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Abstract: The increasing use of convolutional neural networks (CNNs) has brought about a sig-
nificant transformation in numerous fields, such as image categorization and identification. In the
development of a CNN model to classify images of sericea lespedeza [SL; Lespedeza cuneata (Dum-
Cours) G. Don] from weed images, four architectures were explored: CNN model variant 1, CNN
model variant 2, the Visual Geometry Group (VGG16) model, and ResNet50. CNN model variant 1
(batch normalization with adjusted dropout method) demonstrated 100% validation accuracy, while
variant 2 (RMSprop optimization with adjusted learning rate) achieved 90.78% validation accuracy.
Pre-trained models, like VGG16 and ResNet50, were also analyzed. In contrast, ResNet50’s steady
learning pattern indicated the potential for better generalization. A detailed evaluation of these
models revealed that variant 1 achieved a perfect score in precision, recall, and F1 score, indicating
superior optimization and feature utilization. Variant 2 presented a balanced performance, with
metrics between 86% and 93%. VGG16 mirrored the behavior of variant 2, both maintaining around
90% accuracy. In contrast, ResNet50’s results revealed a conservative approach for class 0 predictions.
Overall, variant 1 stood out in performance, while both variant 2 and VGG16 showed balanced results.
The reliability of CNN model variant 1 was highlighted by the significant accuracy percentages,
suggesting potential for practical implementation in agriculture. In addition to the above, a smart-
phone application for the identification of SL in a field-based trial showed promising results with an
accuracy of 98–99%. The conclusion from the above is that a CNN model with batch normalization
has the potential to play a crucial role in the future in redefining and optimizing the management of
undesirable vegetation.

Keywords: convolutional neural network; weight decay; learning rate; sericea lespedeza

1. Introduction

Sericea lespedeza (SL; Lespedeza cuneata) is a warm-season perennial legume that has
gained attention in small ruminant production for its nutritive value and anthelmintic
properties. This plant, native to eastern Asia, was introduced to the U.S. in the early 20th
century for erosion control and has since established itself not only to this end, but also as
a beneficial forage resource [1], particularly with small ruminants (sheep and goats). The
agronomic benefits of SL of drought tolerance and the ability to grow on acidic, infertile
soils where other legumes cannot thrive have been known for over a century [2], but
recent research has revealed that it also has value not only as a nutraceutical forage, but
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particularly also as biosecurity for its bioactivity against internal parasite infection in sheep
and goats [3]. This bioactivity, which has been attributed to the high level of prodelphinidin-
type condensed tannins in SL [4,5], also includes antibacterial properties [6], reduction in
ruminal methane production [7,8] and stress reduction [9–11]. However, the value of SL as
a natural (non-chemical) dewormer has been the primary driver for the recent renewed
interest in the plant by producers and scientists.

For proprietors keen on amplifying biodiversity, incorporating SL is an informed
step towards encouraging a dynamic and diverse biotic milieu. While the merits of SL in
agricultural and ecological contexts are clear, innovative tools are needed to identify and
manage it more effectively. This is particularly true during SL establishment, which can be
challenging due to its small seed size and relatively slow initial growth [2]. Competition
with weeds can be an issue during SL establishment, which may compete with SL during
growth stages, and this inability to differentiate SL plants from weeds has led to the
erroneous assumption by producers that they have a planting failure when this may not be
the case [11].

According to Buchanan and Burns [12], due to having small seeds, producing weak
seedlings, and usually being established during early spring, SL finds strong competition
from natural weeds in the field when conditions favor their rapid growth. As a summer
perennial, SL becomes dormant after a killing frost in the fall, and then regrows from the
roots in the spring, so weeds can also be a challenge at this time in well-established stands.
Because of SL’s poor initial competitive ability with weeds, weed control becomes a major
problem during establishment (first year) and thereafter (subsequent years in spring), so
identifying weeds in SL fields and eradicating them early is a major necessity.

Despite the importance of the above, there has been a lack of studies specifically
aimed at differentiating between SL and weeds. Previous investigations to this end have
employed many remote sensing methods [13–15] such as satellite remote sensing, aerial
images [16], and microsatellite imaging to observe SL. This research group has also made
use of a combination of Landsat satellite imagery to identify SL [16]. However, the iden-
tification of weeds in SL pastures has not been studied and requires research on image
classification techniques specifically tailored to identifying weeds in SL fields during the
crucial establishment phase and during spring re-emergence after winter dormancy in
established stands. This approach would provide more accurate and timely interventions,
enabling site-specific crop management (SSCM) that is both efficient and cost-effective. By
implementing this customized approach, farmers can utilize precise weed control methods,
hence improving the successful development of sustainable agriculture and enhancing
overall crop management.

With the advent of machine learning (ML) and the broader field of artificial intelligence
(AI), innovative solutions are emerging to detect and manage certain invasive plant species
that are considered weeds. Early studies, such as by Turner et al. [17], highlighted the poten-
tial of remote sensing data in combination with ML to identify specific plant species. These
methods use spectral data to provide high accuracy rates in diverse landscapes [17]. In
addition, convolutional neural networks (CNNs), a class of deep learning algorithms, have
frequently been applied in recent years for plant species identification. For instance, Zhang
et al. [18] used CNNs to detect invasive plant species from aerial imagery, demonstrat-
ing their potential applicability to remote-sensing-based image classification techniques.
Several domain-specific studies have been conducted to identify plants and plant-related
diseases using AI, including CNN models, with the use of a variety of AI-assisted ML
techniques for the identification of different diseases and adverse plant conditions [19–22].
Concerning SL, specific Arc-GIS-based models have been developed to identify production
sites to cultivate SL with low to minimum resource input methodologies [16,23]. However,
based on a thorough literature search, there has been no previous research conducted on
developing an AI-based ML model to differentiate weeds from SL in field-based studies.
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2. Materials and Methods
2.1. Field Image Acquisition, Preparation, and Mobile App Development

During the process of image collection of SL and weeds, natural light conditions
were used for field collection during daytime, regardless of light conditions, whether
sunny or cloudy. No resolution feature was used during the data curation process, with
distances from the plant varying from 10 cm to 20 cm. In order to avoid blurredness, careful
consideration was given to capturing specific features of the targeted SL.

As a first step in the mobile application development process, a total of 5000 smart-
phone images, taken with a Samsung Galaxy A54 (Samsung Electronics, Ridgefield Park,
NJ, USA), were selected, comprising 1000 of SL and 4000 of different weeds and plants, and
a combination of weeds and SL was selected in developing the smartphone application
for SL identification. To execute all the detection steps, starting from image acquisition
through results dissemination, the smartphone application (SL app) was developed using
the saved trained android studio software 2022.2.1 (Version: Flamingo) model. By training
the detection algorithm with a large dataset of SL images, a functional relationship was
established and subsequently classified for the screening of the SL plants from weeds and
other plants under field conditions. Additionally, the expectation is that the use of cell-
phones other than the Samsung Galaxy A54 will yield similar results due to the procedure
of normalizing the image data.

2.2. Image Classification Model Selection

The present study used convolutional neural networks (CNNs), a regularized type of
feed-forward neural network similar to the widely used backpropagation neural network
(BPNN), which is specifically applied for image-classification-based studies. Randomized
weights are provided to input and output neurons in the BPNN, making network learning
take much longer to achieve the best-fit correlation, and vanishing gradient and exploding
gradient situations may occur [24]. Therefore, in CNNs, these occurrences are prevented
by using regularized weights over fewer connections [24]. Therefore, CNNs are known
as shift-invariant or space-invariant artificial neural networks (SIANNs) [25], since in the
network a designated group of neurons shares fixed or regularized weights provided by
users, and it works better in image classification, similar to the self-organizing map (SOM)
ANN image classification approach involving a fixed window of pixels 3 × 3, 5 × 5, or
n × n sizes, but through a feed-forward learning process. Given the complex nature of
image data (Figure 1), the choice of methodology greatly influences the effectiveness of
such a model in our study. The CNN (SIANN) is based on a stepwise process of delineating
the model intricacies, emphasizing those involved at each stage of model development,
and showing the pipelines for classification (Figure 2).

2.3. Dataset Stratification

For any image-classification-based study, data segmentation is the most fundamental
principle. Recognizing that improperly segmented data can lead to overfitting or general-
ization issues, a two-way split was adopted, comprising training and validation datasets,
with an 80:20 ratio [21,26]. While the training dataset serves as the primary source from
which the model learns, the validation set is a tool for fine-tuning the model to ensure it is
neither over nor underfitting. The test set, kept separate, evaluates the model’s performance
in an “unseen” scenario. To further systemize the training process, images within these
sets were grouped by their respective classes, ensuring balanced representation and easy
accessibility during model training. For the analysis of data, 800 randomly selected images
of SL and 3200 images of weeds were used for training; 200 images of SL and 800 images
of weeds were used in the model validation. For the testing of the developed models,
500 images from each class were used in this study.
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2.4. Preprocessing Dynamics

Preprocessing digital images, consisting of a grid of pixel values at their core, is
essential to ensure uniformity and to enhance training efficacy. To this end, Keras’ ‘Im-
ageDataGenerator’ was used, which allowed for augmentation of the data by introducing
minor variations in our images, such as rotations, zooms, and shifts. Such augmentation
prevents overfitting and exposes the model to a broader set of data scenarios. Along with
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augmentation, we undertook two standard preprocessing steps through, firstly, resizing all
images to 150 × 150 pixels, eliminating the variability in image dimensions, and second,
normalizing pixel values, which traditionally range from [0, 255] to [0, 1], to ensure a more
tractable data range to facilitate gradient descent optimization during model training. The
‘ImageDataGenerator’ class from the ‘keras.preprocessing.image’ library was utilized to
enhance the data in the training dataset, hence improving the model’s capacity to generalize
from our training data through the addition of variability.

This class implements multiple image-transforming operations, such as rotation, where
each image can be rotated by a randomly selected angle of up to 20 degrees (rotation_range = 20);
width shift, where images can be horizontally displaced by a maximum of 20% of their width
(width_shift_range = 0.2); height shift, where the image’s original height is vertically shifted by up
to 20% (height_shift_range = 0.2); shearing, where the images undergo a shear modification with
an intensity of 20% (shear_range = 0.2); zoom, where the images are subjected to a zoom effect
with a range of up to 20% (zoom_range = 0.2); horizontal flip, where images have the possibility
of being randomly flipped horizontally (flip_horizontal = true); fill mode, where the “nearest”
method is utilized to populate freshly generated pixels that emerge during transformations such
as rotations or shifts (fill_mode = “nearest”).

The ImageDataGenerator library used in python script may apply various augmen-
tations to each image, such as rotations, shifts, zooming, flipping, and shearing, all in a
single pass. The use of this dynamic method for data augmentation results in the inability
to accurately determine the precise quantity of distinct images produced during training.
This is due to the fact that the augmentation process takes place in real time as the model
receives the training images. Conversely, the system produces a potentially limitless range
of images by implementing random modifications to each image in a group, guided by the
given parameters.

To approximate the quantity of augmented images produced during the training phase of
the model, the following equation is used: generated images = number of images utilized in
training multiplied by the number of epochs employed in training. For this study, we employed
800 images of SL and 3200 images of weed plants. By conducting 100 training epochs, this
method yielded roughly 80,000 images of SL (synthetic labels) and 320,000 images of weeds,
resulting in a total of around 400,000 generated images. This approach guarantees that every
epoch has the ability to exhibit distinct variations of the input images, hence improving the
resilience of the training process.

2.5. CNN Architecture

Unlike traditional neural networks, CNNs excel in detecting image patterns, rang-
ing from simple edges to complex features. Our model’s inception layer was designed
to process tensors with dimensions of 150 × 150 × 3, indicative of the image’s height,
width, and RGB channels. The initial convolutional layer, equipped with 32 3 × 3 filters
and the ReLU activation function, focused on elementary feature detection. Pooling
layers, interspersed after convolutional layers, reduced spatial dimensions, condensed
information, and aided in computational efficiency. As the network was delved into
more deeply, the convolutional layers increased in complexity, with 64 and 128 filters,
which focused on intricate patterns within images. The architecture then transitioned
from convolutional to dense layers via a flattening layer, which reshaped the 3D output
tensor from the last pooling layer into a 1D vector. This vectorized output fed into
a dense layer with 512 neurons, culminating in an output layer that used SoftMax
activation to categorize the images.

The initial iteration of our customized convolutional neural network (CNN), known
as model custom variant 1, was designed using the regularization capabilities of batch
normalization and dropout. The architecture consisted of a series of convolutional layers
with 3 × 3 kernel sizes, first employing 32 filters and progressively increasing to 64 and
128 filters. After each convolutional layer, batch normalization was applied to normalize
the output of the preceding activation layer. This was conducted by removing the batch
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mean and dividing by the batch standard deviation. After each normalization, a 2 × 2 max
pooling procedure was used to decrease the dimensionality of the feature maps, effectively
compressing the gained knowledge features and minimizing computing demands. The
model additionally used dropout at a rate of 0.4 after the final dense layer before the
output layer. Dropout randomly excludes a portion of features during each training
phase, thereby reducing overfitting. The constructed model utilized the Adam optimizer
alongside a binary cross-entropy loss function, which is well-suited for tasks involving
binary classification. The objective of this method was to achieve learning stability and
minimize the number of epochs needed for efficient model training.

The second custom model, known as model custom variant 2, followed a similar
structure to the previous versions but utilized the RMSprop optimizer with a learning
rate of 0.0001. The learning rate was used to evaluate the impact of a slower and
more precise modification of the weights on the model’s learning and generalization
capabilities. The model retained a similar structure to the initial version, but it omitted
batch normalization. This was designed to specifically assess the effectiveness of the
RMSprop optimizer on its own.

In addition to the new models, the pre-trained models VGG16 and ResNet50 were
also modified for the purpose of the classification challenge. By utilizing transfer learning,
the base models were imported together with pre-trained weights from the ImageNet
dataset. The uppermost layers of these models were substituted with a flattening layer
in order to transform the two-dimensional feature maps into a one-dimensional vector.
This was succeeded by a dense layer consisting of 512 neurons and a concluding output
layer with a sigmoid activation function, which was used for binary classification. During
training, the layers imported from the previous models, both VGG16 and ResNet50, were
frozen to preserve the learned features. Only the newly added layers were modified to alter
their weights. Both the VGG16 and ResNet50 models were constructed using the Adam
optimizer and the binary cross-entropy loss function.

2.6. Model Compilation and Training Dynamics

Once the CNN’s architecture was solidified, the model’s compilation phase com-
menced. The Adam optimizer was the optimizer of choice, since it dynamically adjusts the
learning rate, a feature especially useful for deep learning tasks. Given the categorical na-
ture of the present classification, the loss function employed was categorical cross-entropy.
Also, accuracy, indicating the proportion of correctly classified images, was the primary
metric throughout the training phase.

Iterative refinement was used for the training of the present model, which adjusted its
internal parameters with each epoch, using a complete forward and backward pass of the
training examples, honing its prediction capabilities. This iterative process can be likened
to repeatedly studying a topic, refining understanding with each pass (iteration). However,
since, as with any study regimen, there is a risk of over-studying or “memorizing”, a
validation set was used as a safeguard against the model “memorizing” training data, i.e.,
overfitting. This separate dataset, providing a check, was included to ensure that the model
generalized well.

2.7. Model Variants

Beyond the baseline CNN model, the research ventured into several model variants.
The first variant (CNN model variant 1) was accentuated with batch normalization and
adjusted dropout. This technique, applied post-convolution, standardized the outputs,
stabilizing and accelerating training, and coupled with a 0.4 dropout rate, also introduced a
regularizing effect. The second variant (CNN model variant 2) delved deeper, introducing
an extra step, while, similar to the first, it deviated architecturally in its optimization tech-
nique. Here, the RMSprop optimizer, known for its adaptive nature, was implemented with
a learning rate of 0.0001. Beyond these custom variants, the exploration also incorporated
renowned architectures, like the pre-trained models VGG16 and ResNet50, which were
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equipped with weights trained on the extensive ImageNet dataset and were appended
with custom dense layers to fit the classification task.

Each model variant, including the pre-trained architectures, underwent rigorous
training, governed by predefined parameters. Crucial to this process were early stop-
ping callback functions, which halted training if the model ceased to improve, as well
as learning rate adjustment, which dynamically tweaked the learning rate based on the
model’s performance.

2.8. Batch Normalization and Adjusted Dropout Method

Batch normalization (batch norm, BN) is a transformative technique in deep learning,
designed to accelerate the training of deep networks and optimize their performance [27]. It
addresses the issue of internal covariate shift, where the distribution of network activations
changes during training due to parameter adjustments. In practice, batch normalization
(Figure 3) computes the mean and variance for each feature in a mini-batch, then normalizes
the feature to have a mean of zero and unit variance. This normalized output is further
scaled and shifted, using learnable parameters. When integrated into custom CNN models,
batch normalization often results in faster convergence, allows for the use of higher learning
rates, and makes the model less sensitive to initialization strategies [28–30]. It also imparts
a minor regularization effect, adding slight noise that can counteract overfitting. The
batch normalization first computes the mini-batch’s means (µ) and variance (σ2) scale
and shifts the feature using two new parameters per feature, often called γ (scale) and
β (shift) [28,30,31]. These parameters are learned during training alongside the original
model parameters, and the mathematical expression is provided in Equation (1) for an
input of m:

BN = γ

(
m − µ√
σ2 − ε

)
+ β (1)
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On the other hand, dropout, another regularization technique designed to combat
overfitting, randomly deactivates a fraction of input units during training in each update
cycle. For instance, with a dropout rate of 0.5, roughly half of the input units are “turned
off” at each step. However, by adjusting this behavior during the inference phase, dropout
is disabled, and all units are active, with weights scaled down proportionally to account
for the more extensive unit activity. In CNNs, the concept of dropout is often adjusted
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for spatial structures. For instance, spatial dropout drops entire channels of feature maps,
thereby ensuring consistent absences in the feature map.

In addition to the above, dropout after batch normalization is commonly advised in
order to avoid unstable training dynamics. When used in image classification using CNNs,
batch normalization and adjusted dropout techniques, like spatial dropout, often empower
the network. This combination facilitates training deeper, more robust models that exhibit
superior generalization of unseen data.

2.9. RMSprop and Adjusted Learning Rate Method

RMSprop, standing for root mean square propagation, is a sophisticated optimization
technique tailored to facilitate and expedite the training process of neural networks, notably
CNNs, which dominate the realm of image classification [32,33]. At its core, RMSprop
aims to dynamically adjust each parameter’s learning rate based on its gradients’ historical
magnitudes [34]. This method of RMSprop solves the common drawback of a static learning
rate, which, if set too high, can cause unstable training with erratic oscillations, and, if too
low, results in an agonizingly slow convergence [35,36].

In RMSprop, the moving average of the squared gradient, which is computed, sub-
sequently informs the adjusted learning rate (Figure 4). A decay factor, β, plays a pivotal
role in this latter calculation, determining the balance between the influence of the past
average and the present gradient. This emphasis on the recent history of gradients aids in
navigating complex optimization landscapes, often characterized by deep CNNs with high
dimensionality stemming from copious weights and biases and intricate non-linearities,
ushered in by activation functions [37–39].
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In addition to the above, RMSprop proved to be more resilient against the draw-
back of the vanishing and exploding gradient issues that plague deep networks [40].
However, RMSprop’s standard formulation can be further augmented by introducing
additional strategies to adjust the global learning rate (η). Methods like step, expo-
nential, and plateau-based decay offer nuanced control, thereby allowing the model to
adapt to plateaus or steep regions in the loss landscape. Despite modern deep learning,
libraries like TensorFlow and PyTorch have simplified their application using RMSprop
as a staple optimizer [41–43]. However, it is paramount to recognize the existence of
other equally competent optimizers, such as Adam, which combines the strengths of
RMSprop with the momentum principle [30]. Ultimately, selecting an optimizer is
not a one-size-fits-all decision, but rather a careful choice, often necessitating multi-
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ple iterations and experiments tailored to the unique nuances of the specific dataset
and problem.

3. Results

In developing the CNN model for distinguishing SL images from weed images, a
quartet of architectures, namely CNN model variant 1, CNN model variant 2, VGG16,
and ResNet50, presented a spectrum of capabilities and nuances. CNN model variant
1, with the combination of batch normalization and adjusted dropout, showcased an
exemplary trajectory, scaling from an initial 87.15% training accuracy to a 99.6% valida-
tion accuracy by the 13th epoch (Figure 5). Its resilience was evident in select epochs
where validation accuracy peaked at 100%, indicating robustness and the potential for
superior generalization.
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Contrastingly, CNN model variant 2, driven by the RMSprop optimizer and an adap-
tive learning rate, embarked on its learning pattern more steadily, but exhibited commend-
able growth dynamics. Notably, by the 11th epoch, this model logged a 90.78% validation
accuracy, showing its rapid maturation towards development. However, the heightened
validation loss hinted at potential overfitting nuances particularly intrinsic to RMSprop’s
behavior in the classification context (Figure 6). The loss graph of the batch normalization
optimizer exhibited volatility, especially in the validation loss. The sudden increase in
validation loss, followed by a rapid decrease, may indicate the use of a high learning rate or
inadequate regularization during the initial stages of training. Nevertheless, the subsequent
convergence of the training and validation loss suggests a process of recuperation and
adjustment, resulting in a steady and transferable state of learning. This exemplified the
optimizer’s capacity to regain stability after an initial disruption, maybe by employing
techniques such as learning rate scheduling or adaptive learning rate modifications. Finally,
the graph of the RMSprop optimizer exhibited a similar pattern of high variance to the
batch normalization graph at the beginning. However, it showed a propensity to gradually
increase the validation loss over time, following an initial period of convergence with
the training loss. The gradual divergence observed here was a warning sign of possible
overfitting, as the model began to excessively conform to the training data, resulting in a
decline in its performance on the validation set. This emphasizes the importance of closely
monitoring the patterns of loss and considering the implementation of early halting to
prevent overfitting from becoming more prominent.
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variant 2 (RMSprop optimizer with adjusted learning rate) for SL image datasets.

Compared with pre-trained established architectures, such as ResNet50 and VGG16
using transfer learning, VGG16 stood out for its easy convergence, indicating a training
accuracy of 77.17% in its initial epochs (Figure 7). However, its rapid assimilation was
double-edged, particularly evident from the 11th epoch, suggesting potential overfitting
issues. Overfitting arises when a model acquires knowledge of both the fundamental
patterns and random variations present in the training data, hence hindering its capacity to
make accurate predictions of unseen data [44]. This problem frequently occurs in extremely
complicated models with an excessive number of parameters that rapidly adjust to the
intricate details of the data. Nevertheless, the presence of a substantial dataset does not
guarantee protection against overfitting; the variety and integrity of the data are equally
crucial [45]. Even carefully developed models can be adversely affected if regularization
techniques such as dropout or weight decay are not appropriately calibrated, or if the
learning rate is excessively high, leading to overfitting of the training data and overlooking
crucial overarching patterns necessary for validation accuracy [46].
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Figure 7. Graphical representation of training and validation accuracies and loss for pre-trained
VGG16 model using SL images datasets.

Data leakage can also cause overfitting when information from the validation set
influences the training process, while label noise refers to inaccurate data labels that result
in poor model learning. Both of these factors may further decrease the performance of
the model [47]. In addition, small batch sizes might provide gradients with high levels of
noise, which can worsen the problem of overfitting. If the validation set does not accurately
represent the wider distribution of data, then it might lead to a misleading indication of
overfitting [48].
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In order to address the issue of overfitting, it is essential to modify the complexity of
the model, use or enhance regularization techniques, fine-tune the learning rate, ensure
the quality and diversity of the data, and accurately partition the dataset. Utilizing an
iterative methodology for model tuning and validation is crucial in order to successfully
identify and solve the underlying factors contributing to overfitting. When assessing the
training process of CNN models using loss graphs, the VGG16 and ResNet50 models
offered important observations. The loss curves obtained from the VGG16 model exhibited
a prototypical example of a training procedure that was well-trained. The training loss
exhibited a consistent decline followed by stabilization, indicating that the model was
efficiently incorporating the training data. Similarly, the reduction in validation loss was
consistent with the decrease in training loss, indicating that the model was effectively
applying its learned knowledge to a new, unknown dataset. The narrow discrepancy
between the training and validation loss curves during the training epochs highlighted the
model’s ability to preserve equilibrium, hence avoiding the typical issues of underfitting or
overfitting. The objective in training neural networks is frequently to achieve this stability,
as it signifies a model that has acquired a resilient representation of the data.

ResNet50, on the other hand, emphasized steadiness. Despite a more deliberate
initial pace, its learning pattern was marked by consistency, potentially leading to better
generalization, as evidenced by the narrower disparity between its training and validation
accuracies (Figure 8). On the other hand, the ResNet50 model had a distinct pattern. The
training loss exhibited a continuous decrease, but there remained a persistent disparity
between the training and validation losses following the initial severe decrease in the
validation loss. This recurring disparity may be seen as the model’s robust performance
on the training data, but a less successful application to the validation data, suggesting a
potential issue of overfitting. This scenario implies that the model may have learned certain
unique characteristics of the training data that do not apply well to other situations. This
necessitates additional research into approaches for regularization or training methods to
improve the effectiveness of the model on validation data.
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The presented comparative classification reports in Tables 1 and 2 provide a detailed
performance evaluation of four distinct neural network configurations: custom CNN
variant 1, custom CNN variant 2, VGG16, and ResNet50. Both tables elaborate on the
precision, recall, and F1 score information, offering a multifaceted perspective on each
model’s capabilities and limitations with and without the use of any data augmentation
process in the analysis.
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Table 1. Comparative summary of performance matrix for the developed CNN classification model,
compared with pre-trained model (VGG16 and ResNet50).

Type of Model
Precision Recall F1 Score

SL Weed SL Weed SL Weed

CNN model variant 1
(batch normalization with adjusted dropout) 100 100 100 100 100 100

CNN model variant 2 (RMSprop with adjusted
learning rate) 86 93 91 89 88 91

VGG16 pre-trained model 88 91 88 91 88 91
ResNet50 pre-trained model 87 77 61 93 72 84

Table 2. Comparative summary of performance matrix for the developed CNN classification model
without data augmentation, compared with pre-trained model (VGG16 and ResNet50).

Type of Model
Precision Recall F1 Score

SL Weed SL Weed SL Weed

CNN model variant 1
(batch normalization with adjusted dropout) 100 100 100 100 100 100

CNN model variant 2 (RMSprop with adjusted
learning rate) 97 100 100 98 99 99

VGG16 pre-trained model 99 91 87 99 92 95
ResNet50 pre-trained model 85 81 69 91 76 86

Tables 1 and 2 show a comparison of the performance metrics for the developed model
with and without using data augmentation techniques, namely precision, recall, and F1
score, for two CNN model variants in two categories: SL and weed. The models consisted of
a customized convolutional neural network (CNN) with batch normalization and adjusted
dropout, referred to as CNN model variant 1, and RMSprop with an adjusted learning
rate, known as CNN model variant 2. Additionally, two pre-trained models, VGG16 and
ResNet50, were also included in our analysis. CNN model variant 1 demonstrated exact
performance in all measures listed in both tables, indicating a well-optimized model for
this particular task.

On the other hand, CNN model variant 2 demonstrated a significant enhancement
in its performance metrics between with and without data augmentation, suggesting
potential improvements in its learning rate modifications or increased training iterations
that have strengthened its effectiveness. The VGG16 model, although robust, showed only
slight enhancements when no data augmentation was being used and usually performed
less effectively compared to the customized models. This suggests that although pre-
trained models like VGG16 possess considerable capabilities, they may need substantial
adjustments in order to perform exceptionally well in more specific tasks.

However, ResNet50 had the highest level of variability in its performance, specifically
facing challenges with the recall measure for SL, both with and without data augmentation.
The fact that ResNet50 did not perform well in this particular classification task may indicate
that it is not well-suited for this task without significant adjustments or a specialized
training approach. The comprehensive analysis highlighted the significance of model
selection and customization in attaining the best outcomes in image classification tasks,
particularly when dealing with specific categories such as SL and weed. The data absolutely
show that customized models or properly fine-tuned pre-trained models can greatly surpass
generic models, contingent upon the specific complexity of the task and the peculiarities of
the data.

CNN model variant 2 exhibited lower scores in the first table (Table 1), with a precision
of 86% for SL and 93% for weed, a recall of 91% for SL and 89% for weed, and an F1 score
of 88% for SL and 91% for weed. However, in the second table, there was a significant
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enhancement, with precision improving to 97% for SL and 100% for weed, recall reaching
100% for both SL and weed, and the F1 score rising to 99% for SL and weed. The notable
enhancement indicated that modifications to the learning rate or even the inclusion of more
training data greatly improved the efficacy of the model.

In the first table, the pre-trained model VGG16 demonstrated reasonable performance
with precision scores of 88% for SL and 91% for weed, recall scores of 88% for SL and
91% for weed, and F1 scores of 88% for SL and 91% for weed. The second table showed a
modest enhancement, with precision rising to 99% for SL and 91% for weed, recall reaching
87% for SL and 99% for weed, and the F1 score reaching 92% for SL and 95% for weed.
These modifications suggested a certain level of progress, most likely resulting from the
optimization of some aspects related to this particular task. However, they still fell short of
achieving the highest level of performance exhibited by the specialized models.

ResNet50 had the highest level of variability and typically performed worse than the
other models, especially in the first table where it achieved a precision of 87% for SL and
77% for weed, a recall of 61% for SL and 93% for weed, and an F1 score of 72% for SL
and 84% for weed. The second table displayed notable enhancements, with the precision
for SL reaching 85% and 81% for weed. The recall for SL stood at 69% and 91% for weed.
Additionally, the F1 score for SL was 76%, while for weed it was 86%. Although there
were improvements, the model’s performance suggests that it may not be suitable for this
specific task without substantial adjustments or focused training. The rationale behind
not choosing identical hyperparameters for each model comparison stemmed from our
intention to investigate the impact of various configurations and regularization procedures
on the effectiveness of the developed CNN model. Each variant was specifically tailored
to assess a certain component of model training. For example, variant 1 examined the
fundamental architecture with batch normalization and a modest dropout rate, whereas
variant 2 investigated the impact of using a different optimizer and a lower learning rate
on the same architecture as variant 1.

This unorthodox methodology enabled a thorough comprehension of how various
modifications of hyperparameters can impact the learning dynamics and generalization
abilities of the models. The wide range of configurations also aided in determining the most
efficient arrangement for the particular dataset and task, hence facilitating the construction
of an optimal model for practical applications.

After the training, testing, and validation of the model developed for the identification
of SL in field-based studies, an in-house smart phone application was also developed for
the field trials. The mobile application was developed using Android studio software
(Version: 2022.2.1, Flamingo). The developed mobile application was successfully able to
differentiate SL from weeds up to an accuracy of 98% (Figure 9).

The development of a mobile application not only represented the process of turn-
ing theoretical research into practical instruments that can be used in the field, but also
demonstrated the flexibility and relevance of the research.
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4. Discussion

According to the results presented in Tables 1 and 2, our custom CNN model variant 1
showed superior performance. It achieved an ideal outcome of 100% for both precision and
recall in all scenarios, regardless of whether data augmentation techniques were used. This
model was created to accurately detect SL and weeds, demonstrating better performance
than the study conducted by Dyrmann et al. [49]. In their study, the recall and precision
percentages for separating weeds from winter wheat fields were lower, at 46.3% and 86.6%,
respectively. Our models exhibited a diverse range of accuracies in identifying weeds,
ranging from 84% to 100%, when compared to earlier studies. The pre-trained models
used in our research, with and without data augmentation, achieved average accuracy
rates ranging from 84% to 91% and 86% to 95%, respectively. These findings align with the
results obtained by Olsen et al. [50], who utilized the Inception-v3 and ResNet50 models
on their specific database of weed images.

Gothai et al. [51] conducted a study to investigate the capabilities of different configu-
rations of convolutional neural networks (CNNs). They found that the validation accuracies
of several custom CNN models differed. Among the models tested, a non-stride CNN
model achieved an accuracy of 93.12% after 40 epochs, while an AlexNet model reached an
accuracy of 92.62% at the same epoch count. In addition, different CNN models, which
included a growing number of convolutional layers and utilized a pre-trained VGG16
model, achieved accuracies ranging from 92.36% to 96.53% after 40 epochs.

Our advanced models, which combined batch normalization with dropout methods
and RMSprop with adjustable learning rates, achieved higher validation accuracy levels
of 99.51% and 98.54% after 26 and 15 epochs, respectively. In addition, our VGG16 model
achieved a validation accuracy of 94.14% after 28 epochs.

This study highlights the exceptional accuracy, completeness, and overall performance
of the generated models, with scores ranging from 85% to 100% under different circum-
stances. These models demonstrated their efficacy in field-based investigations for the
detection of SL and weeds, matching or exceeding the findings of previous research.
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Further studies have confirmed the effectiveness of using deep learning algorithms to
classify images and accurately identify weeds in turfgrass. The authors Yu et al. [52–54]
successfully utilized DetectNet, GoogLeNet, and VGGNet to accurately detect annual
bluegrass and different types of broadleaf weeds. Their research emphasized the superior
performance of DetectNet, which achieved the greatest F1 scores. Additionally, VGGNet
demonstrated commendably good recall and F1 scores in different scenarios. This evi-
dence further reinforces the capacity of sophisticated neural networks to excel in intricate
agricultural tasks.

Nevertheless, there are still obstacles to overcome in the realm of deep learning for
agriculture, namely regarding the influence of environmental factors like lighting and soil
composition, as well as the constraints imposed by datasets lacking sufficiently labeled
information [55,56]. Efforts to overcome these obstacles and improve the precision and
practicality of weed and forage crop identification models remain a crucial focus of research.

5. Conclusions and Future Studies

Utilizing technology, especially cutting-edge neural network models like the ones
examined in our study, will become more essential as the agricultural sector deals with
rising global food demand, shrinking arable land, and the unpredictable effects of climate
change. For instance, our developed smartphone-based approach of custom CNN variant
1’s application with unprecedented accuracy highlights the potential of such models to
revolutionize precision agriculture at a time when unmanned aerial vehicle (UAV) technolo-
gies are getting smarter day by day. In consequence, the use of these models in conjunction
with UAV or satellite photography in real-time applications should be explored further
in future studies to provide immediate, field-level insights regarding site-specific crop
management (SSCM). This would support farmers in making prompt adjustments and
maximizing resource use with real-time insights into weed growth, pest damage, and
nutritional deficits, allowing them to optimize resource use and reduce water, fertilizer,
and pesticide consumption, thus also helping improve the environment. The model would,
for instance, be more broadly applicable if the dataset were expanded to cover a wider
range of crops, different growth phases, and various biotic and abiotic stress variables.
The discriminative capacity of the model may be further improved by multi-spectral and
hyperspectral imaging, even with UAV systems, allowing it to recognize early-stage pest
infestations or sub-surface anomalies that are not visible to the naked eye. In this way, a fu-
ture can be foreseen where farms are more productive, as well as sustainably so, to support
a helpful relationship between farmers, technology, and the environment. The transition
from desktop-based analytics to a mobile platform represents a notable improvement in
the ease of access and usefulness of the research. It enables field researchers or agricultural
practitioners to analyze data on site in real time, significantly improving the speed and
usefulness of the gathered information. Due to its exceptional precision, the program is a
powerful tool in precision agriculture, offering users a dependable means of monitoring
and regulating SL in many agricultural environments.

Finally, custom CNN variant 1’s accuracy shows how artificial intelligence can improve
precision agriculture and SSCM. Real-time applications using such models and UAVs or
satellite data warrant additional exploration, and our research is expanding in that direction.
We are in the process of developing a real-time UAV imaging and AI-based modeling
approach to determine weed infestation in the SL field to spray weedicide on the spot
during image acquisition. Expanding the dataset to include more crops, growth phases, and
biotic and abiotic stress factors might improve model applicability. Such advances could
lead to more productive and sustainably managed farms, benefiting farmers, technological
advances, and the surroundings.
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