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Abstract: Panax notoginseng is a highly regarded medicinal plant that has obstacles associated with
continuous cropping. Understanding soil microorganisms is crucial, as they play a major role in
this regard. However, soil microorganisms are affected by multiple factors; therefore, we need to
conduct more in-depth research. This study investigated the combined effects of irrigation and
microbial fertilizer treatments (J1F1, J1F2, J2F1, J2F2, J3F1, J3F2, and CK) on the diversity of bacterial
and fungal microbial communities in the rhizosphere of Panax notoginseng. The bacterial 16S rRNA
genes and fungal internal transcribed spacer (ITS) sequences were sequenced using Illumina HiSeq.
The results showed that, without microbial fertilizer (CK), the microbial community abundance
and diversity were significantly lower than in the other treatments; moreover, among the microbial
fertilizer treatments, the microbial abundance in F1 was higher than that in F2. Under the same
microbial fertilizer application, the incidence rate of Panax notoginseng root rot was J2 > J1 > J3, and
the yield of Panax notoginseng was J3 > J2 > J1. Under the same irrigation conditions, the incidence rate
of Panax notoginseng root rot was F1 > F2, and the yield of Panax notoginseng was F2 > F1. This study
provides important guidance for Panax notoginseng plant microbiota and sustainable agriculture.

Keywords: Panax notoginseng; microbial diversity; alpha diversity analysis; beta diversity analysis

1. Introduction

Soil is a key component of the earth system, which regulates hydrological processes,
supports terrestrial ecosystems, and affects biological activities and biogeochemical cycles.
Soil microorganisms play a considerable role in soil self-purification, transformation of toxic
compounds and the soil environment, and the cycle of the biogeochemical systems [1,2].
The rhizosphere is an area with strong microbial activity in the soil. As compared with the
surrounding loose soil, the rhizosphere contains special microbial communities, and it is
also the focus of the study of plant stress responses [3,4]. In the process of plant growth,
the roots of plants growing in the soil can secrete a variety of chemicals and nutrients,
and various microorganisms, such as bacteria, fungi, algae, and protozoa, can be attracted
by these substances [5]. These rhizosphere microorganisms directly or indirectly affect
the composition and productivity of natural plant communities, while plants stimulate
the surrounding soil to form a unique rhizosphere microbiota [6–8]. However, there are
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still elusive questions about how soil microbial diversity specifically affects aboveground
plant growth.

Panax notoginseng is mainly produced in Yunnan, Guangxi, and other places in China,
of which Yunnan accounts for a large part of the national planting area. Panax notoginseng
is a highly respected medicinal herb, which has the effect of dispelling blood stasis, re-
lieving bleeding, detumescence, pain relief, and plays a significant role in the prevention
and treatment of cardio-cerebrovascular diseases [9–11]. However, Panax notoginseng is
very picky about its growth environment, averse not only to cold and heat but also to
water; it is most suitable to be grown in loose red or brown–red acidic soil and other
places, and it likes warm, shady, and wet environments [12]. With the understanding of
Panax notoginseng, the market demand for Panax notoginseng is increasing, and the planting
area of Panax notoginseng is also expanding, so obstacles associated with continuous crop-
ping and root rot diseases have become increasingly prominent, limiting the development
of the Panax notoginseng industry [13]. Although there are many issues associated with
continuous cropping, the most fundamental ones include promoting an imbalance in soil
microbiota and diversity, a reduction in beneficial microorganisms, and an enrichment of
pathogenic microorganisms and various soil-borne plant diseases [12].

The rhizosphere microbiota is a key environmental factor affecting plant health and
fitness [9], and soil moisture is a crucial factor affecting Panax notoginseng’s rhizosphere
soil microbiota environments [14]. Irrigation is a pivotal driver in the regulation of soil
moisture, and during Panax notoginseng’s growth, unreasonable irrigation will necessarily
cause significant abnormal soil moisture changes in the rhizosphere, leading to changes
in the soil microbial environment in the rhizosphere [15–17]. Previous studies [18,19]
have shown that soil microbial diversity showed a pattern of first increasing and then
decreasing with the increase in the amount of irrigation water. Soil microbial community
abundance was also sensitive to the irrigation amount, where increased irrigation resulted
in a decline in the species and proportion of δ-amoebae and an increase in the proportion
of α-amoebae [20]. In addition, microbial fertilizer application is also a commonly used
way to improve the rhizosphere micro-ecological environment of Panax notoginseng [21].
Microbial fertilizer refers to soil fertilizers containing a variety of useful microorganisms,
through life activities and growth metabolites to adjust the plant growth environment,
improve nutritional conditions, stimulate plant growth and development, and resist the
harm of diseases and insect pests to accelerate the transformation of soil nutrients, improve
the status of soil nutrients, and improve the yield and quality of corresponding agricultural
products [10].

Different plant species, soil types, growth stages, and agricultural treatments will
result in different root microbial community structures [22–24]. Therefore, the composition
and structure of microorganisms in Panax notoginseng planting soil are diverse and complex.
Deciphering plant microflora is essential for identifying microorganisms that can be used
to improve plant growth and health. While examining a particular factor combination may
provide mechanistic insights, we propose that it is also useful to ask how soil microorgan-
isms might alter when exposed to two factors. In this study, we hypothesized that irrigation
and application of microbial fertilizers could improve the structure of the soil microbial
community in the Panax notoginseng rhizosphere. Therefore, we changed the irrigation
and microbial fertilization conditions and assessed their effects on soil bacterial and fungal
microbial communities.

2. Materials and Methods
2.1. Soil Sample Collection

Seven soil samples were collected from the Panax notoginseng planting base in Wenshan
Prefecture, Yunnan Province, in November 2018. The abbreviation J represents different
irrigation treatments, while the abbreviation F represents different microbial fertilizer
treatments. Microbial fertilizer was purchased from Shandong Hanbang Bio-technology
Co., Ltd. (Qingzhou, China)—specifically, the Wolipu Positive Energy Fruit Love Series



Agronomy 2024, 14, 922 3 of 17

Compound Microbial Fertilizer, composed of a variety of beneficial microorganisms and
organic matter composites. Seven disparate treatments were carried out in J1F1, J1F2, J2F1,
J2F2, J3F1, J3F2, and CK (Table 1). The soil sampling locations were selected by a five-point
sampling method. In each treatment, five healthy Panax notoginseng plants were randomly
dug up with their roots, and the surrounding soil was retained. We carefully chose the soil
near the roots as the rhizosphere soil, and we thoroughly mixed the rhizosphere soil of the
five Panax notoginseng plants in the same treatment as a composite soil sample.

Table 1. Different irrigation and microbial fertilizer treatments of Panax notoginseng soils.

Treatments CK J1F1 J1F2 J2F1 J2F2 J3F1 J3F2

Irrigation/m3 0.25 0.125 0.125 0.375 0.375 Alternation Alternation
Microbial

Fertilizer/kg 0 1.426 1.971 1.426 1.971 1.426 1.971

2.2. Illumina HiSeq Sequencing

The study of microbial diversity is mainly carried out in the conserved region of the
nucleic acid sequence encoding ribosomal RNA. Microbial diversity is determined based
on the Illumina HiSeq platform, using the method of paired-end sequencing to construct a
small fragment library for sequencing. After quality evaluation of raw sequence libraries,
a pyrosequencing-based analysis was performed to detect the bacterial 16s rRNA gene
regions and the fungal ITS (internal transcribed spacer) regions through read splicing and
filtering, OTU (operational taxonomic unit) clustering, species annotation, and abundance
analysis, revealing the species composition of the samples can be revealed; further, alpha
diversity, beta diversity, and significant species difference analysis were used to mine the
differences between the seven samples.

2.2.1. OTU Analysis

UCLUST [13] in QIIME [14] (version1.8.0) software was used to cluster tags at a 97%
similarity level to obtain OTUs, and taxonomic annotation of OTUs was carried out based
on the Silva (bacteria) and UNITE (fungus) taxonomic databases. The species richness
tables at different classification levels were generated by QIIME software, and then the
community structure map of the samples at different taxonomic levels was drawn by the R
language tool.

2.2.2. Alpha and Beta Diversity Analysis

Mothur (version v.1.30) software was used to evaluate the alpha diversity index of the
samples. To compare the multiplicity index between samples, the number of sequences
contained in the samples was standardized in the analysis. Beta diversity analysis was
carried out by using QIIME software to compare the similarity of species diversity among
different samples.

3. Results
3.1. Bacteria
3.1.1. Bacterial OTU Analysis

We obtained 355,579 effective sequences (Table S1) and 1781 operational taxonomic
units (OTUs) affiliated with 16s rRNA gene regions. At the level of 97% similarity, the
number of OTUs of each sample was acquired [15]. For bacteria, the number of OTUs
of each sample was diverse; the smallest number of OTUs was CK, with 481, while J1F2
ranked second-last, with 1029. The largest number of OTUs was J2F1 (1364), and there was
no significant deviation between the other four treatments (about 1200). In general, the
difference between CK and the other six treatments was obvious, and the number of OTUs
in the other treatments was more than twice that in CK (Figure 1A and Table 2); under the
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same irrigation levels, the number of bacterial OTUs in the microbial fertilizer treatments
was F1 > F2.
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Figure 1. (A) The number of OTUs of bacteria in seven samples. (B) Venn diagram of bacterial
soil samples in seven treatments. CK represents the control group; J represents different irrigation
treatments; F represents different microbial fertilizer treatments.

Table 2. Alpha diversity metrics of the bacterial communities in the different treated rhizosphere soils.
CK represents the control group; J represents different irrigation treatments; F represents different
microbial fertilizer treatments.

Treatments OTU ACE Chao1 Simpson Shannon Coverage

CK 481 497.3891 514.8333 0.0635 4.1825 0.9994
J1F1 1279 1327.4364 1335.5962 0.0051 6.1185 0.9971
J1F2 1029 1057.8396 1099.0227 0.0252 5.2412 0.9983
J2F1 1364 1416.8629 1428.6271 0.0388 5.3527 0.9968
J2F2 1222 1270.5589 1274.0099 0.0052 6.049 0.9975
J3F1 1225 1240.5259 1244.6154 0.0074 6.0033 0.9987
J3F2 1129 1141.9841 1153.0698 0.0166 5.701 0.9989

A Venn [16] diagram was used to represent the numbers of common and unique OTUs
among the samples. Combined with the species represented by OTUs, we could observe
the common microbes in different treatments. In the Venn diagram (Figure 1B), we can
see that the number of common overlapped OTUs for the seven treatments was 138, and
the number of independent OTUs for each treatment was 57, 11, 18, 16, 3, 13, and 26 (CK,
J1F1, J1F2, J2F1, J2F2, J3F1, and J3F2, respectively). Among the treatments, CK had the
greatest number of independent OTUs, indicating that CK differed the most from the other
treatments. Conversely, the minimum number of OTUs indicated that this treatment had
the highest similarity with other treatments, while there were only three in J2F2.

3.1.2. Bacterial Alpha Diversity Analysis

Alpha diversity is a ubiquitous approach to analyzing community surveys, with
metrics summarizing the structure of an ecological community concerning its richness,
evenness, or both [17]. It reflects a single sample’s species richness diversity and has a
variety of metrics as indicators: Chao1, ACE, Shannon, and Simpson.

The ACE and Chao1 indices reflect the microbial community richness, and these
two indices were larger, indicating that the microbial communities were richer [18]. The
value of both indices for J2F1 was over 1400, the highest of all treatments, which indicated
that J2F1 had the most species in its bacterial community. The number of species of J1F1
was the second-highest (about 1300), there was no evident disparity between J2F2 and
J3F1, and the number of species in J3F2 and J1F2 was lower in the microbial fertilizer
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treatments. Under the same irrigation levels, the bacterial community richness of the
microbial fertilizer treatments was F1 > F2. The bacterial richness of CK was the lowest
among all treatments—less than 50% (Table 2).

The Simpson and Shannon indices reflect the degree of species diversity, and they
are inversely related [18]. J1F1 had the lowest Simpson index and the highest Shannon
index, indicating the highest community diversity under this treatment. J2F2’s community
diversity was second only to that of J1F1, and J3F1 ranked third, with the Shannon index
above 6 in all three treatments. Secondly, the Shannon index of J3F2, J2F1, and J1F2 ranged
from 5 to 6. However, the Simpson index of CK was 0.0635, which was much higher than in
the other treatments, and the Shannon index of CK was 4.1825, which was much lower than
in the other treatments; this shows that the community diversity of CK was also extremely
low. Moreover, statistics show that the higher the value of OTU coverage, the higher the
probability of species being detected in the sample, while the lower the probability of not
being detected (Table 2).

3.1.3. Bacterial Beta Analysis

Beta diversity, here defined as community compositional changes among sites within
a defined geographical area of interest, has been widely used to understand the ecological
processes determining biodiversity patterns across spatial scales [10]. Principal component
analysis (PCA) [19] is usually chosen for the analysis, which uses variance decomposition to
reflect the differences between multiple treatments of data on two-dimensional coordinate
graphs, and the coordinate axis takes two eigenvalues that can best reflect the variance.

For the percentage of bacterial variation (Table S2), PC1 was 57.11%, PC2 was 20.23%,
and PC3 was 11.27%.

In PC1 vs. PC2, the red dot (CK) and gray dot (J2F1) were farthest from the origin
and farther away from each other. The distance between the orange point (J1F2) and
other points was the third-greatest. J1F1, J2F2, J3F1, and J3F2 were close to each other
(Figure 2A). In PC1 vs. PC3, it was evident that CK existed independently in the fourth
quadrant, farthest from the origin. The distance ranked second was J1F2, and the distance
ranked third was J2F1, while the other four treatments were closer (Figure 2B). In PC2
vs. PC3, J2F1 was the farthest dot from the other treatments. CK and J1F2 were also far
away. The remaining four treatments were similar to the first two figures (Figure 2C). We
found that the CK, J1F2, and J2F1 treatments were far apart from the other four treatments,
and the distance between these three treatments themselves was very long, indicating
that the bacterial composition of the three treatments was greatly different. The closer the
distance between two samples, the more similar the composition of those two samples.
J1F1, J2F2, J3F1, and J3F2 are all near to each other in the figure, indicating that the bacterial
composition of the four experimental treatments was similar (Figure 2).
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different treatments; the abscissa represents the first principal component, and the percentage repre-
sents the contribution of the first principal component to the difference of the sample; the ordinate
represents the second principal component, and the percentage represents the contribution of the
second principal component to the difference of the sample.

3.1.4. Bacterial Community Composition

To further analyze the bacterial microbial community structure of the seven sample
treatments, the abundance distribution of each sample at the phylum and genus levels
was developed.

At the phylum level, Proteobacteria, Firmicutes, Bacteroidetes, Acidobacteria, Actinobac-
teria, Cyanobacteria, Chloroflexi, Gemmatimonadetes, Verrucomicrobia, Saccharibacteria,
and Planctomycetes were the dominant phyla, with over 1% abundance in the soil samples
(Table S3a). Firmicutes accounted for more than 50% of CK, followed by Cyanobacteria (18%)
and Proteobacteria (11%). Similarly, the highest percentage in J1F2 was Firmicutes, with 54%,
followed by Proteobacteria (16%) and Bacteroidetes (12%). However, the abundance of each
phylum in the remaining five treatments was different from the two treatments mentioned
earlier. Proteobacteria was the most abundant phylum in these five treatments: J1F1 (47%),
J2F1 (34%), J2F2 (44%), J3F1 (37%), and J3F2 (27%). Firmicutes accounted for less than 0.5%
of J1F1 and J2F2, 6% of J2F1, 13% of J3F1, and 16% of J3F2. Bacteroidetes accounted for an
average of about 7–19% in the seven treatments and slightly less in CK. In addition to their
high proportion in CK, Cyanobacteria were up to 23% in J2F1, 10% in J3F2, and less than
1% in the remaining four treatments. Acidobacteria were greater than 10% in the J1F1, J2F2,
and J3F1 treatments, with 14%, 14%, and 10%, respectively. Actinobacteria were particularly
abundant in J3F2 (15%), and among the seven sample treatments, J1F1 was most similar to
J2F2, while CK and J1F2 differed most from the other treatments in composition (Figure 3A).
The results showed that there was a competitive effect between Firmicutes and Proteobacte-
ria in the CK, J1, and J2 treatments—where one of them was significantly higher, the other
would be lower—while J3 made the competition between the two weaker. Compared to CK,
the application of microbial fertilizers contributed to a significant increase in Proteobacteria,
Acidobacteria, Chloroflexi, Gemmatimonadetes, and Verrucomicrobia. For Actinobacteria, the
J1 and J2 treatments decreased their relative abundance, while J3 significantly increased the
Actinobacteria abundance. For Cyanobacteria, J2F2 increased their abundance, which was
much lower than CK in the other treatments.

The top 20 dominant bacterial genera (Table S3b) were Lactobacillus, Nicotiana_otophora,
Rhodococcus, Anaerolineaceae, Cytophagaceae, Bacteroidales_S247_treatment, Microcystis, Xan-
thomonadales, Subtreatment_6, Nitrosomonadaceae, Ruminococcaceae_UCG-014, Allobaculum,
Sphingomonas, Erysipelotrichaceae, Acidibacter, Chitinophagaceae, Haliangium, Xanthomon-
adales_Incertae_Sedis, Saccharibacteria, and Chroococcidiopsis. Unclassified and others ac-
counted for the largest proportion in each treatment, with 38% in CK being the lowest, 46%
in J1F2, and 53% to 63% in the other five treatments. Lactobacillus ranked first in CK and J1F2
(19% and 16%, respectively), while it accounted for 4% in the J3 treatment, 2% in the J2F1
treatment, and less than 0.2% in the other two treatments. More than 5% of the genera in
CK were Nicotiana_otophora (16%), Bacteroidales_S247_treatment (5%), and Erysipelotrichaceae
(5%). The abundance of genera varied greatly among treatments, with Anaerolineaceae
and Cytophagaceae accounting for about 5% in J1F1, Ruminococcaceae_UCG-014 and Bac-
teroidales_S247_treatment accounting for more than 7% in J2F1, Cytophagaceae accounting for
8% in J2F2, and Rhodococcus accounting for 8% in J3F2. Notably, Microcystis accounted for
17% in J2F1, and Chroococcidiopsis for 7% in J3F2, while both genera were almost 0% in the
other treatments. We concluded that the genera were more evenly distributed than in the
other CK treatments. Among the seven sample treatments, J1F1 and J2F2 were the most
similar, while CK and J1F2 were the most different from the other treatments (Figure 3B).
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Figure 3. Bacterial microbial community structure in the Panax notoginseng rhizosphere at the
phylum and genus levels: (A) Relative abundance of bacterial phyla in seven soil treatments for
the Panax notoginseng rhizosphere microbial community. (B) The relative abundance of the bacterial
genera in seven soil treatments for the Panax notoginseng rhizosphere microbial community. Only the
top 20 species in terms of abundance levels are shown, and other species are merged. In the figure,
Unclassified represents species that have not been taxonomically annotated. CK represents the control
group; J represents different irrigation treatments; F represents different microbial fertilizer treatments.

3.1.5. Bacterial Ternary Diagram

Although the ternary diagram is a three-dimensional plot, it is usually presented in
a two-dimensional form for ease of drawing and interpretation [20]. The diagram is an
equilateral triangle to describe the ratio relationships of different attributes of three vari-
ables. In the analysis, the species composition of three or more sample treatments can be
compared and analyzed according to the species classification information. The proportions
and relationships of different species in the sample can be shown directly through the
triangle diagram.

Under different microbial fertilizer treatments, the proportion of Proteobacteria with-
out microbial fertilizer (CK) was very small (<10%), and the value was similar in the F1
and F2 treatments (40–50%), with many points in this interval. Firmicutes have the largest
area in the figure; without microbial fertilizer (CK), the content of bacteria was very high
(60–80%). At the same time, it was concentrated in the range of 20–40% in F1 and 0–20% in
F2. There are fewer Cytophagaceae in the figure, but it is clear that there is a point where
the content of CK accounts for 90% (Figure 4A and Table S4). Under different irrigation
treatments, J1 and J2 were more abundant than J2 and J3. The proportions of Proteobacteria
and Acidobacteria were similar under three different water treatments, and the figures were
located in the middle of the triangle, but the number of Proteobacteria was much greater
than that of Acidobacteria. Firmicutes in the J1 treatment were very high (60–90%), and the
ratio in the J2 treatment was slightly lower than that in the J3 treatment. The percentage of
Actinobacteria in J3 was as high as 80%, and the proportions in the other two treatments
were very low (Figure 4B and Table S5).
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phylum level. (B) Ternary diagram of the J1, J2, and J3 treatments at the bacterial phylum level. The
three corners of the triangle represent three samples, which are represented by three colors, and the
three edges are used to measure the species abundance of the corresponding color samples. The
circles in the triangle represent the species classification of all genera contained at a certain level, the
circle size represents the average relative abundance of the species, and the circle color in the legend
represents the species classification with the highest abundance of the five phyla.

3.2. Fungi
3.2.1. Fungal OTU Analysis

A total of 479,493 valid fungal sequences were obtained from the seven samples
(Table S6), and the total number of OTUs obtained for fungi was 1429. The number of
fungal OTUs in J3F1 and J1F2 was 789 and 758, respectively, making them significantly
different from the other treatments. J1F1 (433), J2F2 (363), and J3F2 (252) ranked third to
fifth, respectively, and their number of OTUs was significantly different from the other
treatments. The lowest number of OTUs was in CK, with 129, while J2F1 ranked second-last,
with 162; this indicates that these treatments contained the fewest fungal species among
all treatments (Figure 5A), showing that the application of microbial fertilizers increased
the number of fungal OTUs to varying degrees. Under different amounts of microbial
fertilizer application, the number of fungal OTUs in F1 was smaller than that in F2, except
for alternate irrigation (J3), showing that alternate irrigation changed the action of microbial
fertilizers on soil fungi.
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In the Venn diagram, we can observe that the number of common overlapped OTUs
for the seven treatments was 16, indicating that the number of overlapping fungi in each
treatment was less and the species of each treatment were more different. The maximum
number of independent OTUs, found in the J3F1 treatment, was 153, while the number of
independent OTUs in J1F1 and J1F2 was 148 and 136, respectively. The smallest numbers
of independent OTUs were for J2F1 and CK, with only 22 and 23, respectively. The number
of independent OTUs in each part of the Venn diagram was positively correlated with the
total number of OTUs (Figure 5). In conclusion, for the different irrigation treatments, the
trend in the number of fungal OTUs was J1 > J3 > J2.

3.2.2. Fungal Alpha Diversity Analysis

For fungi, the alpha diversity significantly differed from that of bacteria. In the light
of the ACE and Chao1 indices, the J3F1 and J1F2 treatments had much higher numbers of
fungal species (all more than 750) compared to the other treatments. J1F1, J2F2, and J3F2
ranked third, fourth, and fifth, respectively, with their numbers of species in the middle.
Meanwhile, the ACE index of J2F1 (194.7184) was the lowest, and the Chao1 index of CK
(175.4286) was the lowest, indicating that the species richness of CK and J2F1 was much
lower than that of the other treatments (Table 3).

Table 3. Alpha diversity metrics of the fungal communities in the different treated rhizosphere soils.
CK represents the control group; J represents different irrigation treatments; F represents different
microbial fertilizer treatments.

Treatments OTU ACE Chao1 Simpson Shannon Coverage

CK 129 219.5933 175.4286 0.0451 3.9208 0.9994
J1F1 433 483.4292 473.625 0.0304 4.5707 0.9996
J1F2 758 759.3125 761.5 0.0072 5.7662 0.9999
J2F1 162 194.7184 189.0833 0.1898 3.1832 0.9996
J2F2 363 431.0311 395.5 0.0197 4.8948 0.9993
J3F1 789 793.5483 798.2308 0.0067 5.7597 0.9997
J3F2 252 333.4158 343.0 0.0398 4.187 0.9999

For the Simpson and Shannon indices, the Shannon values of J3F1 and J1F2 were both
more than 5.7, and these two treatments had the highest community diversity (Table 3).
J2F2, J1F1, J3F2 were in the middle section, with values ranging from 4 to 5. In particular,
the Simpson value of J2F1 was about 30 times higher than that of J3F1, and the community
diversity of J2F1 was the lowest. The community diversity of CK was slightly higher
than that of J2F1. We deduced that the fungal community diversity at 37.5% irrigation
(J2) was the lowest. Nevertheless, there was no observable rule for different fertilization
(F) treatments, and the alpha diversity of fungi might have been more dependent on the
combined effect of water and fertilizer.

3.2.3. Fungal Beta Analysis

For the percentage of fungal variation (Table S7), PC1 was 73.91%, PC2 was 22.55%,
and PC3 was 1.83%.

In PC1 vs. PC2, the distance between J3F2 and other points was the farthest, and
the distance between J1F1 and other treatments was the second-farthest. In addition
to these two treatments, the other five treatments were very close (Figure 6A). In PC1
vs. PC3, it was evident that J3F2 remained independently on the far-right side of the
graph, farthest from the origin. The distance ranked second was J2F1, and third was CK,
while the remaining four treatments, although not far away, were dispersed (Figure 6B).
In PC2 vs. PC3, J1F1 was the farthest point from the other treatments; CK and J2F1
were also far away. The remaining four treatments were close to the origin, but also in
different directions (Figure 6C). Combining the three graphs, the composition of the purple
point (J3F2) was the most different, and J1F1 was also significantly different. The fungal
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compositions of the seven treatments were very similar, and each treatment had its own
independent composition.
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3.2.4. Fungal Community Composition

At the phylum level, twelve fungal phyla were identified: Ascomycota, Basidiomycota,
Mortierellomycota, Cercozoa, Glomeromycota, Chytridiomycota, Anthophyta, Rotifera,
Olpidiomycota, Rozellomycota, Aphelidiomycota, and Mucoromycota. Ascomycota were
distributed in all treatments, and were highly abundant. Except for the J2F1 treatment,
their contents were more than 40%, and the lowest content of 31% was found in the J2F1
treatment (Table S8a). From the image, we can see that Ascomycota, Basidiomycota, and
Mortierellomycota have obvious advantages. Ascomycota ranked first, accounting for 31%
to 71%; Basidiomycota were second, accounting for 4% to 25%. Mortierellomycota were
18% in the J1F1 treatment, which was their largest representation (Figure 7A). The study
showed that a total of twelve phyla were detected in all treatments; only the J3F1 treatment
included all twelve phyla, CK and J3F2 included six of them, the J2 treatment included
seven phyla, and J1F1 and J1F2 included eight and nine phyla, respectively, indicating that
the fungal phylum levels were reduced by J3F2. Ascomycota were the dominant phylum in
each treatment, and J2 and J3 were beneficial to Basidiomycota, while the changing water
and fertilizer treatments contributed to the production of Chytridiomycota.

At the genus level, Mortierella, Cladosporium, Aspergillus, Fusarium, Rhodotorula, Penicil-
lium, Melanophyllum, Alternaria, Candida, Malassezia, Verticillium, Plectosphaerella, Gibberella,
Colletotrichum, Lindtneria, Chaetomium, Myrothecium, Didymella, and Trichoderma were the
20 most abundant genera (Table S8b). At the genus level, the proportion of unclassified
genera was generally higher than 20%. The proportion of known strains detected by J2F1
was the smallest, and the other 19 species were found across the seven treatments. Cladospo-
rium and Aspergillus were dominant in CK, and Aspergillus and Melanophyllum accounted
for the highest proportions in J1F1. Mortierella and Cladosporium were abundant in J1F2 and
J3F1. However, the dominant strains in J3F2 (Fusarium and Rhodotorula) were significantly
different from those in the other treatments (Figure 7B).
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Figure 7. Fungal community structure in the Panax notoginseng rhizosphere at the phylum and genus
levels: (A) Relative abundance of fungal phyla in the seven soil treatments for the Panax notoginseng
rhizosphere microbial community. (B) Relative abundance of the fungal genera in the seven soil
treatments for the Panax notoginseng rhizosphere microbial community. CK represents the control
group; J represents different irrigation treatments; F represents different microbial fertilizer treatments.

3.2.5. Fungal Ternary Diagram

Ascomycota had the most points in the diagram, and various proportions existed in
the three treatments; the proportion of this genus in CK was higher than in the F1 and F2
treatments. Basidiomycota was the second-most common point, which tended to be similar
to Ascomycota (Figure 8A and Table S9). Comparing the different water treatments, the
abundance of Ascomycota was still the greatest, and there were various proportions. In
general, the abundance of Ascomycota in the J2 treatment was lower than that in J1 and J3
(Figure 8B and Table S10).
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3.3. Panax Notoginseng Root Rot Incidence

In 2019 and 2020, different irrigation treatments and microbial fertilizers had significant
effects on the incidence of Panax notoginseng root rot (Figure 9). Under the same irrigation
conditions, the incidence of Panax notoginseng root rot in all F1 treatments was slightly
higher than that in F2. Under the same microbial fertilizer application, the root rot incidence
by irrigation method was J2 > J1 > J3. The incidence rate of Panax notoginseng root rot
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showed a decreasing tendency with the increase in the number of planting years; the
incidence rate under the J3F2 treatment in 2020 was low, and its average incidence rate was
12.14% lower than that of the J3F2 treatment in 2019.
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3.4. Panax Notoginseng Yield

In 2019 and 2020, different irrigation conditions and microbial fertilizers had significant
effects on the Panax notoginseng yield (Figure 10). Under the same irrigation conditions, the
yield of Panax notoginseng was slightly higher in all F2 treatments than in F1. Under the
same microbial fertilizer application, the yield according to irrigation was J3 > J2 > J1.
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4. Discussion

As an important Chinese herbal medicine, Panax notoginseng needs a special environ-
ment for its growth. To evaluate the effects of different irrigation amounts and different
amounts of microbial fertilizer on soil microorganisms, our experiment proved that there
are great differences. With the development of standardized cultivation of traditional
Chinese herbs, it has been found that soil water content plays a key role in the yield and
quality of rhizome medicinal materials and is an effective environmental factor influencing
the plasticity of plant roots [21]. In high-input modern industries, single cultivation would
lead to a reduction in soil microbial diversity with the application of microbial fertilizers,
which would be a good option to increase the diversity of the microbiota [22]. During
the growth and evolution of Panax notoginseng, microorganisms can affect the growth and
health of the plants, some of which are beneficial, while others are pathogens that can
induce plant diseases [23].

In this study, under different degrees of microbial fertilizer application, the number
of bacterial OTUs in F1 was slightly higher than in F2, but the number of fungal OTUs
in F1 was smaller than in F2, except for alternate irrigation (J3), showing that alternate
irrigation could effectively suppress the fungal numbers. In 2019 and 2020, the incidence
of Panax notoginseng root rot under the J2 irrigation treatments was higher; J3F2’s inci-
dence was the least, and this treatment was the most productive, suggesting that alternate
irrigation (J3) with F2 microbial fertilizer application was more beneficial for Panax no-
toginseng cultivation. Firmicutes and Proteobacteria were the two most common phyla
of bacteria, and they also had the highest proportions in Panax notoginseng soil. In CK
and J2F1, Cyanobacteria accounted for a greater proportion, at about 20%, while they
were less abundant in the other treatments. Cyanobacteria are significant suppliers of
nitrogen in the soil ecosystem [24]. Their nitrogen fixation process is not limited by the high
deficiency of soil organic matter but can increase the organic matter in soil and improve
soil fertility [25]. Among the seven treatments, Bacteroidetes occupied the most similar
proportion: about 10%. Bacteroidetes are highly efficient degraders of complex carbohy-
drates. The decomposition of polysaccharides enables soluble sugars to be utilized by other
organisms and recovers carbon, nitrogen, and water, which have a wide impact on the
environment [26] and can be used as sensitive biological indicators for agricultural soil
utilization [27]. Acidobacteria has a wide range of metabolic [28] and genetic functions [29]
and may play an important ecological role by degrading polysaccharides from plants and
fungi [30]. Actinobacteria were unique and abundant in J3F2 (15%), have high metabolic
and physiological diversity [31], can prevent the harm of most plant pathogens (including
fungi and oomycetes), increase nutrient supply, promote plant growth, and are potential
biocontrol sources [32]. Lactobacillus had the highest proportion among all genera, and as a
natural biological preservative they can produce a variety of antifungal metabolites [33,34].

For fungi, the diversity of the soil fungal community was comparatively lower than
that of bacteria, and the treatments without microbial fertilizer had no apparent differences
from the other treatments. These results suggest that the presence of microbial fertilizer
cannot directly affect fungal diversity. Climate, especially temperature and precipitation,
affects the growth and distribution of fungi [35]. When contrasted with different irrigation
amounts, J3 can make the species abundance and diversity of fungal microorganisms lower.
In this study, Ascomycota (40–60%) and Basidiomycota were the most abundant among the
two treatments. Ascomycota are important drivers of carbon and nitrogen cycling in ecosys-
tems [36], with broad application prospects in the biological control of plant pathogens,
promotion of plant growth [37], soil stability of enzyme production [38], decomposition of
plant biomass, and endogenous interaction with plants [39]. However, several fungal gen-
era with high abundance among the differentiated strains are common pathogens in many
crops, such as Alternaria [40], Verticillium [41], Plectosphaerella, Gibberella [42], Colletotrichum,
and Cucumerina [43]. Although these fungal genera were low in abundance among the
seven treatments, the presence of pathogenic bacteria can be harmful to plants. Alternaria
and Didymellazcan cause leaf diseases and even necrosis [44], and infection of horticultural
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and food crops [45] can cause necrotic leaf diseases [46]. Colletotrichum infects potatoes,
while Verticillium and Trichoderma ranked last among all of the annotated fungi, Trichoderma
is widely used as a fungicide [47], with antifungal activity against several rhizosphere and
leaf circle pathogens, along with nutrient competition, direct antagonism, fungal parasitism,
and mechanisms of inducing plant resistance [48]. Mortierella accounted for 24%–59% of
the fungi in this experiment and was the most abundant fungus. This genus contains a
large number of effective species (nearly 100), which can be found on almost any substrate
and often appear as saprophytes in the soil [49].

Combined, the roots of plants are symbiotic with a variety of beneficial fungi, which
promote the absorption of mineral nutrients by plants [50], Rhizosphere bacteria that
promote plant growth can induce systemic resistance in plants [51] while minimizing the
severity of root and leaf diseases [52], and phytohormones released by microorganisms
can also activate plant immunity [53]. During the growth of Panax notoginseng, there are
interactions between Panax notoginseng and soil. Although soil has different effects on
the growth and suitability of Panax notoginseng, how soil microorganisms assemble and
regulate Panax notoginseng requires our attention.

5. Conclusions

There have been few reports on soil microorganisms growing in Panax notoginseng
under varying conditions at present. In this study, seven different water and microbial fer-
tilizer treatments were used to gather the soil around the rhizosphere of Panax notoginseng
and compare its relevant information. We found that the bacterial community abundance
and diversity in the control treatment (CK) without microbial fertilizer were much lower
than those in the other treatments. In the microbial fertilizer treatments, the bacterial
abundance in F1 was higher than that in F2. Meanwhile, the number of fungal OTUs in
F1 was smaller than that in F2, except for alternate irrigation (J3), showing that alternate
irrigation could effectively suppress the fungal numbers. In 2019 and 2020, the incidence
of Panax notoginseng root rot under the J2 irrigation level was higher, while the incidence
under J3F2 was the least, and this treatment was the most productive. Therefore, this study
suggests that alternate irrigation (J3) and F2-level microbial fertilizer application is more
beneficial for Panax notoginseng cultivation. The number and species of bacteria and fungi
sequenced in this experiment were very large; however, whether (and if so, which) special-
ized soil microorganisms can direct the specific healthy growth and disease resistance of
Panax notoginseng has not been further verified. The effects of different water and microbial
fertilizer conditions on the yield, quality, and effective components of Panax notoginseng,
and whether they are valuable to the growth of medicinal plants and the accumulation
of effective components, are also unknown. Managing rhizosphere microorganisms and
maintaining a balance of microorganisms in soil is essential for the effectiveness of Panax no-
toginseng cultivation methods. Ultimately, understanding the impact behind the application
of different water and microbial fertilizer treatments will open up avenues for engineering
plant microbiota for sustainable agriculture in Panax notoginseng.
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