 29.6 29.8 29.0 28.2 27.2 26.5 23.6
PRCP (mm) 1.6 1.7 7.3 4.5 5.0 3.4 10.0 0.6 0.4 0.1 0.3 7.6 1.8 6.5 0.9 3.0

RH (%) 62.1 66.4 80.7 78.1 78.2 79.3 80.3 78.4 61.0 49.3 58.1 71.5 73.4 81.5 74.5 78.7
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Table 1. Cont.

Locations
Time 2022 2023

Parameters March April May June July August September October March April May June July August September October

Shidian TEMP (◦C) 16.2 17.0 19.2 21.0 22.1 22.4 21.0 18.8 15.2 18.5 20.0 21.7 22.0 21.8 21.5 18.6
E8 Min (◦C) 7.1 10.5 14.7 18.4 17.9 18.1 16.8 13.8 6.6 10.0 12.7 17.6 18.4 18.8 16.4 13.4

Max (◦C) 25.0 24.3 25.5 25.7 28.5 28.8 27.3 25.4 23.6 26.9 27.4 27.7 27.1 27.1 28.3 25.4
PRCP (mm) 0.6 2.7 3.1 2.5 5.8 3.7 2.3 2.5 0.8 0.6 2.3 7.6 4.2 9.5 5.4 4.9

RH (%) 53.2 67.4 73.7 75.9 76.1 75.4 75.0 74.1 49.1 47.0 56.9 71.0 73.1 78.8 71.0 70.4
Yongsheng TEMP (◦C) 14.7 13.7 16.6 18.6 19.6 19.2 17.0 14.0 12.7 16.5 18.4 19.0 20.0 18.6 17.8 14.6

E9 Min (◦C) 7.0 7.4 11.1 14.7 14.7 14.8 13.6 8.8 6.2 10.5 12.2 14.3 15.0 15.0 12.5 8.9
Max (◦C) 22.2 21.1 23.0 24.2 26.0 26.0 22.5 20.8 20.1 23.4 25.4 25.2 26.1 24.3 24.4 21.4

PRCP (mm) 0.0 1.2 2.4 8.9 5.3 3.8 4.7 1.2 0.1 0.0 1.0 5.7 3.9 9.6 2.6 2.2
RH (%) 33.3 56.0 67.4 73.5 72.9 77.2 82.4 77.1 39.1 36.9 43.3 67.4 71.2 84.0 77.1 71.0

Zhenyuan TEMP (◦C) 24.6 24.8 26.6 28.3 30.2 29.2 27.4 24.7 24.2 29.1 30.9 30.2 29.3 28.8 28.5 26.4
E10 Min (◦C) 18.3 18.8 21.9 24.2 24.8 24.4 22.6 20.1 17.9 21.7 24.3 25.1 24.5 24.7 23.8 22.1

Max (◦C) 33.1 32.1 33.3 34.2 37.5 36.5 34.0 30.7 32.2 38.3 38.0 37.2 35.9 35.1 35.1 32.7
PRCP (mm) 2.5 3.1 5.1 2.7 3.3 3.1 6.0 1.1 0.7 0.3 2.2 8.0 4.4 3.2 0.4 0.8

RH (%) 59.6 60.2 65.2 69.5 61.8 66.8 68.1 65.8 52.6 42.6 48.2 62.9 69.8 75.4 65.8 66.6

Note: TEMP is temperature; Min is minimum temperature; Max is maximum temperature; PRCP is precipitation; RH is relative humidity.
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The experimental materials were ZF-2208 (G1), ZF-2209 (G2), ZF-2210 (G3), DY-213
(G4), DY-605 (G5), JG-18 (G6), JG-812 (G7), DY-519 (G8), LX-24 (G9), and SS-2107 (G10),
with ZD-808 (G11) as a control. G1, G2, and G3 have high ear height, resistance, and quality;
G4 is neat and has a good yield; G5 is neat and has good resistance; G6 and G7 have high
plant height, ear height, and resistance; and G8, G9, and G10 have high plant height, ear
height, resistance, and yield. The detailed information of 11 hybrids is shown in Table 2.

Table 2. The detailed information of 11 maize hybrids.

Hybrids Code Parental Source

ZF-2208 G1 DF-2 × ZF739 Yunnan Zu Feng Seed Industry Co., Ltd., Dali, China
ZF-2209 G2 ZF2749 × ZF895 Yunnan Zu Feng Seed Industry Co., Ltd., Dali, China
ZF-2210 G3 DF-2 × ZF824 Yunnan Zu Feng Seed Industry Co., Ltd., Dali, China
DY-213 G4 DY2071 × 3279 Yunnan Di Yu Seed Industry Co., Ltd., Qujing, China
DY-605 G5 DY1237 × 108B Yunnan Di Yu Seed Industry Co., Ltd., Qujing, China
JG-18 G6 LX1849 × LX28 Mile Jin Gu Seed Industry Co., Ltd., Mile, China
JG-812 G7 LX890 × LX1847 Mile Jin Gu Seed Industry Co., Ltd., Mile, China
DY-519 G8 LX1849 × S5392 Yunnan Nong Zhi Ben Seed Industry Co., Ltd., Kunming, China
LX-24 G9 LFCD-9 × TA-1-3 Yunnan Lin Feng Seed Industry Co., Ltd., Shilin, China

SS-2107 G10 SFCB05 × SFCB03 Yunnan Shi Feng Seed Industry Co., Ltd., Shilin, China
ZD-808 G11 Y708M × F880 Xiangyang Zheng Da Seed Industry Co., Ltd., Xiangyang, China

2.2. Experimental Design

The experiment was conducted by a randomized block design with three replications.
Five rows were planted in each plot, the row spacing was 0.8 m, and the area was 20 m2;
there were 60,000 plants per ha. Field management and fertilization were implemented
according to the Maize Regional Trial Scheme. Maize was sown directly, and chlorfenapyr
and imidacloprid were used to control spodoptera frugiperda and aphids, respectively.
The base fertilizers were (NH4)2SO4 and K2SO4 (450 kg/ha), and the topdressing fertilizer
was CH4N2O, of which the first topdressing fertilizer was 300 kg/ha and the second was
225 kg/ha. Farming was entirely and extensively dependent on natural rainfall. After the
maize matured, three rows of each plot were selected for grain yield measurement, and the
yield was calculated by the following formula:

Yield(kg/ha) =
plot yield
plot area

× 666.7 × 15

where 1 mu = 666.7 square meters and 1 ha = 15 mu.

2.3. Data Analysis

Excel was used for basic data organization and calculation. The aov () function in the
R package “agricolae” version 4.3.3 was used to perform the analysis of variance (ANOVA).
For multiple comparisons, the LSD test was used, an AMMI analysis was conducted using
the R package “agricolae”, the “GGEBiplotGUI” package (R (4.3.3)) was used for the GGE
biplot [34], the “pheatmap” package (R (4.3.3)) was used for clustering heatmaps, and the
“psych” (R (4.3.3)) package was used for Pearson correlation analysis. The GGE biplot and
AMMI methods based on giant environmental assessment were used to draw the model
diagram to visually show the existence of G × E interactions.

3. Results
3.1. Analysis of Variance (ANOVA) for Yield

The multivariate analysis of variance of 11 varieties across 10 environments showed
that all factors significantly influenced the maize yield in two growing seasons (2022 and
2023). Moreover, environmental factors contributed the most, up to 49.96% (Table 3).
Therefore, the further analysis of genotypes and environments is necessary.
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Table 3. Combined variance analysis of maize yield under GEIs in two years.

Source of
Variation

Degrees of
Freedom (DFs)

Sum of Squares
(SS) Mean Squares F-Value Proportion of SS

(%)

year 1 65,040,000 65,041,806 157.37 ** 2.85%
gen 10 88,230,000 8,822,693 21.35 ** 3.87%
env 9 1,140,000,000 126,721,432 306.61 ** 49.96%

Year: gen 10 38,100,000 3,810,337 9.22 ** 1.67%
Year: env 9 579,900,000 64,438,849 155.91 ** 25.41%
Gen: env 90 93,220,000 1,035,793 2.51 ** 4.09%

Year: gen: env 90 95,530,000 1,061,453 2.57 ** 4.19%
Residuals 440 181,900,000 413,301 7.97%

Note: ** highly significant at p ≤ 0.01.

3.2. Maize Yield Performance in Different Locations

The mean yield of 11 maize hybrids under 10 locations was assessed (Figures 1 and 2,
Tables 4 and 5). The results showed that, in terms of the environment, whether it was in
2022, 2023, or over the two years, these locations (E4, E1, E8, E9, and E3) had higher maize
yields (Tables 4 and 5). For the varieties, the yield ranged from 9398 kg/ha to 11,194 kg/ha,
where G8, G6, G4, G5, and G9 were the five most productive varieties in 2022, while G1
performed the best, followed by G3, G9, G2, and G8 in 2023 (Table 5). Moreover, the two
years of data showed that G8, G1, G6, G9, and G5 were the top five performers, which was
in great agreement with the yield results of the two years alone (Table 4). Moreover, the
10 tested hybrids had higher average yields than the control (Figure 1, Table 4). In order
to reflect the yield fluctuation more clearly, a clustering heat map of the yield was made
(Figure 2). All these results showed that G8, G1, G9, G6, and G5 were more productive, and
E4, E8, E3, E1, and E9 were suitable for breeding high-yielding varieties.
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Table 4. Average yield performance of 11 varieties in 10 sites over two years.

Hybrids E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 Mean Rank

G1 11,017 9664 11,152 11,742 10,139 7556 9586 12,630 12,425 9581 10,549 a 2
G2 10,946 9359 10,508 11,810 9544 7594 9665 11,223 11,984 8662 10,130 ab 8
G3 11,502 9122 10,832 11,941 9767 7513 9955 11,644 12,436 7768 10,248 ab 7
G4 11,469 9025 10,331 11,812 9645 7567 9700 12,055 11,790 9567 10,296 ab 6
G5 11,693 9262 10,339 11,824 10,216 7490 9570 11,154 11,951 9806 10,331 a 5
G6 12,263 9100 10,059 12,005 10,319 7533 9663 11,707 11,959 9797 10,441 a 3
G7 11,730 8826 10,091 11,896 10,267 7443 9480 10,360 11,454 9393 10,094 ab 9
G8 11,992 8674 10,876 11,619 10,720 7469 10,079 12,381 12,440 9751 10,600 a 1
G9 10,675 8880 10,947 11,675 10,079 7642 9756 12,431 12,263 9675 10,402 a 4
G10 10,756 9118 9982 11,968 9599 7650 9579 10,644 11,299 9332 9993 ab 10
G11 10,122 8201 9180 10,738 9003 7067 8983 9861 10,795 8167 9212 b 11

mean 11,288
ab 9021 d 10,391

bc
11,730

a
9936
cd 7502 e 9638

cd
11,463

ab
11,891

a
9227
cd

rank 4 9 5 2 6 10 7 3 1 8

Note: Different letters indicate significant differences (p < 0.05).

The correlation analysis of yield and other traits showed (Figure 3) that yield and
hundred seed weight had a highly significant positive correlation; hundred seed weight and
plant height had a significant positive correlation in 2022; yield and ear tip were significantly
negatively correlated; and ear tip and kernel ratio were significantly negatively correlated
in 2023.
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Table 5. Average yield performance of 11 hybrids across 10 sites in 2022 and2023.

Locations/
Hybrids Year G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11

E1 2022 11,636 ± 220 11,865 ± 292 12,781 ± 403 13,105 ± 288 13,559 ± 139 14,653 ± 695 13,447 ± 669 13,908 ± 549 11,455 ± 554 11,520 ± 179 10,896 ± 108
2023 10,397 ± 828 10,028 ± 492 10,222 ± 142 9833 ± 297 9828 ± 305 9873 ± 227 10,013 ± 406 10,075 ± 453 9894 ± 1469 9993 ± 312 9349 ± 87

E2 2022 8678 ± 300 8531 ± 103 8478 ± 596 8631 ± 217 8194 ± 314 8314 ± 547 8550 ± 177 8281 ± 449 8217 ± 332 8911 ± 230 7772 ± 162

2023 10,650 ± 1611 10,188 ± 1448 9766 ± 452 9419 ± 211 10,330 ±
1250 9885 ± 798 9102 ± 473 9068 ± 505 9544 ± 428 9324 ± 845 8629 ± 399

E3 2022 11,244 ± 261 10,214 ± 79 10,444 ± 258 10,350 ± 238 10,489 ± 470 10,372 ± 162 10,403 ± 91 11,908 ± 524 10,639 ± 239 10,667 ± 312 9692 ± 198
2023 11,060 ± 735 10,801 ± 701 11,219 ± 745 10,312 ± 673 10,189 ± 672 9745 ± 647 9779 ± 632 9844 ± 655 11,256 ± 737 9297 ± 599 8669 ± 301

E4 2022 12,751 ± 268 12,713 ± 201 12,691 ± 90 13,332 ± 390 13,024 ± 201 13,285 ± 317 13,643 ± 429 13,003 ± 272 12,501 ± 122 13,221 ± 220 11,855 ± 241
2023 11,060 ± 735 10,801 ± 701 11,219 ± 745 10,312 ± 673 10,189 ± 672 9745 ± 647 9779 ± 632 9844 ± 655 11,256 ± 737 9297 ± 599 8669 ± 301

E5 2022 11,329 ± 190 11,167 ± 46 11,996 ± 112 11,423 ±
1127 12,267 ± 217 12,727 ± 494 12,331 ± 154 13,385 ± 448 11,711 ± 493 11,117 ± 337 10,536 ± 220

2023 8949 ± 438 7921 ± 320 7538 ± 791 7866 ± 247 8164 ± 376 7911 ± 117 8203 ± 207 8054 ± 707 8446 ± 432 8081 ± 236 7470 ± 324
E6 2022 7422 ± 246 7308 ± 211 7425 ± 41 7525 ± 54 7331 ± 205 7317 ± 72 7258 ± 80 7289 ± 171 7250 ± 198 7592 ± 65 6900 ± 56

2023 7689 ± 46 7881 ± 207 7600 ± 143 7608 ± 89 7650 ± 105 7750 ± 116 7628 ± 96 7650 ± 114 8033 ± 160 7708 ± 422 7233 ± 105
E7 2022 9806 ± 703 9814 ± 67 10,689 ± 958 10,061 ± 867 9828 ± 86 9850 ± 303 9803 ± 429 10,969 ± 766 10,361 ± 863 9765 ± 55 9269 ± 363

2023 9366 ± 290 9516 ± 463 9221 ± 388 9338 ± 1000 9313 ± 406 9477 ± 472 9157 ± 196 9188 ± 107 9152 ± 452 9394 ± 471 8696 ± 317

E8 2022 12,050 ± 512 10,242 ± 660 10,226 ± 138 12,447 ±
1026 11,084 ± 479 12,424 ± 155 10,177 ± 522 12,146 ± 221 12,933 ± 246 10,854 ± 274 9558 ± 141

2023 13,210 ± 1189 12,204 ± 584 13,063 ±
1467 11,662 ± 621 11,223 ± 679 10,990 ± 657 10,543 ±

1209
12,617 ±

1456 11,928 ± 312 10,433 ± 471 10,165 ± 156

E9 2022 10,208 ± 205 10,778 ± 350 10,689 ± 958 10,253 ± 792 10,750 ± 767 10,375 ± 270 10,433 ± 647 10,969 ± 766 10,361 ± 863 10,225 ± 116 9706 ± 309

2023 14,641 ± 426 13,191 ± 220 14,184 ± 131 13,328 ± 999 13,151 ± 661 13,543 ± 286 12,474 ± 201 13,911 ±
1785 14,164 ± 344 12,374 ± 513 11,883 ± 252

E10 2022 10,123 ± 261 8102 ± 332 6025 ± 140 9879 ± 502 10,386 ± 269 10,661 ± 255 9625 ± 607 10,080 ± 652 10,379 ± 172 9703 ± 138 7799 ± 163
2023 9039 ± 505 9223 ± 957 9511 ± 176 9255 ± 674 9225 ± 360 8934 ± 576 9161 ± 498 9422 ± 120 8971 ± 770 8962 ± 163 8535 ± 251
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Figure 3. Description and correlation analysis of each trait. Note: (A), 2022; (B), 2023. ***, ** and
* represent p < 0.00, p < 0.01 and < 0.05 in the upper panel, respectively. The lower panel shows scatter
plots for each pair of traits. The distribution of each phenotype is shown along the diagonal.

3.3. AMMI Model for Analyzing Variety Yield and Stability

The AMMI biplot is shown in Figure 4, where the average yield is the x-axis and the
GE decomposition of IPCA1 is the y-axis. And when the coordinate is farther to the right
and closer to the x-axis, the variety yield is higher and more stable; when the environment is
farther from the x-axis, the more discriminative it is. In this study, the stable varieties were
G7, G10, G8, G5, and G4 in 2022 (Figure 4A), while they were G4, G2, G5, G6, and G9 in
2023 (Figure 4B). Additionally, sites E8, E9, E7, and E6 are well-discriminated environments
in both 2022 and 2023 (Figure 4). Therefore, combined with the yield results, we found that
G8, G4, and G5 (in 2022) and G2 and G9 (in 2023) were the ideal varieties (with both high
yield and stability).
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Figure 4. AMMI1 biplot. (A) AMMI1 biplot in 2022; (B) AMMI1 biplot in 2023. Environmental codes
are in Table 1 and genotypic codes are given in Table 2.

The AMMI1 biplot represented only 51.3% and 62.9% of the varietal–environmental
variance information, which was not sufficiently comprehensive to infer varietal stability
and environmental discrimination. But, the AMMI2 biplot showed the scores of the varieties
of IPCA1 and IPCA2, which can explain most of the intercropping variance (Figure 5). In
the AMMI2 biplot, the closer to the origin of the coordinates, the more stable the species
is, and the worse the ambient discriminatory power is, so G4 had the best performance in
terms of stability, and E1 and E8 had the highest discriminatory power.
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3.4. GGE Biplot Analysis

The results of the GGE analysis were displayed by different biplot patterns, where
the horizontal coordinate is the PC1 score and the vertical coordinate is the PC2 score,
explaining 80.58% of the variance in the environment and 86.04% of the variance in the
GEI, respectively.

3.4.1. “Which Won Where” Biplot

In the “which won where” GGE biplot (W-W-W), varieties in the top corners of the
polygon were the most productive. Specifically, hybrids were distributed into five sections,
with G8 (DY-519) and G6 (JG-18) being the best hybrids in multiple environments in 2022
(Figure 6A). Moreover, G1(ZF-2208) and G3 (ZF-2210) were the most productive in 2023
(Figure 6B). Furthermore, hybrids located at vertices exhibited greater responsiveness
compared to those located within polygons. Additionally, varieties outside the polygon
performed poorly in some or all of the environments.
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3.4.2. “Mean vs. Stability” Biplot

The analysis of “mean vs. stability” was conducted by the GGE biplot with an average
environmental correction (AEC). The shorter the vertical segment between the variety and
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the AEC axis, the more stable the variety is. In the study, G6, G8, G5, G4, and G9 were
more productive, while G11, G5, G6, G2, and G4 and were more stable in 2022 (Figure 7A);
additionally, G1, G3, G9, G2, and G8 had high yields, while G9, G11, G1, G2, and G4 were
more stable in 2023 (Figure 7B). Hence, these results showed that G5 (DY-519), G6 (JG-18),
and G4 (DY-213) were the best varieties with excellent yield performance and wonderful
stability in 2022, while they were G1 (ZF-2208), G9 (LX-24), and G2 (ZF-2209) in 2023.
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Table 1 and genotypic codes are given in Table 2.

3.4.3. “Discriminativeness vs. Representativeness” Biplot

The discriminative power and representativeness of the environment were assessed
by the GGE biplot in Figure 8. A site with a long vector length and a small angle to the ACE
axis can be considered as an ideal environment for variety selection. In this study, E10, E1,
E8, and E5 were highly discriminative, while E6, E2, E3, and E4 were more representative
in 2022 (Figure 8A); E8, E9, E3, and E2 were highly discriminative, while E3, E1, E9, and E4
were highly representative in 2023 (Figure 8B). Therefore, these results indicated that E3
(Gengma) and E9 (Yongsheng) were the best environments with good discrimination and
representation in 2023.
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3.4.4. “Ranking Genotypes” and “Ranking Environments” Biplot

In the ranking GGE biplot, if the variety or site was located closer to the first concentric
circle, they were considered for selection. From Figure 9, G6 and G1 were in the first con-
centric circle of their respective biplot; followed by G8, G5, G4, and G7 in 2022 (Figure 9A);
and G3, G9, G2, and G8 in 2023 (Figure 9B). Thus, the results declared that G6, G1, G8, G3,
G9, and G5 were the pretty satisfying genotypes.
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Additionally, E1, E8, E5, and E10 in 2022 and E3, E9, E8, and E2 in 2023 could be con-
sidered as the ideal environments (Figure 10). Therefore, the above sites can be considered
ideal environments for their respective years, which were more conducive to screening
excellent maize hybrids. Interestingly, this result is consistent with the result found in the
discriminativeness and representativeness section (Figure 8).
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4. Discussion
4.1. Yield Performance Evaluation

Genotype and environment interaction is a complex question involved in preparing
high-yielding and stable genotypes for breeding [16]. In this study, the effects of environ-
ment, genotype, and GEIs on maize yield were significant (p < 0.01), and the environmental
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factor contributed more variation (49.96%) than genotypes and GEIs, reflecting that there
was a greater variability in the environment (Table 3). Similar results were found in Adham
et al., Alizadeh et al., and Ansarifard et al. that the environment accounted for most of
the variance [16,35,36]. Additionally, the GEI effect is largely a response to environmental
factors, not genotypic factors [37]; thus, the significant GEI factors demonstrated that the
use of AMMI and the GGE biplot was appropriate in yield evaluation [38].

4.2. Yield and Stability of 11 Maize Hybrid Varieties

The AMMI1 biplot was mainly used to identify high-yielding varieties with stable
performance potential [7,39]. Firstly, in the AMMI model, varieties G4, G5, and G8 had high
yield and stability in 2022, whereas G2 and G9 had the same in 2023 (Figure 4). Secondly,
the “mean vs. stability” biplot indicated that G6, G5, and G4 were the ideal varieties in 2022,
while G1, G9, and G2 were the optimal varieties in 2023 (Figure 7). And the above results
were consistent, which is similar to the findings of Esan et al. and Memon et al. [7,40]. In
addition, G1 shows a better yield and stability in the GGE biplot but a better yield and
worse stability in the AMMI model. The slight difference between the two methods may be
related to the fact that GGE considered GEI in addition to G [39,41].

4.3. Evaluation of Hybrids in Mega-Environments

The GGE biplot model elucidated a substantial proportion of the variance, enabling
meaningful inferences to be made. The “W-W-W” biplot can be visualized using a polygon
view. To identify the optimal performance in a particular environment, Mehareb et al., Kona
et al., and Silva et al. employed a similar method to divide mega-environments [42–44]. In
this study, the GGE biplot was divided into five or six parts with two large environments
(Figure 6), and the apex hybrid was the highest-yielding hybrid in its region. Genotypes
G3 and G11 (2022) and G5, G10, G8, and G11 (2023) did not fall into sectors, meaning
that these varieties performed poorly in some/all environments [15,45,46]. To improve the
accuracy of the test, it is recommended to increase the test period or test environment to
better evaluate the varieties [27]. And in previous studies, the GGE biplot has been used to
screen ideal varieties, such as in potato [19], sweet maize [47], baby corn maize [48], and
sugar beet [45]. Thus, in the study, G8 and G6 (in 2022) and G1 and G3 (in 2023) performed
well in general environments.

4.4. Ideal Genotypes and Ideal Environments

Genotype assessment is only relevant in a particular environment. Ideal genotypes
should have high yield and stability in that environment, and the ideal environment should
be both strongly discriminating and representative [49,50]. Accordingly, in this study, G6,
G8, G5, G4, and G7 were closer to the ideal genotypes in 2022, while they were G1, G3, G9,
G2, and G8 in 2023; and E1, E8, E5, and E10 in 2022 and E3, E9, E8, and E2 in 2023 could
be considered as the ideal environments (Figure 10), which was similar to the studies by
Yousaf et al., Kona et al., and Kendal et al. [15,43,51]. Liu et al. found that GengMa was an
ideal environment for selecting varieties, which agreed with this study [52]. Additionally,
the results of the ranking biplot were in good accordance with the results of the yield
performance (Tables 4 and 5), AMMI model (Figure 4), W-W-W biplot (Figure 6), “Mean
vs. Stability” biplot (Figure 7), and “Discriminativeness vs. Representativeness” biplot
(Figure 8). There were differences in yield performance between the two years due to the
environmental conditions (rainfall and temperature were the main influences), and Ureta
also found that rising temperatures and changes in rainfall can affect maize yields [53].
Therefore, G6, G8, G1, and G9 are the varieties with good comprehensive performance (high
yield and stability), and E1, E3, E8, and E9 are perfect environments for variety breeding.

5. Conclusions

Genotypes, environments, and GEI had significant effects on maize yield, and the
combined ANOVA results showed that environment contributed the most to yield. The
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AMMI model showed high yield and stability for G8, G4, and G5 in 2022 and G2 and G9 in
2023. The W-W-W biplot showed the existence of optimal varieties (G8 and G6 in 2022; G1
and G3 in 2023). The mean vs. stability biplot indicated that G6, G5, and G4 (in 2022) and
G1, G9, and G2 (in 2023) were the optimal varieties with relatively high yield and stability.
Therefore, the G8 (DY-519), G6 (DY-605), G1 (ZF-2208), and G9 (LX-24) hybrids could be
used for variety promotion. Moreover, E1 (BinChuan), E8 (ShiDian), E3 (GengMa), and E9
(YongSheng) were the perfect environments to choose varieties based on the discrimination
and representative biplot and the ranking biplot. The combination of the two analyses
provided a comprehensive and reliable approach for evaluating the yield and stability of
maize hybrids, and the selected hybrids and environments were conducive to guiding the
production in southwest China and bringing economic and social benefits.
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