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Abstract: Cupressus gigantea W. C. Cheng & L. K. Fu is an endemic conifer tree species that is
distributed widely along the northern portion of the deep gorge of the Yarlung Tsangbo River on
the Tibetan Plateau. However, as a key plant species growing on the Tibetan plateau, C. gigantea has
since become an endangered species due to habitat loss and degradation, overexploitation, and other
factors. It has been listed as a first-grade national protected wild plant species in China. Accordingly,
to conserve this plant species, we should obtain more information on its genetic structure. In this
study, the genetic diversity and structure among 67 samples were evaluated by the inter-simple
sequence repeat (ISSR) technique. Overall, 78 bands were produced with a molecular length of 200 bp
to 3100 bp using 10 ISSR primers. The mean values for the average number of alleles (Na), effective
number of alleles (Ne), Nei’s gene diversity (H), and Shannon’s information index (I) were 1.529, 1.348,
0.199, and 0.293, respectively. Additionally, the number of polymorphic loci (NPLs) and percentage
of polymorphic loci (PPLs) averaged 41.25 and 52.90, respectively. Further, total variation among
populations was 14.2%, while that within populations was 85.8%; accordingly, the within-population
genetic differentiation was found to be significant (p < 0.001). These results demonstrated that a
genetic structure model with K = 3 fitted the data best, which agreed with the unweighted pair group
method with arithmetic average (UPGMA) cluster and the principal coordinate analysis (PCoA).
These findings are beneficial for ensuring the development and genetic protection of C. gigantea
populations in the future.

Keywords: Cupressus gigantea W. C. Cheng & L. K. Fu; genetic diversity; inter-simple sequence repeat;
unweighted pair group method with arithmetic averages; conservation measures

1. Introduction

Cupressus gigantea W. C. Cheng & L. K. Fu (Tibetan juniper), Cupressaceae, Cupressus, is
an endemic plant species [1]. The number of chromosomes in C. gigantea somatic cells is
2n = 22, and it mainly reproduces from seeds [2,3]. C. gigantea is sparsely distributed along
the northern part of the deep gorge of the Yarlung Tsangbo River on the Tibetan Plateau,
also known as the Yarlung Zangbo River cypress [4]. This region features extremely severe
environmental conditions, including high radiation, cold temperature, strong winds, and
barren soil [5]. Nevertheless, C. gigantea can survive in this harsh habitat where it plays
a pivotal role in soil protection and the prevention of desertification [6,7]. Additionally,
this evergreen tree is relatively tall (up to 30–50 m in height) and lives long (from 100 to
1000 years), making C. gigantea one of the long-lived endemic cypresses in China [8–10].
Therefore, it is generally respected as being a god tree by local residents [11]. At the
same time, it is also an important raw material for making Tibetan incense, so C. gigantea
has important cultural value for the local residents [12]. It is also well known for its
ornamental and medicinal properties [13]. Notably, C. gigantea has high economic value
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due to its high wood density, straight grain, and radial symmetry [10]. Up to now, studies
on C. gigantea have mainly focused on its total protein extraction, determination of the
complete chloroplast genome, comprehensive transcriptome characterization, community
characteristics, growth characteristics, propagation, and other related aspects [3,14–17]. To
date, the analysis of the genetic population of C. gigantea is lacking.

However, as a key plant species growing on the Tibetan plateau, C. gigantea has since
become an endangered species due to a low seed-setting rate, habitat loss, and degradation,
as well as extensive logging for Tibetan incense production and timber production [18–22].
Currently, C. gigantea has been listed as a first-grade national protected wild plant species
in China [17,23]. Hence, conservation efforts must be initiated to halt the decline of this tree
species and the associated loss of biodiversity. Generally, in this respect, an evaluation of the
genetic structure and diversity of C. gigantea is highly important for their future germplasm
resource management and the formulation of breeding strategies. Moreover, studying the
genetic structure in C. gigantea is fundamental for understanding the internal variation in
the species, which is conducive to the identification and preservation of germplasm. While
traditional morphological and biochemical characteristics are often used for this purpose.
However, their limitations in assessing genetic diversity highlight the need for more precise
and accurate markers. In recent years, a series of molecular marker techniques have been
used to analyze the genetic structures of various plant species [24].

To date, various molecular marker techniques developed over nearly four decades
have led to insights into the biology, genetics, and genome evolution of conifers [25]. Ac-
cordingly, to estimate the genetic diversity in C. gigantea populations, some DNA-based
marker techniques have been carried out, such as amplified fragment length polymor-
phism (AFLP), inter-simple sequence repeat (ISSR), randomly amplified polymorphic DNA
(RAPD), and polymorphic fluorescent-labeled SSR markers. Among them, in 2008, Zha re-
ported that nine populations of C. gigantean were sampled and analyzed by AFLP markers,
indicating high genetic diversity in the populations and significant genetic variation within
the various populations [12]. Another group discovered that the ISSR primers produced
more polymorphic bands than the RAPD markers. Additionally, there were high levels of
genetic differentiation within populations (p < 0.001) [26]. Similarly, the AMOVA of SSR
showed that genetic variation mainly existed within populations [27]. Overall, there are
still some inadequacies in the aforementioned studies. On the one hand, the collection
time is 20 years ago, and the populations of C. gigantea have undergone dramatic changes
due to the lack of effective conservation measures. On the other hand, the individual
studies collected only five groups, which lacks universality. Therefore, our research on the
existing populations of C. gigantea is more conducive to the development of more detailed
conservation measures.

However, some molecular markers have shown some shortcomings including the
high cost of AFLP and the radioactive labeling of RFLP [28]. Until now, SSR markers
for mining SSR motifs in the whole genome greatly reduce the cost but show somewhat
lower consistency with dominant marker data, and some plants’ genomic data are not
published [29]. ISSR markers have the advantages of simplicity, high reproducibility,
reliability, and stability, as well as important applications in genetic diversity research, gene
mapping, and genetic fingerprints [30]. The ISSR markers are specific by using longer
primers based on SSRs. They also have a higher annealing temperature, which helps
generate clearer and more consistent amplification [31]. In addition, this technique can
also evaluate the genetic relationship between accessions and enables the construction
of genetic linkage maps [32]. Notably, this method is very efficient in terms of time and
labor when seeking to compare genetic resources from different collection sites [33,34].
Abundant evidence suggests that ISSR markers have proven to be a powerful tool for
detecting genetic differentiation and describing the germplasm of various cultivated and
wild plant species [35,36]. These characteristics make ISSR markers particularly suitable for
assessing the genetic structure in C. gigantea. Surprisingly, however, this type of molecular
marker has not been used in recent years to investigate the genetic variation in C. gigantea.
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In this study, we screened 10 ISSR primers to uncover the genetic relationship and
genetic diversity of eight C. gigantea populations collected along the bank of the Yarlung
Tsangbo River. Using this information, we sought to comprehensively reveal the genetic
variation level among and within populations of C. gigantea, and thereby proposing effective
conservation strategies for C. gigantea.

2. Materials and Methods
2.1. Materials

Sixty-seven C. gigantea samples were collected along the coast of the Yarlung Tsangbo
River of Tibet. The detailed information of the collection sites of all samples used in this
study is listed in Figure 1. Fresh and young leaves of all the samples were collected in the
Spring season (March) of the year 2017 and preserved at the Genetic Department of College
of Life Science of Northeast Forestry University, Harbin, China.
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2.2. DNA Extraction

Fresh and young leaves were frozen in liquid nitrogen for DNA extraction. Total DNA
was extracted from 0.1 g of C. gigantea leaves using the modified CTAB method [37]. DNA
samples were estimated qualitatively and quantitatively by a spectrophotometer and 0.8%
agarose gel electrophoresis, respectively. Then, a 100 ng·µL−1 dilution of DNA samples
was prepared for further PCR analysis.

2.3. ISSR Analysis

ISSR amplification was carried out according to a previous method, with some modi-
fications described by Xie et al. [38]. Fifty ISSR primers (University of British Columbia,
Vancouver, BC, Canada) were tested, and ten ISSR primers (UBC #808, #824, #827, #836,
#841, #842, #847, #856, #857, and #873) showed clear polymorphic bands and good re-
peatability, and these were screened further using genetic analysis. All primers were
synthesized in Shanghai Sangon Biological Engineering Technology and Service (Co., Ltd.,
Shanghai, China). The ISSR reactions were amplified in total mixture volume of 20 µL con-
taining DNA template (80 ng), 1 µL primer (10 mM−1), 2 µL dNTPs; (0.5 mM·L−1), 2.5 µL
10 × PCR reaction buffer, 2.5 µL MgCl2 (2.5 mM·L−1), 0.5 µL Taq DNA polymerase
(5 U·µL−1) (Takara Biotechnology Co., Ltd., Dalian, China), and 9.5 µL ddH2O.

PCR cycling conditions were carried out in an Eppendorf PCR an Amplifier GeneAmp
PCR System 9700 (Eppendorf, Hamburg, Germany) with the following protocol: run at
94 ◦C for 5 min, followed by 40 cycles of 94 ◦C for 30 s, 55 ◦C for 45 s, and 72 ◦C for
2 min, and a final extension at 72 ◦C for 10 min. To estimate the sizes of DNA fragments, a
2000 bp DNA weight marker (NewEngland BioLabs, Massachusetts, USA) was included.
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The amplified products were separated in 2.0% agarose gels stained with GelRed
(0.5 µL·mL−1) and imaged under an ultraviolet illuminator and photographed.

2.4. Statistical Analysis

For each ISSR marker, all the assessed bands were distinguished based on the presence
(1) or absence (0) of genetic diversity. Based on distinguished results, a binary data matrix
was obtained. Accordingly, a dendrogram was constructed according to the unweighted
pair group method with arithmetic average (UPGMA) of NTSYS-pc version 2.10e [39].
The genetic parameters including Na, Ne, H, I, NPLs, and PPLs were calculated by the
POPGENE (VERSION-1.31) software package [40]. Genetic structure was constructed by
STRUCTURE 2.3.4 Microsoft [41]. Genetic differentiation was assessed by the method of
molecular variance (AMOVA) version 1.55 [42].

3. Results
3.1. ISSR Analysis

We successfully screened 10 primers to amplify all the collected samples (Table 1).
Altogether, these screened ISSR markers produced a total of 78 bands from UBC-836 (4)
to UBC-857 (13), with molecular lengths of 200–3100 bp. Among them, 67 polymorphic
bands were amplified. The percentage of polymorphism varied from 50% (UBC-836) to
100%, with an average of 85.90%. Three ISSR markers (UBC-824, UBC-827, and UBC-847)
exhibited high polymorphism (100%) (Table 1). This polymorphism was an indication of
higher prevalence of diversity among the eight C. gigantea genotypes. The results indicated
that C. gigantea has a considerable number of polymorphisms and genetic variants among
its genotypes. As a representative, the amplified diagram produced by the primer UBC-842
is shown in Figure 2.

Table 1. Information on ISSR primers among eight populations.

Primer
Name Primer Sequence (5′-3′) TNB (n) NPB (n) PPB (%) Range of the Band Size (bp)

UBC-808 (AG)8-C 6 5 83.33 550~2300
UBC-824 (TC)8-G 8 8 100.00 700~3100
UBC-827 (AC)8-G 8 8 100.00 750~2400
UBC-836 (AG)8-YA 4 2 50.00 500~1500
UBC-841 (GA)8-YC 6 5 83.33 200~1200
UBC-842 (GA)8-YG 6 4 66.66 200~1800
UBC-847 (CA)8-RC 8 8 100.00 800~2400
UBC-856 (AC)8-YA 10 9 90.00 500~2400
UBC-857 (AC)8-YG 13 11 84.62 300~2600
UBC-873 (GACA)4 9 7 77.77 300~2400

Total – 78.00 67.00 – –
Mean – 7.80 6.70 85.90 –

Note: TNB, total number of bands; NPB, number of polymorphic bands; PPB (%), percentage of polymorphic
bands; and R = (A,G), Y = (C,T).

3.2. Genetic Relationship among C. gigantea Genotypes

The observed number of alleles (Na) of the eight populations ranged from 1.333 to
1.756, averaging 1.529. The effective number of alleles (Ne) spanned from 1.231 (population
4) to 1.489 (population 11), averaging 1.348. The Nei’s gene diversity (H) was between
0.137 (population 4 and 15) and 0.280 (population 11), with a mean of 0.199. The value
of Shannon’s information index (I) ranged more than two-fold, from 0.199 (population
15) to 0.413 (population 11), with a mean of 0.293. Additionally, the average values of the
number of polymorphic loci (NPLs) and the percentage of polymorphic loci (PPLs) were
41.25 and 52.90, respectively. Among all the populations, population 11 harbored the most
genetic diversity (Ne = 1.489; H = 0.280; I = 0.413), whereas population 4 showed the least
genetic diversity (Ne = 1.231; H = 0.137; I = 0.205). The order of genetic diversity among
the populations in the descending order is as follows: 11 > 13 > 12 > 8 > 14 > 4 > 10 > 15
(Table 2).
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Table 2. Genetic parameters revealed through ISSR for eight populations of C. gigantean.

Population
Name N Latitude

(N◦)
Longitude

(E◦)
Altitude

(m) Na Ne H I NPLs PPLs
(%)

Population 4 4 93◦26′50.0′′ 29◦06′34.5′′ 2989 1.385 ± 0.490 1.231 ± 0.343 0.137 ± 0.188 0.205 ± 0.273 30 38.46
Population 8 4 93◦07′33.8′′ 29◦08′00.0′′ 3067 1.551 ± 0.501 1.381 ± 0.410 0.214 ± 0.213 0.315 ± 0.302 43 55.13
Population 10 3 93◦02′25.3′′ 29◦03′00.0′′ 3081 1.372 ± 0.486 1.253 ± 0.369 0.145 ± 0.199 0.214 ± 0.287 29 37.18
Population 11 17 93◦14′46.6′′ 28◦59′50.0′′ 3105 1.756 ± 0.432 1.489 ± 0.381 0.280 ± 0.196 0.413 ± 0.273 59 75.64
Population 12 13 93◦09′45.0′′ 29◦00′50.0′′ 3048 1.615 ± 0.490 1.387 ± 0.391 0.222 ± 0.207 0.330 ± 0.293 48 61.54
Population 13 15 93◦05′06.8′′ 29◦05′48.3′′ 3038 1.705 ± 0.459 1.443 ± 0.384 0.255 ± 0.199 0.379 ± 0.280 55 70.51
Population 14 7 93◦09′10.0′′ 29◦05′50.0′′ 3012 1.513 ± 0.503 1.353 ± 0.399 0.199 ± 0.213 0.292 ± 0.303 40 50.28
Population 15 4 93◦10′00.0′′ 29◦02′50.0′′ 3024 1.333 ± 0.475 1.250 ± 0.390 0.137 ± 0.205 0.199 ± 0.291 26 33.33

Mean 1.529 1.348 0.199 0.293 41.25 52.90

N: number of samples per population, Na: observed number of alleles, Ne: effective number of alleles, H: Nei’s
gene diversity, I: Shannon’s information index, NPLs: the number of polymorphic loci, PPLs: the percentage of
polymorphic loci.

Using the AMOVA method, the genetic variation among 67 samples from different
locations was analyzed (Table 3). Total variation among the population was 14.2%, whereas
that within the populations was 85.8%. The results indicated that the substantial genetic
diversity of C. gigantea mainly came from within the population and genetic variation
occurred (p < 0.001).

Table 3. AMOVA of genetic variance within and among populations based on ISSR data.

Source df MS Variance Component Percentage of Variation (%) Fixation Index

Among populations 7 22.007 1.580 14.2 0.22480
Within populations 59 9.544 9.544 85.8 p < 0.001
Total 66 31.551 11.124 100

df, degrees of freedom.

3.3. Cluster Analysis in C. gigantea

Binary data obtained for the 10 ISSR primers from 67 samples were scored and com-
puted. Accordingly, a UPGMA tree was built according to Jaccard’s coefficient of similarity.
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At the threshold value of 0.64, 67 individuals were classified into two categories (Figure 3).
Here, two different clusters (Cluster I and II) were derived, in which Cluster I further
formed two subclusters labeled here as IA and IB. Subcluster IA contained most of the
samples from populations 4, 8, 12, 14, and 15, while subcluster IB included most of the
samples from population 13. Cluster II contained three samples from population 10 and
one sample from population 11.
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Figure 3. UPGMA dendrogram of 67 samples based on Jaccard’s coefficient: ∆-samples from popula-
tion 4; O-samples from population 8; 2-samples from population 10; ⋆-samples from population 11;
▲-samples from population 12; •-samples from population 13; ■-samples from population 14; and
✩-samples from population 15.

The clustering pattern can be attributed to two factors, including history and environ-
ment. Several genotypes stand out as distinct entities within their respective subclusters.
Noticeably, individual samples of population 13 in subcluster IA and population 11 in Cluster
II exhibit distinct genetic profiles, emphasizing their possible roles in conservation programs.

Using the ISSR data, the dendrogram was generated and the principal coordinate
analysis (PCoA) was performed to group the genotypes from the two main clusters in C.
gigantea. The PCoA also clearly displayed three groupings of the samples, consistent with
the above results (Figure 4). The geographical distribution of the population (Figure 1)
showed that the habitat conditions divided by longitude and the direction of the river
affected the genetic structure of C. gigantea.

In order to study the genetic structures of the genotypes of C. gigantea, a non-spatial
Bayesian clustering method was used to determine the optimal number of subpopulations
(K) (Figure 5). These results demonstrated that the fitted model with K = 3 robustly
explained the data. Red, green, and blue vertical bars represented the three main groups.
This result was consistent with that obtained from the UPGMA cluster analysis as well as
that from the PCoA analysis (Figures 3 and 4). These results indicate that the individuals of
the C. gigantea population may be genetically derived from three gene pools.
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This result was consistent with that obtained from the UPGMA cluster analysis as well as 
that from the PCoA analysis (Figures 3 and 4). These results indicate that the individuals 
of the C. gigantea population may be genetically derived from three gene pools. 

Figure 4. Principal coordinate analysis for the ISSR data: ∆-samples from population 4; O-samples
from population 8; □-samples from population 10; ⋆-samples from population 11; ▲-samples from
population 12; •-samples from population 13; ■-samples from population 14; and ✩-samples from
population 15; red border represents Cluster IA; blue border represents Cluster IB; green border
represents Cluster II.
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4. Discussion

The identification of genetic diversity is important for understanding plant evolution
and adaptation [43]. In general, those plant species with genetic variability have the po-
tential to adapt to extreme and unique environmental conditions [44]. Consequently, it is
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important to assess the genetic diversity levels of tree species for tree management and con-
servation strategies, especially for rare tree species [26]. Ample evidence on the pattern and
distribution of genetic variation in conifers indicates that they have higher levels of genetic
variation than other plant species, with little differentiation among populations [45,46].

Herein, a high level of genetic diversity occurred within populations, which is con-
sistent with a previous report [12]. Our results revealed that ISSR markers were efficient
molecular markers for evaluating the genetic polymorphism among different C. gigantea
populations because three out of the ten ISSR markers that we used displayed 100% poly-
morphism (Table 1). Noteworthily, a high level of among-population genetic diversity
was also reported with AFLP markers in C. gigantea [26]. Similar results were found in
other research studies on conifer trees. For example, both the RAPD and ISSR methods
indicated that rich genetic diversity and most variation came from within populations
in Larix gmelinii [47]. Subsequently, by using six RAPD and three ISSR markers for
four subpopulations of Abies cephalonica, Papageorgiou et al. demonstrated that all
subpopulations exhibit high genetic diversity, with relatively low levels of differentiation
among them [48]. More recently, another group discovered that the 129 individuals re-
vealed a high level of genetic diversity and 85% of genetic variation within populations
in Tetraclinis articulate [49]. This may be because C. gigantea has an outcrossing breeding
system with high potential for long-distance gene flow.

Therefore, ISSR markers are highly sensitive and reproducible methods to detect the
population structure of C. gigantea. For other plant species, ISSR primers were found to
be more effective than other types of molecular markers [50,51]. For instance, Linos et al.
proposed that the average number of alleles per locus was 5.8 for SSR, while ISSR and RAPD
showed lower values (2 and 2, respectively), indicating somewhat lower congruence with
the dominant marker data [52]. Another group also demonstrated that the polymorphism
of ten ISSR primers (100%) is higher than SSR (80.4%), and significant differences were
found in three distinct groups among the genotypes in chrysanthemum [53]. However,
combining and contrasting the findings of the ISSR technique with those derived from other
molecular methodologies, such as AFLP, SNP, or next-generation sequencing, can enrich
the understanding of the genetic diversity and configuration of C. gigantea populations [54].
In summary, when assessing large numbers of samples, it is important to combine multiple
and reliable methods to evaluate the genetic diversity of different plant species.

The genetic diversity differed greatly between all studied populations (Table 2). Ac-
cordingly, this result could be helpful to analyze the current status of different C. gigantea
populations, leading to sound conservation strategies. For example, because populations 4,
10, and 15 had lower genetic diversity (Table 2), they should be declared as critical popula-
tions, as they are at risk of extinction. Habitat fragmentation reduces the gene flow among
populations, resulting in a loss of genetic diversity. Therefore, conservation strategies
should be immediately implemented such as ex situ collections (such as the collection of
germplasm and the establishment of seed banks) and the introduction of new germplasm
and the establishment of breeding systems (including cutting, grafting propagation, and
tissue culture). In addition, populations 11 and 13 exhibited high levels of genetic diversity
(Table 2). These populations represent the core populations with strong environmental
adaptability and evolutionary potential. Hence, regulations and management strategies
must be established to protect the natural habitat of C. gigantea. Notably, national-level core
germplasm banks of C. gigantea should be established to maintain the genetic variation and
develop new genetic breeding materials.

Furthermore, the results of AMOVA found that the average genetic variation within
population was higher than among populations, indicating high gene flow between popu-
lations (Table 3). This result has been attributed primarily to the long-distance dispersal of
pollen and seeds, the longevity, and the outcrossing of C. gigantean with other conifers. In
general, the establishment of in situ protected areas is an ideal way to protect wild plants.
However, the complex terrain and diverse climate of the Tibetan plateau make it unsuitable
for the conservation of endangered plant species. Strikingly, in situ conservation also re-
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quires local authorities to establish appropriate policies [55]. Correspondingly, considering
these factors, an ex situ conversation based on a seed bank is a feasible option to protect
the germplasm resources of C. gigantean. At the same time, promoting the cultivation and
domestication of this wild plant is of great significance for meeting the market demand
and protecting endangered plant species.

Some factors may contribute to the reduction in the high genetic diversity of C. gigan-
tea, including natural selection and human impact. The first factor can be the response
of Tibet’s Yarlung Tsangbo River to global climate change; conversely, the generation of
complex landscapes under climate fluctuations may partly account for the high genetic
diversity of C. gigantea [56,57]. The second factor can be logging and other forms of human
damage to trees [58]. Here, the AMOVA results showed a higher magnitude of genetic
differentiation within the populations of C. gigantea. This result probably reflects the fre-
quent gene flow occurring among C. gigantea populations because seeds and pollen of
C. gigantea can be dispersed to long distances. Therefore, marked geographic barriers of
and climate changes in the Yarlung Tsangbo River are not factors limiting the gene flow of
C. gigantea. Furthermore, the suitable habitat of C. gigantea faces various threats; therefore,
an assessment of C. gigantea’s in situ genetic diversity would be beneficial for its develop-
ment and genetic protection in future. The molecular marker technique is an efficient tool
for distinguishing C. gigantea populations and for robustly identifying the populations most
at risk.

5. Conclusions

Herein, we used ISSR to analyze the genetic structure of C. gigantea populations
collected along the north of the deep gorge of the Yarlung Tsangbo River. The results show
that a large proportion of genetic diversity is present at the within-population level in C.
gigantea. Additionally, UPGMA clustering together with PCoA analysis revealed that all
accessions can be divided into two main groups. Furthermore, marked geographic barriers
of and climate changes in the Yarlung Tsangbo River were not factors limiting gene flow of
C. gigantea. Accordingly, a gene bank of C. gigantea should be founded by collecting more
germplasm around the Yarlung Tsangbo River.
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