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Abstract: This review addresses the need for innovative co-culture systems integrating the enteric ner-
vous system (ENS) with intestinal organoids. The breakthroughs achieved through these techniques
will pave the way for a transformative era in gastrointestinal (GI) disease modeling and treatment
strategies. This review serves as an introduction to the companion protocol paper featured in this
journal. The protocol outlines the isolation and co-culture of myenteric and submucosal neurons
with small intestinal organoids. This review provides an overview of the intestinal organoid culture
field to establish a solid foundation for effective protocol application. Remarkably, the ENS surpasses
the number of neurons in the spinal cord. Referred to as the “second brain”, the ENS orchestrates
pivotal roles in GI functions, including motility, blood flow, and secretion. The ENS is organized into
myenteric and submucosal plexuses. These plexuses house diverse subtypes of neurons. Due to its
proximity to the gut musculature and its cell type complexity, there are methodological intricacies
in studying the ENS. Diverse approaches such as primary cell cultures, three-dimensional (3D)
neurospheres, and induced ENS cells offer diverse insights into the multifaceted functionality of the
ENS. The ENS exhibits dynamic interactions with the intestinal epithelium, the muscle layer, and
the immune system, influencing epithelial physiology, motility, immune responses, and the micro-
biome. Neurotransmitters, including acetylcholine (ACh), serotonin (5-HT), and vasoactive intestinal
peptide (VIP), play pivotal roles in these intricate interactions. Understanding these dynamics is
imperative, as the ENS is implicated in various diseases, ranging from neuropathies to GI disorders
and neurodegenerative diseases. The emergence of organoid technology presents an unprecedented
opportunity to study ENS interactions within the complex milieu of the small and large intestines.
This manuscript underscores the urgent need for standardized protocols and advanced techniques
to unravel the complexities of the ENS and its dynamic relationship with the gut ecosystem. The
insights gleaned from such endeavors hold the potential to revolutionize GI disease modeling and
treatment paradigms.

Keywords: enteric nervous system (ENS); three-dimensional (3D); pluripotent stem cells (PSCs);
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1. Introduction

Within the intestinal mucosal barrier, which encompasses the intestinal epithelium,
the microbiota, the mucus layer, the enteric nervous system (ENS), and the immune system,
a delicate and precisely orchestrated equilibrium known as intestinal homeostasis plays
a pivotal role in maintaining health. Together, these components collectively govern the
ever-evolving composition of the intestinal microbiota [1]. The ENS is composed of enteric
neurons and glial cells, which, together, form two important ganglionated plexuses. These
plexuses are known as the myenteric plexus, situated between the longitudinal and circular
muscle layers, and the submucosal plexus, located beneath the mucosa (Figure 1a—). The
submucosal plexus exhibits variations across species. The ENS typically consists of a single
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layer of ganglia in common laboratory animals, such as mice, rats, and guinea pigs. In
larger mammals, including humans, it consists of two layers known as the inner and outer
submucosal plexus [2]. The myenteric plexus plays a crucial role in controlling intestinal
motility, including the rapid orthograde propulsion of contents (peristalsis), mixing move-
ments (segmentation), slow orthograde propulsion (the migrating myoelectric complex),
and retropulsion (the expulsion of substances associated with vomiting) in the gastrointesti-
nal (GI) tract [3,4]. The submucosal plexus (or inner submucosal plexus) is responsible for
the regulation of functions such as absorption, secretion, and the detection of stimuli [2,5].
In larger animals, a subset of motor neurons in the outer submucosal plexus assumes a
significant role in regulating the circular and longitudinal muscles [6,7]. Furthermore, in
larger animals, there are scattered enteric neurons at the base of the mucosa, controlling
mucosal functions [6,7]. The GI tract features a sophisticated network of ganglia inter-
connections spanning its entire length, including projections between the myenteric and
submucosal plexuses [2]. The communication between the enteric neurons occurs through
the release of neurotransmitters from axonal swellings called varicosities [2]. Intrinsic
primary afferent neurons (IPANs), also known as intrinsic sensory neurons, play a pivotal
role as the main sensors and regulators of the ENS. These neurons form connections with
each other and respond to mechanical and chemical signals from the gut lumen. They
relay this information to various types of neurons, including secretomotor neurons, va-
sodilator neurons, interneurons, and motor neurons [2,8]. Mostly located in the myenteric
plexus, IPANs extend their processes into the lamina propria beneath the epithelial layer [9].
The interneurons within this plexus then connect with different types of motor neurons,
including those that regulate circular and longitudinal smooth muscle contractions, va-
somotor neurons, secretomotor neurons, motor neurons, and viscerofugal neurons. The
viscerofugal neurons play a role in intestino-intestinal reflexes, which are reflex actions
that occur within the intestines themselves. These neurons transmit signals from one part
of the intestine to another, aiding in the local coordination of intestinal functions [8,10].
Motor reflexes can be triggered by the stretching or distension of the gut, even without the
involvement of mechanosensory elements in the mucosa [8,10]. The ENS innervates the
epithelium, smooth muscle, interstitial cells of Cajal (ICCs), vasculature, and immune cells
to monitor and respond to alterations. In the epithelium, various types of epithelial cells,
including enteroendocrine cells and goblet cells, interact with enteric neurons and glial
cells to modulate GI physiology. Therefore, the extensive and complex interconnections
of the ENS enable the coordinated regulation of various gut functions, such as secretion
and motility [11]. The delicate balance of these intricate systems is disrupted in GI diseases,
including liver disease [1,12-15].

This review complements the companion protocol manuscript outlined in this journal,
which details the isolation and co-culture of myenteric and submucosal neurons with small
intestinal organoids. Our objective is to provide a foundational understanding of this
method, offering background information and discussing its significance and applicability.
Recognizing the unique traits and interactions between the ENS and the epithelia of the
small or large intestines, the muscle layers, and the intestinal immune system is crucial for
advancing the research in this field. The advance of organoid technology holds significant
potential for elucidating the complex interplay among various constituents of the intestinal
mucosal barrier, including the ENS and the intestinal epithelium. This review emphasizes
the urgent need for innovative co-culture systems that integrate the ENS with intestinal
organoids, as well as other intestinal mucosal barrier components underlining the impor-
tance of developing sophisticated models for a deeper understanding and treatment of
Gl disorders. The collective efforts of the scientific community in devising and utilizing
these models to decipher the unique characteristics, biomarkers, and therapeutic targets of
diseases offer promising prospects for revolutionizing our understanding of GI pathologies
and formulating novel treatment modalities. Such pioneering advancements are poised to
pave the way for more precise, effective, and individualized therapeutic approaches.
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Figure 1. Intricate structure of the enteric nervous system (ENS) within the small intestine. (a,b) Visual
illustration of the small intestinal mucosa comprising the intestinal epithelium organized into villi
and crypts. The intestinal epithelium houses various cell types, including intestinal stem cells (ISCs),
Paneth cells, enterocytes, goblet cells, tuft cells, and enteroendocrine cells (EEC). The epithelium is
supported by a layer of connective tissue known as the lamina propria, containing a diverse array
of immune cell types. Additionally, nested within the mucosa resides a layer of smooth muscle
known as the muscularis mucosa. Beneath the mucosa lies the submucosa, a thick layer of loose
connective tissue that contains blood vessels, lymphatic vessels, and the submucosal plexus. This
plexus comprises ganglia containing intraganglionic glial cells and submucosal neuronal bodies,
which extend intrinsic innervations toward the mucosa and establish connections with its cellular
components. The smooth muscle responsible for facilitating intestinal motility is found within the
muscularis externa, which consists of two distinct layers: the inner circular layer and the outer
longitudinal layer. Between these layers lies the myenteric plexus. Intrinsic nerves originating
from the ganglia of the myenteric plexus extend outward and provide innervation to the cellular
components of the small intestine. Separating the muscularis externa from the serosa, there is an outer
layer of connective tissue known as the adventitia. Figures created with BioRender.com, (accessed
on 2 November 2023). (c) Representative section of immunofluorescent staining was conducted on
the proximal small intestine. 4’,6-diamidino-2-phenylindole (DAPI) (gray) was used to label the cell
nuclei, ulex europaeus agglutinin (UEA) stains goblet cells (cyan), and tubulin beta-III (TUBB3) (red),
specifically, stains enteric neurons. Scale bar = 100 um.

1.1. Mucosal Barriers

The integrity of mucosal barriers is of great importance in preserving overall health.
An essential constituent of mucosal surfaces is the epithelial cell layer, which comprises
various specialized cell types like enterocytes, goblet cells, intestinal microfold cells (M
cells), enteroendocrine cells, tuft cells, intestinal stem cells (ISCs), and Paneth cells situated
within the crypts [16]. The epithelial cell layer establishes a physical and chemical barrier
to the external environment. The physical barrier includes the mucus layer, the glycocalyx
on the intestinal epithelial cells (IECs), and the tight junctions between them. The chemical
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barrier comprises antimicrobial molecules, including immunoglobulin A (IgA) and the
defensin family of proteins, as well as the release of inflammatory mediators, such as
chemokines and cytokines [16] (Figure 1a).

The intestine varies in composition throughout its length [17]. In the upper small
intestine, long, thin villi are covered by a surface epithelium with microvilli containing
digestive enzymes that facilitate absorption. As the intestine progresses, the villi become
shorter, and the population of goblet and Paneth cells increases. The caecum serves as a
reservoir for commensal bacteria, aiding in fermentation during digestion. It lacks villi but
contains numerous goblet cells. In the colon, villi are absent, the crypts are smaller, and
there are abundant goblet cells but scarce Paneth cells. The surface epithelium primarily
reabsorbs water and acts as a barrier to bacteria [17].

Goblet cells secrete mucin to form mucus, while Paneth cells produce antimicrobial
peptides [18]. In the small intestine, goblet cells are less abundant than in the large intestine,
however, several IECs, including Paneth cells, release antimicrobial peptides contributing
to the formation of a chemical barrier aiding in a microbial defense [19]. Notably, the large
intestine contains two mucus layers: an inner layer devoid of bacteria and an outer layer,
which is larger in volume, less dense, and penetrable to bacteria. Conversely, the small
intestine possesses a single, discontinuous mucus layer that is relatively porous, enabling
bacterial infiltration [18]. The mucus thickness varies throughout the GI tract and across
species. Commensal bacteria and pathogens have developed various strategies to inhabit
specific niches within the mucus barrier [18].

The gut microbiome interacts with the mucus layer through various mechanisms.
Commensal bacteria utilize strategies such as surface adhesion and the enzymatic degrada-
tion of mucin glycans for colonization [20-22]. Overall, the intricate relationship between
the gut microbiome and the mucus layer is crucial for maintaining gut homeostasis and
protecting against infections. Pathogens manipulate mucosal glycosylation to promote col-
onization [23], while commensal bacteria produce antibacterial compounds and strengthen
the mucus barrier [23]. Factors like pH, viscosity, and antimicrobial agents influence mucus
function [24-26]. Additionally, bacteriophages interact with mucins to protect against
dysbiosis [27], although their role is complex and still being studied [28].

Another component of the mucosal barrier is the intestinal immune system. The
intestinal immune system plays a pivotal role in regulating the expression of antimicrobial
peptides and secretes cytokines and immunoglobulins participating in the antimicrobial
response [29]. Immune cells reside in various regions of the gut, including organized struc-
tures like gut-associated lymphoid tissue (GALT) and mesenteric lymph nodes, as well as
being scattered throughout the epithelium and lamina propria. GALT and draining lymph
nodes are crucial for priming adaptive immune responses, while effector immune cells
are dispersed across the lamina propria and epithelium [17]. The lamina propria contains
a diverse range of immune cells, including B cells, T cells, dendritic cells, macrophages,
eosinophils, and mast cells. T cells predominate in the epithelium. Regional differences in
immune cell distribution and function exist along the intestine [17]. In the small intestine,
the focus of the immune system is on preserving epithelial function. This is achieved by the
presence of monitoring IL-17- and IL-22-producing T cells, innate lymphoid cells (ILCs),
and intraepithelial T cells with innate and cytolytic and antimicrobial peptides induction
function [17,30]. In addition, regulatory T cells (Tregs) help to prevent hypersensitivity
reactions to dietary antigens [17,31]. Meanwhile, the large intestine houses a larger and
diverse array of beneficial commensal microorganisms crucial for our health. Despite
being perceived as potential threats by the immune system, these microorganisms are
effectively managed through mechanisms such as the production of a thick mucus layer,
IgA antibodies, and regulatory T cells [17,32].

These orchestrated actions of the innate and adaptive immune cells promote immuno-
surveillance mechanisms that are indispensable for safeguarding the overall defense [33].

Additionally, the intestinal mucosal barrier contains four unique subpopulations of
myenteric glia, which are differentially distributed between the colon and the duodenum,
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contributing to region-specific mechanisms that regulate digestive functions [34]. In the
same line, enteric neurons exhibit heterogeneity along the digestive tract [5]. This subject
will be elaborated upon later in this manuscript.

The compromised functionality of these barriers, as seen in mucosal inflammatory
disorders like inflammatory bowel disease (IBD) and liver diseases, has been extensively
documented [1,12-15]. The global prevalence of GI disorders continues to escalate [35],
making it imperative to gain an understanding of the initiation and pathophysiology of
these conditions.

1.2. Culturing Techniques: Intestinal Organoids and Their Applications

Prior to the isolation of ISCs, the scientific community relied solely on intestinal
tumor cells as the model for studying intestinal cells. The frequently utilized Caco-2,
HT-29, and T84 cell lines were obtained from human colorectal adenocarcinoma [36-38].
The culture of intestinal organoids, as a remarkable innovative three-dimensional (3D)
technique mimicking the crypt-villus unit, has advanced our understanding and provided
insights into the complexities of the intestinal system [39-42]. The term “organoid” is
used extensively for ex vivo cultures, but it necessitates further clarification to distinguish
between the different types. Organoids can be derived from multipotent ISC from isolated
crypts of Lieberkiihn, obtained from the small intestine (enteroids) or the colon (colonoids).
Alternatively, organoids can be grown from embryonic stem cells (ESC) from blastocysts.
Other sources are those obtained from induced human pluripotent stem cells (iPSCs) to
create human intestinal organoids (HIO) [39—43]. In the initial stages of the culture process, a
specific type of cellular structure is created (spheroids), formed by growing and maintaining
ISC. ISCs, such as crypt base columnar cells (CBCs), are leucine-rich repeat-containing G
protein-coupled receptor 5 (LGR5+) and divide rapidly and produce transit-amplifying
(TA) cells, which in turn differentiate into absorptive (enterocyte) or secretory (Paneth,
goblet, and enteroendocrine) cell fates [39,44]. These intestinal organoids are cultivated
with factors indispensable for stem-cell maintenance, including wingless-type mammary
tumor virus (MMTV) integration site family member 3A (Wnt3a), epidermal growth factor
(EGF), noggin (a bone morphogenetic protein (BMP) inhibitor), and R-spondin 1 (a ligand
of LGR5 and WNT agonist), which are crucial for their growth, mimicking the in vivo
conditions [45-47]. Cultivated with these components, intestinal organoids maintain their
integrity and display a distinctive polarity, where the apical sides are oriented towards the
internal lumens, while the basolateral domains are in contact with the complex extracellular
matrix (ECM) gel and the surrounding media.

This culture method is versatile and applicable for cultivating both mouse and hu-
man organoids, allowing for continuous growth over extended periods of time. Due to
their ability to mimic the features of the original intestinal tissue, such as gene expression,
polarization, nutrient and ion transport, barrier function, mucus secretion, antimicrobial
peptide production, cytokine and chemokine expression, organization, and the fact that
they contain progenitor and differentiated cells, they are a valuable tool for understanding
physiological and pathological processes. Indeed, the growth of 3D intestinal organoids
derived from isolated intestinal crypts from mouse or human origin [39-41,45,48] and the
growth of HIOs derived from iPSCs differentiated into definitive endoderm, then into
mid/hindgut tube spheroids, and finally into organoids [41,49] is a significant advance in
the field. For instance, intestinal organoids have revolutionized various fields, including
drug discovery, genetic profiling, the study of intestinal transporters, and host—pathogen
interactions [50-57]. They have proven valuable in advancing our understanding of the
onset of GI diseases and have greatly enhanced our comprehension of intestinal biol-
ogy [58]. Moreover, advances in gene editing techniques, such as Clustered Regularly
Interspaced Short Palindromic Repeats-Cas9 (CRISPR)-Cas9, have enabled the induction of
specific somatic mutations in organoids, opening doors to modeling intestinal diseases and
cancer [59-62].
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Undoubtedly, the ongoing advances and applications of organoid technology are
driving breakthroughs. The latest advances in organoid culture involve scaffold-free
and scaffold-based systems. In the scaffold-free system, cells aggregate to form micro-
tissue spheroids using hanging drops, magnetic fields, or specialized synthetic materi-
als [38,63-65]. In the scaffold-based system, the cells attach to scaffolds composed of
natural ECM [66] or synthetic materials, including hydrogels [67] or solid porous struc-
tures [68]. Each type of scaffold has its advantages and limitations, offering researchers a
variety of options for 3D cell culture based on their specific research needs. There are other
notable progressions, such as the use of collagen in place of Matrigel. This collagen-based
approach induces a phenomenon termed “fetalization,” a process that involves partial
adoption of the fetal intestine-specific phenotype by intestinal organoids derived from
adults. This fetalization process has been observed in patients with ulcerative colitis (UC),
rendering it of significant clinical relevance [69,70].

In addition to the aforementioned advances, ex vivo cultured ISCs can engraft and con-
tribute to the regeneration of damaged mucosa in the colon, offering potential therapeutic
implications for refractory IBD [69,71,72]. Building upon this knowledge, researchers have
developed an induced human UC-derived organoid (iHUCO) model using iPSCs to better
understand UC, a type of IBD. iHUCOs exhibit histological and functional features similar
to primary colitic tissues, including aberrant epithelial barrier characteristics. The model
also revealed an overexpression of the C-X-C motif chemokine ligand 8 (CXCL8)-C-X-C
chemokine receptor type 1 (CXCR1) axis, which was not observed in the induced human
normal organoid model (iHNO). CXCLS8 is one of the most important proinflammatory
factors that play a vital role in many inflammatory diseases, including UC [73]. The CXCL8-
CXCR1/2 axis participates in the pathogenesis of UC through multiple signaling pathways,
including phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt), mitogen-activated
protein kinase (MAPKSs), and nuclear factor kappa-light-chain-enhancer of activated B
cells (NF-«kB) signaling pathways [73]. Using iHUCOs, it has been demonstrated that the
overexpression of CXCL8-CXCRI1 in UC results in a dysregulated adherens junction pattern
in epithelial cells. Notably, CXCLS lacks a murine homolog, highlighting the gap in murine-
based models and the functional importance of human-based models. The functionality of
the model was demonstrated via the response to chemical perturbation by repertaxin, a
CXCR1 receptor small molecule non-competitive inhibitor. Repertaxin attenuated several
aspects of the colitic phenotype, including a leaky epithelial barrier. These results suggest
that the pro-inflammatory interaction of CXCR1-CXCL8 compromises the epithelial barrier.
Additionally, UC patient tissues overexpress CXCL8 and its receptor. Therefore, using
repertaxin to block this interaction may be a promising therapeutic strategy to diminish
the chronic inflammatory symptoms of UC. Indeed, inhibiting the CXCLS8 receptor with
repertaxin attenuated UC phenotypes both in vitro and in vivo, showcasing the potential
for tailored interventions using this patient-derived organoid model containing epithelial
and stromal compartments [74].

Intestinal organoid models hold promising potential in biomedicine. However, they
are encumbered by notable limitations. Among them, the absence of a vascular system,
smooth muscle, associated ICCs, connective tissue containing fibroblast, a nervous sys-
tem, and immune systems represents a significant drawback [75]. Researchers have been
exploring ways to enhance the functionality and complexity of intestinal organoids by
co-culturing them with specific cell types [76-81]. Introducing intestinal subepithelial
myofibroblasts (ISEMFs) has led to the long-term culture and growth of organoids [82], and
co-culture with vagal neural crest cells (NCCs) has enabled the development of functional
neurons and glia, simulating the ENS [83]. Furthermore, co-culturing with immune cells
and providing interleukins has been shown to improve organoid growth and matura-
tion [84]. Attempts have been made to incorporate blood vessels into organoids to mimic
the in vivo intestinal environment [53].

Additionally, the co-culture of GI organoids with microbiota holds particular relevance,
as the intestinal microbiota influence various aspects of intestinal biology, including epithe-
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lial turnover, physiological processes, immune homeostasis, and drug pharmacokinetics.
Intestinal organoids have also been used to study the interactions between the intestinal ep-
ithelium and various bacteria, including probiotic and pathogenic strains. They have shown
that probiotic Lactobacillus species enhance organoid growth and maturation [85], while
pathogenic bacteria like Escherichia coli and Salmonella can cause damage to the intestinal
epithelium [86,87]. Microinjecting pathogens such as Clostridium difficile or Cryptosporidium
parvum into the lumen of organoids provides excellent examples of established infection
models [88,89]. Additionally, organoids have been instrumental in studying the replication
and effects of enteric viruses like rotavirus and norovirus, providing valuable insights into
GI diseases and potential therapies [90-92]. Overall, intestinal organoids offer a powerful
tool to investigate microbiota interactions and understand GI tract diseases, paving the
way for improved treatments and preventive measures.

Current developments focus on overcoming limitations by employing methods such
as 3D bioprinting, biomaterials, and co-culture [93,94]. Bioprinting and microfluidic devices
are cutting-edge techniques that enable the encapsulation of various cells in compatible
hydrogels and precise placement for co-culture [95-97]. These methods allow researchers to
create tissues with intricate vascular networks and innervation, enhancing tissue complexity.
Regarding bioprinting, research has demonstrated that “assembloids” created through
cell-based 3D printing technology surpass organoids and exhibit structure and function
that closely resemble human tissues and organs [98]. Microfluidic devices, in particular,
facilitate the spatial separation of different cell types, making them ideal for modeling
complex interactions, such as angiogenesis, by connecting organoids and vascular cells
through soluble factors [99]. The integration of microfluidic devices with organoids is
termed “organoid-on-a-chip” [100]. The concept of organoids-on-a-chip represents a more
intricate cultivation approach, where the autonomous arrangement of stem cells can be
externally influenced through a 3D microstructured scaffold. This microarray technology
enables the regeneration of functional intestinal microarchitecture with physiologically
relevant shear stress and mechanical motions, as well as the introduction of anaerobic
bacteria [54]. It has the potential to advance the field by facilitating the study of different
cell types and intestinal epithelium-microbiota interactions [101]. Furthermore, ongoing
research focuses on engineering materials to use as matrices for organoid culture to improve
organoid development and functionality [102,103]. Other advances include the generation
of organoids with inverted polarization, with the apical side facing the ECM [104]. Other
advances include promoting their growth on monolayers [105-107], the utilization of
microinjection techniques to study host-microbiome interactions [77], and promoting
specific differentiation to different cell types [108-111]

Despite the impressive complexity of organoids, they still fall short of containing all
of the necessary cell and tissue types essential for achieving full organ function, such as
the ENS. Nevertheless, pioneering studies have harnessed engineered organoid systems
to shed light on how surrounding cells and microbiota influence GI pathophysiology by
establishing co-cultures of organoids with microbes, immune cells, neural cells, or stromal
cells, among others [76-81]. Yet, in order to truly propel the field forward, further advances
are needed. The current techniques, involving multiple co-cultures and strategies for
reconstituting culture environments, demand refinement to elevate both the structural
intricacy and the functional capabilities of these systems. By addressing these challenges,
we can unlock new frontiers in regenerative medicine and drive the development of
cutting-edge treatments and therapies. The quest to achieve organoids that closely mimic
the complexity and function of human organs holds immense promise for revolutionizing
biomedical research and healthcare.

1.3. The Enteric Nervous System (ENS)

Within the digestive tract, the ENS assumes a pivotal role, functioning as an intrin-
sic neuronal network that governs the GI functions alongside the extrinsic innervation
provided by the parasympathetic and sympathetic components of the autonomic nervous
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system [112]. The ENS consists of a vast array of neurons with diverse functions and glial
cells. These elements are organized into the myenteric and submucosal plexuses. Notably,
their number surpasses those in the spinal cord (Figure 1a—c). The complexity of this system
escalates when considering that the neurochemical profiles are influenced by factors such as
the gut environment, endocrine influences, and interactions with the microbiota [113-115].
Immunohistochemistry, morphological, and single-cell RNA sequencing (scRNAseq) analy-
ses have been instrumental in the precise classification of enteric neuron subtypes. Through
these techniques, studies have elucidated the primary neurotransmitters that delineate
various neuron types within the myenteric plexus. While most myenteric neurons are
traditionally classified as either cholinergic or nitrergic, research has unveiled complexities,
with some neurons exhibiting dual characteristics, lacking both, or expressing glial markers.
These facts challenge the established paradigms and underscore the criticality of accurate
classification when exploring enteric neuronal populations [116-118]. Submucosal neurons,
on the other hand, mainly consist of cholinergic neurons and vasoactive intestinal peptide
(VIP)—expressing noncholinergic neurons. These major neuronal populations can further
divide into subsets based on additional markers like neuropeptides and calcium-binding
proteins [4]. The proportions of these subsets vary along the gut and show interspecies dif-
ferences. Overall, around 15 classes of functionally defined, neurochemically coded enteric
neurons have been identified in the intestine, with fewer in the stomach and esophagus [2].

In 2008, Qu et al. characterized nerve cell types in the mouse small intestine’s myen-
teric plexus using antibodies to define the neurons by shape, size, and neurochemistry.
They found type II neurons, representing 26% of the neurons, with axons projecting to
the mucosa and expressing choline acetyltransferase (CHAT) and vesicular acetylcholine
transporter (VACHT). It was also described that nitric oxide synthase (NOS) occurred in
29% of neurons, mostly inhibitory motor neurons to the muscle. Calretinin (CR) was found
in 52% of neurons, with some identified as excitatory neurons. Overall, this work defined
that over 90% of all neurons can be identified by their neurochemistry and shape, aiding in
understanding their function [119].

Subsequent studies by Foong et al. in 2014 focused on the submucosal neurons
in the mouse distal colon, shedding light on their role in regulating gut secretion and
elucidating regional differences in neurochemistry and ion transport responses. Using
(ChAT)-Cre x ROSA26YFP reporter mice, which express a yellow fluorescent protein (YFP)
in neurons that express CHAT, they correlated the neurochemistry, morphology, and elec-
trophysiology of submucosal neurons. They identified two main neurochemical groups:
cholinergic and non-cholinergic neurons, with the majority in the distal colon being non-
cholinergic but containing VIP. They found that the distal colon had smaller ganglia, a
higher proportion of cholinergic neurons, and a larger nicotinic secretory component com-
pared to the proximal colon. Their study highlights the regional differences in submucosal
neurons and underscores the need for further investigation [120].

In 2020, Morarach et al. identified 12 enteric neuron classes within the myenteric
plexus of the mouse small intestine using scRNAseq. Together with transgenic tools
for class-specific targeting, this group elucidated cell-cell communication features and
histochemical markers of motor neurons, sensory neurons, and interneurons, [121].

Similarly, Drokhlyansky et al., in 2020, provided a molecular characterization of the
ENS in adult mice and humans at single-cell resolution, uncovering extraordinary neuron
diversity and identifying conserved and species-specific transcriptional programs. They
developed two innovative methods, ribosomes and intact single nucleus (RAISIN) RNA-
seq and mining rare cells sequencing (MIRACL)-seq, to profile the ENS with unprecedented
detail and resolution. By applying these techniques, they generated an atlas of the adult ENS
spanning species, age, sex, region, and circadian phase. In their mouse atlas, which includes
data from the ileum and colon, they identified a great diversity of neurons, comprising
21 distinct neuron subsets and 3 glia subsets. Notably, they observed circadian expression
changes in the enteric neurons and found a dysregulation of disease-related genes with
aging. Differences between the ileum and colon were also identified, indicating regional
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variations in gene expression and neuron proportions. Similarly, in their human atlas, the
researchers profiled over 400,000 nuclei and identified 1445 neurons, revealing conserved
and species-specific transcriptional programs. They uncovered putative neuro—epithelial,
neuro-stromal, and neuro-immune interactions, indicating the complex interplay within
the ENS. Importantly, they found that the human ENS expresses genes associated with
neuropathic, inflammatory, and extra-intestinal diseases, suggesting potential neuronal
contributions to disease pathogenesis. Moreover, their study provided valuable insights
into age-related changes, regional differences along the intestine, and circadian regulation
of the ENS. By comparing the gene expression between humans and mice, they identified
conserved transcriptional programs across species, while also highlighting differences
in key pathways. The study also inferred putative interactions between the ENS and
various cell types, shedding light on the role of the ENS in mucosal immunity and disease
pathogenesis [122].

In 2021, Wright et al. aimed to better understand the molecular landscape of enteric
neuron subtypes to aid in the development of therapeutic strategies for enteric neuropathies
and to enhance our knowledge of ENS function. They conducted single-nucleus RNAseq
(snRNAseq) on adult mouse and human colon myenteric plexuses, as well as scRNAseq
on E17.5 mouse ENS cells. Their analysis revealed seven adult neuron subtypes and eight
E17.5 neuron subtypes, along with hundreds of differentially expressed genes. Furthermore,
the RN Aseq data from the manually dissected human colon myenteric plexus provided
valuable insights into the gene expression profiles of various cell types within the ENS
and surrounding tissues. Immunohistochemistry confirmed the differential expression of
several genes, including zinc finger protein basonuclin-2 (BNC2), PBX homeobox 3 (PBX3),
SATB homeobox 1 (SATB1), RNA biding fox-1 homolog 1 (RBFOX1), T-box transcription
factor 2 (TBX2), and TBX3, in enteric neuron subtypes. Overall, these findings provide
valuable insights into the molecular landscape of the myenteric neuron subtypes [123]. This
knowledge not only facilitates molecular diagnostic studies, but also holds promise for the
development of novel therapeutics targeting bowel motility disorders.

In 2022, May-Zhang et al. identified a total of 10 enteric neuron subtypes in the
duodenum, 13 in the ileum, and 14 in the colon in mice. This group conducted a study
comparing the types of enteric neurons found in the small intestine and colon of humans
and mice. By analyzing the genetic profiles of these neurons, they discovered similarities
and differences between species. Some enteric neuron subtype-specific genes found in mice
were expressed differently in humans, indicating distinct neuron subtypes. These findings
suggest that caution is needed when making cross-species inferences for specific EN
subtypes. Examining multiple regions of the GI tract with snRNAseq, this group identified
22 myenteric EN subtypes throughout the entire intestine. This study also revealed regional
variations in gene expression along the Gl tract. For example, the expression of certain genes
differed between the small intestine and the colon in both humans and mice. This regional
variation suggests the potential for developing targeted therapies for specific enteric neuron
subtypes in different parts of the intestine. This research expands our understanding of
enteric neuron diversity and provides insights into potential treatments for GI disorders.
Additionally, this study identified enteric neuron genes that are differentially expressed
between males and females, offering new avenues for investigating sex-related differences
in motility disorders. Overall, this comparative molecular analysis enhances our knowledge
of enteric neuron subtypes across species and intestinal regions, providing a foundation for
diagnosing enteric neuropathies and other GI diseases with a neuronal basis [124].

Furthermore, scRNAseq studies, complemented by earlier double- and triple-label
immunofluorescence investigations, have facilitated the integration of transcriptome data
with pre-existing functional identifications. These studies revealed that neurochemically
distinct classes of enteric neurons express multiple mediators in various combinations.
For instance, VIP and neural NOS (nNOS) coexist in inhibitory motor neurons, certain
interneurons, and a subset of submucosal VIP neurons, demonstrating the intricate nature
of neurochemical co-localization [116-118,121,125]. Therefore, caution is warranted, due
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to limitations in immunohistochemistry, especially the use of restricted markers such as
CHAT, nNOS, or VIP to define specific subtypes. Recent studies have identified similarities
between humans and rodents among some EN subtypes, but caution is advised regarding
species differences when translating research from non-conserved EN morphology [124].

In the ENS, neuronal cell bodies are clustered into groups known as ganglia, sur-
rounded by glia, with neuronal axons projecting connections among other ganglia and the
epithelium [112]. Glial cells support the homeostatic function of intestinal neurons, forming
a communication network and regulating immunity and cell growth [126]. Remarkably;,
enteric neurons within distinct plexuses exhibit diverse functions and comprise numerous
subtypes, including IPANs, interneurons, and motor neurons [2]. Enteric motor neurons
drive intestinal motility.

Sensory neurons receive various sensory stimuli from the mucosa and muscle [2].
Two categories of intrinsic IPANs have been described: myenteric and submucosal IPANSs.
Myenteric IPANSs are responsive to distortions in their processes within the outer muscle
layers and to changes in the luminal chemistry through extensions into the mucosa. Sub-
mucosal IPANs detect any mechanical deformation of the mucosa and shifts in the luminal
chemistry. However, there is little direct evidence regarding the sensory modalities served
by submucosal IPANs. Conversely, extrinsic primary afferent neurons originate from cell
bodies situated in dorsal root ganglia (referred to as spinal primary afferent neurons) and in
vagal ganglia (encompassing nodose and jugular ganglia). Despite scRNAseq technologies
being instrumental in identifying potential groupings of enteric neurons, their ability to
directly define functional subclasses of IPANs is limited. Furthermore, scRNAseq stud-
ies predominantly focus on myenteric neurons, with little emphasis on the submucosal
plexuses. While physiological evidence suggests the presence of different types of IPANs, a
systematic relationship between scRNAseq findings and physiological evidence has not
yet been established [2,5,127-130].

In the small and large intestine, uniaxonal interneurons play a vital role. They used
to be categorized into two types: either ascending (oral projection, targeting excitatory
motor neurons) or descending (anal projection, targeting inhibitory motor neurons). They
are distributed differently in the small and large intestine. For instance, in the ileum of
the guinea pig, there is a single class of excitatory ascending interneurons alongside three
classes of descending interneurons. Conversely, in the colon, the composition differs, with
three classes of ascending interneurons and four classes of descending interneurons. Their
distribution varies between the small and large intestine [125,131]. However, the traditional
view of a linear ascending-to-excitatory and descending-to-inhibitory neural pathway is
outdated. New evidence suggests that interneurons form complex connections, including
cross-connections between excitatory and inhibitory pathways. Ascending and descending
interneurons form extensive synaptic connections with one another, enabling mutual
activation. These findings have shown temporal coordination in the firing patterns of large
populations of excitatory and inhibitory motor neurons during aboral fluid propulsion.
These neurons act both orally and aborally to facilitate the propagation of contractions in
colonic smooth muscle [132]. Interneurons, categorized by neurochemical classes, primarily
employ acetylcholine (ACh) as the primary neurotransmitter; however, each subtype may
utilize other co-transmitters, such as 5-hydroxytryptamine (5-HT), adenosine triphosphate
(ATP), tachykinin (TK), nitric oxide (NO), and somatostatin (SOM) [133].

In the myenteric plexus, excitatory motor neurons use ACh to contract circular and
longitudinal muscles [133]. Inhibitory neurons employ various co-transmitters like NO,
ATP, B-nicotinamide adenine dinucleotide (3-NAD), VIP, and pituitary adenylate cyclase-
activating polypeptide (PACAP) [128,133,134]. It has been reported that the release of
neurogenic purines contributes to tonic inhibition in the colon [135]. Historically, ATP has
been considered the primary purine neurotransmitter [136-139]. However, recent investi-
gations involving mouse and primate colons have revealed that another purine, 3-NAD+,
along with its bioactive derivative, adenosine 5'-diphosphate ribose (ADPR), may more
effectively replicate the actions of the endogenous purine neurotransmitter compared to



Cells 2024, 13, 820

11 of 25

ATP [140-142]. In the GI tract, alongside myogenic control, various hierarchical regulatory
systems orchestrate coordinated muscular movements for normal GI motility. Smooth
muscle cells are interconnected via gap junctions with two key types of interstitial cells:
ICCs and platelet-derived growth factor receptor o positive (PDGFRa+) cells. Together,
these form an electrical syncytium termed the smooth muscle cells/ICCs/PDGFRx+ (SIP)
syncytium [143,144]. Inward and outward conductances within these cells influence the
overall muscle excitability and responses to regulatory inputs. ICCs act as pacemaker cells
and integrate inputs from motor neurons [145,146], while PDGFRa+ cells likely mediate the
purinergic inputs from the enteric inhibitory motor neurons [147]. PDGFRa+ cells express
the necessary molecular machinery for transducing these inputs, generating spontaneous
Ca?* transients and dynamic Ca?* oscillations in response to purines [148]. Purinergic
responses involve P2Y1 receptors and Ca®* release from intracellular stores [148]. Ca®* re-
lease in PDGFRa+ cells activates Ca2*-activated K+ channels, leading to hyperpolarization
in GI muscles and eliciting inhibitory motor responses [148]. Spontaneous Ca?* transients
may regulate the basal excitability of fundus muscles, and purine release from motor neu-
rons may aid in controlling pressure during stomach filling in the proximal stomach [148].
Motor pattern generators are pivotal in orchestrating peristaltic movements for content
propulsion, as well as segmentation to optimize digestion, and are tightly regulated for
coordination with secretion.

When IPANs detect luminal stimuli, they excite ascending interneurons, initiating
ascending excitation. This activation leads to the stimulation of excitatory motor neurons,
inducing oral contractions. Meanwhile, descending interneurons are activated to stimulate
inhibitory motor neurons, facilitating anal relaxation to allow easier movement of contents
to propel them [149]. It is important to note that descending excitation is often seen,
especially in the colon, and overall anterograde propulsion requires anally propagating
contractions [150,151].

In addition, enteric glia cells [152] and luminal microbiota influence colonic motility
and the transcription profile of enteric neurons. This occurs via the activation of aryl
hydrocarbon receptor (AhR) signaling [153]. Furthermore, macrophages in the muscularis
externa modulate peristalsis via BMP2 secretion, interacting dynamically with enteric
neurons influenced by microbiota signals [154].

In the submucosal plexus, the secretomotor and vasodilator neurons regulate intesti-
nal secretion and blood flow in the mucosa and submucosal vasculature. While both
populations employ ACh and VIP as key transmitters, they also express additional co-
transmitters [128]. Chemical and mechanical stimulation of the mucosa excites myenteric
or submucosal sensory neurons. These, in turn, activate the secretomotor and vasodilator
neurons directly or via interneurons. Additionally, they may directly regulate secretion
through an axon reflex [128]. Through the transmission of excitatory or inhibitory signals
via neurotransmitters, the enteric neurons orchestrate fluid secretion and absorption, GI
motility, blood flow, inflammation, and pain perception [5]. Any alterations in the func-
tioning of these neuronal cells can result in intestinal motor dysfunctions or disrupt the
intricate coordination of the intestinal epithelium [155].

1.4. Culturing Techniques: ENS

Exploring enteric neurons has long been methodologically challenging, due to the
close proximity of the ENS to the contractile gut musculature and its intricate association
with other intestinal cell types, including epithelial, immune, and stromal cells, as well as
the nonsterile environment within the intestinal lumen [156]. While guinea pigs have his-
torically served as a valuable model for enteric neuronal cultures, their limitations in terms
of genetic modification and cost have led to the emergence of murine models [157,158].
Additionally, the culture of enteric neurons from rats and humans has also been established,
expanding the scope of research possibilities in this field [159,160]. The evolution of enteric
neuron culturing techniques includes primary cell cultures [156], stem cell-derived 3D
neurospheres [158], induced ENS cells from stem cell origin [80,161,162], and established
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cell lines [163]. Enteric neural progenitors, found in the gut’s myenteric and submucous
plexus, can be isolated using various methods, including dissection, specialized culture
conditions, or cell sorting [164-166]. Techniques developed in the late 1970s, such as myen-
teric and submucosal plexus isolation, initially faced challenges in purity [167,168]. Current
approaches, starting with enzymatic dissociation using dispase and collagenase, yield
ENS-enriched cultures, but include other cells like fibroblasts and immune cells [165,166].
Cell sorting enhances the purity, though identifying specific markers remains a challenge.
Obtaining sufficient ENS cells, especially postnatally, remains a hurdle. Recent protocols
using purified collagenase show promise for larger quantities of pure myenteric plexus
from the human gut; however, challenges persist in submucosal plexus isolation and
understanding differences in stem cell populations [169].

It is important to acknowledge that submucosal and myenteric neurons and glial cells
exhibit distinct properties. Depending on the priority, the isolation of different plexuses
could be performed and has been already established [170-175]. However, when focusing
on one plexus alone, the neurons cannot fully reflect the full complexity of the system.
Therefore, the choice of the plexus source depends on the scientific objective.

By harnessing the power of in vitro neuronal models, researchers can delve deeper
into the intricacies of the ENS. These models shed light on the normal physiology of
the ENS and help to unveil the mechanisms underlying various pathological conditions.
However, it is imperative to acknowledge that the intricate functionality of the ENS should
not be examined in isolation. Given its multifaceted nature, there is a requirement for
sophisticated systems that facilitate the study of the dynamic interactions between the
ENS and the intestinal epithelium. Although the isolation of the submucosal plexus is
possible [172,176], the majority of the studies focus on the isolation of the myenteric plexus
for neuronal culture [170-175].

1.5. ENS, Intestinal Epithelium, and Immune Interactions and Applications

The influence of the ENS on the intestinal epithelium and the intestinal immune
system and vice versa has been previously investigated in vivo and ex vivo [8,177-179].
Co-culture of HIOs and differentiated ENS from human ESCs resulted in increased ep-
ithelial proliferation [80]. Indeed, it has been reported that the ENS can induce genes
related to GI development, including EGF and transforming growth factor beta (TGFf(3).
Additionally, it decreases genes related to goblet and Paneth cell differentiation, while
increasing genes related to tuft and enteroendocrine cells. This demonstrates that the ENS
regulates epithelial physiology. These co-cultures utilized human-PSC-derived NCCs or
primary neurons isolated from the spinal cord [80,180]. However, conflicting results were
observed in different co-culture experiments, suggesting variations due to cell sources,
developmental age, and, most likely, preparation and culture conditions [162,181,182].
Further instances demonstrate the interconnection between enterochromaffin cells and
sensory neural pathways [183]. Regarding the functionality of neurotransmitters, previ-
ous studies have demonstrated that 5-HT and ACh release increase epithelial and crypt
proliferation indexes [180,184]. Conversely, proliferation decreases with vagotomy or
norepinephrine [185], and whole-animal knockouts of muscarinic ACh receptors (M2, M3,
and M5) show an increase in epithelial proliferation [186]. Standardized protocols are
needed to obtain better comparisons between studies. Enteric glial cells also play a sup-
portive role for IECs. However, conflicting reports exist, highlighting the need for further
investigation [187-189].

The intestinal epithelium interacts with various components, most notably, the ENS.
Understanding neuroimmune-microbiome modulations holds immense promise for the
discovery of innovative therapeutic approaches across a spectrum of conditions. Recent
advances have shed light on the profound significance of neuronal signals in regulating
crucial aspects such as mucosal immune cells, the microbiome, and the integrity of the
intestinal barrier [190-195]. Notably, unidentified subtypes of VIP-expressing enteric
neurons are responsible for directing gut mucosal fucosylation through extracellular signal-
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regulated kinase 1 and 2 (Erk1/2)-c-Fos pathway. When the abundance of these VIP-
expressing neurons decreases, it disrupts the balance between beneficial Bifidobacterium and
pathogenic Enterococcus faecalis in the gut, leading to an increased susceptibility to alcohol-
associated liver disease (ALD) [196]. Moreover, the ENS assumes a vital role in orchestrating
the goblet cell-derived-antimicrobial peptides response, acting as a potent mediator through
the secretion of interleukin (IL)-18. The intricate interplay of the ENS-derived IL-18 and
its immunomodulatory effects have been brought to light, culminating in a remarkable
defense against pathogens. When ENS-derived IL-18 is deleted in mice, it renders them
more susceptible to Salmonella typhimurium infection, unveiling the indispensability of
this neural network in fortifying the body’s defenses. Importantly, the goblet cell-derived-
antimicrobial peptides angiopoietin-4 (Ang4), resistin-like molecule beta (Retnlb), and
intelecitin-1 (It/n1) were among the most significantly reduced genes in the mice [194].

Research has shown that the intestinal microbiome exerts a profound influence on
the ENS [190,197-199]. As an illustration, the gut’s colonization by bacteria influences
the production of mucosal serotonin and impacts the maturation of the adult ENS [198].
Similarly, the presence of the microbiota exerts a significant impact on neuronal nNOS
expression, as evidenced by decreased nNOS+ neurons in the myenteric plexus of germ-
free mice, antibiotic-treated mice, and mice with genetic ablation of toll-like receptors
(TLRs) [200-202]. Notably, enteric neurons express a diverse range of receptors for microbial
products, including TLR2, TLR4, and TLR9, whereby genetic ablation leads to alterations in
the structure of the ENS [201,203,204]. Additionally, enteric neurons express receptors for
metabolites, such as short-chain fatty acids, including the free fatty acid receptor (FFA)-2,
FFA-3 [205], and bile acids like G-protein coupled bile acid receptor 5 (TGR5) [206]. The
TGRS receptor plays a crucial role in mediating prokinetic actions of intestinal bile acids
and is essential for normal defecation.

As previously mentioned, the ENS innervates and intricately intertwines with the cel-
lular constituents of the intestinal epithelium, thereby influencing their functions [207,208].
Within this array of cellular components, the goblet cells express specific receptors that
recognize neurotransmitter ACh, such as muscarinic ACh receptor 4 (M4). Upon engage-
ment with ACh to M4, the goblet cells orchestrate a sophisticated transcytosis mechanism,
initiating the formation of goblet cell-associated antigen passages (GAPs). This intricate
transcytosis process facilitates the sampling of luminal antigens and bacteria by subjacent
antigen-presenting cells (APC). Therefore, this orchestrated interplay positions goblet cells
as notable regulators of the intestinal immune system [207,209]. ACh not only regulates gob-
let cells, but also affects non-neuronal functions like intestinal epithelial ion transport [210].
Endogenous ACh from the intestinal epithelium is essential for maintaining homeostasis
and inhibiting differentiation of Lgr5+ ISCs via specific muscarinic ACh receptors (M1,
M2, and M3) [211]. ACh can also signal through a234 nAChR in Paneth cells, modulating
non-canonical Wnt ligands (Wnt5a and Wnt9b) in intestinal organoids. This activates Wnt
signaling through Frizzled receptors, promoting enhanced proliferation and differentiation
in the stem cell niche [212].

However, neural projections can also reach out to clusters of immune cells, such as
C-C chemokine receptor type 6 (CCR6+), type 3 innate lymphoid cells (ILC3s) located
in cryptopatches, and isolated lymphoid follicles. Remarkably, this particular subset
of ILC3s distinctly expresses VIP receptor type 2 (VIPR2), a receptor for neurotransmit-
ter/neuropeptide VIP. Activated by the intake of food, VIPergic neurons engage with these
ILC3s. The interaction of VIP with VIPR2 on CCR6 + ILC3s leads to the inhibition of IL-22
production, a pivotal immune mediator. IL-22, normally elevated by commensal microbes,
like segmented filamentous bacteria (SFB), experiences suppression when VIPR?2 is engaged.
Consequently, this results in a decrease in the production of antimicrobial peptides derived
from epithelial cells while simultaneously elevating the expression of lipid-binding proteins
and transporters. As a direct outcome of food consumption, the activation of VIPergic neu-
rons plays a pivotal role in fostering the growth of epithelial-associated SFB and amplifying
lipid absorption. In essence, these findings uncover a sophisticated dynamic intestinal
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neuro-immune circuit regulated by feeding and circadian rhythms [213]. In the same line,
IL-6 produced by enteric neurons affects the population of microbe-responsive Treg cells in
the gut. The immune system and the ENS collaborate to monitor interactions with microbes
in the colon. This study described that commensal microbe colonization reduces colon
neuronal density, and IL-6 deletion in the neurons increases the Treg cell numbers while
reducing the retinoic acid receptor-related orphan receptor gamma (RORy+) subset. This
suggests a circuit where microbial signals impact neuronal activity, influencing Treg cell
generation and immune tolerance in the gut [214].

Neuroimmune interactions also play a crucial role during infection. Changes in GI
function can aid in clearing pathogens through diarrheal responses that flush out the
pathogen by increasing water secretion into the intestine and promoting contractions, both
of which are regulated by the ENS [215]. Infections can permanently damage the ENS,
leading to disruptions in gut motility and function, resulting in post-infectious GI disorders
such as irritable bowel syndrome (IBS) and IBD [195,216].

Understanding the ENS is imperative to unravel its involvement in a wide spectrum of
neuropathies. These include congenital conditions like Hirschsprung’s disease, where the
ENS is missing from the large intestine. Other conditions include acquired disorders, such
as Chagas disease, caused by the parasite Trypanosoma cruzi, transmitted to animals and
people by insect vectors. Additionally, neuropathies can arise as secondary manifestations
from disease states like diabetic gastroparesis, drug-induced complications, and conse-
quences of injuries like postoperative ileus, as well as other GI diseases and conditions
involving gut-peripheral organ axes such as gut-liver disease [217-219]. Moreover, given
that enteric neurons display analogous cellular alterations prior to their manifestation in
central neurons in neurodegenerative diseases such as Alzheimer’s disease and Parkinson’s
disease, the ENS is a valuable tool for studying the pathogenic process [220,221]. The
causes of enteric neuropathies are poorly understood. The interconnectedness between the
intestinal epithelium, the ENS, the intestinal immune system, and the microbiota during GI
diseases (including liver disease) is altered [2,218]. Therefore, a thorough comprehension
of the ENS and its intricate interaction with the GI mucosa is crucial for understanding
disease states. The development of systems enabling the study of these interactions is
imperative to identify therapies for combating these diseases.

In conclusion, the intricate interplay between the ENS, the intestinal epithelium,
the intestinal immune system, and the microbiome necessitates thorough investigation.
While significant progress has been achieved in comprehending how the ENS impacts
the intestinal epithelium and its role in immune response modulation, challenges and
discrepancies persist, due to variations in experimental setups and cell sources. The
pursuit of unraveling the precise mechanisms governing these interactions necessitates
standardized protocols and innovative techniques to bridge the gaps in our understanding.
As we endeavor to unveil the mysteries of the ENS and its dynamic relationship with the
gut ecosystem, the development of novel methodologies will play a pivotal role in making
breakthroughs that carry immense potential for revolutionizing disease prevention and
treatment.

1.6. The Imperative of Novel Co-Culture Techniques

The advance of organoid technology holds immense potential for unraveling the intri-
cate interactions between various components of the intestinal mucosal barrier, including
the ENS and the intestinal epithelium microenvironment. In comparison to traditional
two-dimensional cell cultures, organoid cultures have surpassed expectations in terms of
accuracy and physiological relevance, providing invaluable insights into intestinal biology.
In a novel in vitro transwell-based co-culture setup, Puzan and colleagues demonstrated
that the ENS plays a role in regulating the fate of ISCs. Specifically, the presence of enteric
neurons led to an increase in chromogranin A-positive epithelial cells, indicating the pro-
motion of differentiation towards enteroendocrine cells [162]. Recent developments in HIO
techniques have significantly enhanced our understanding of the ENS and its interactions
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with the intestinal epithelium. Workman et al. demonstrated a groundbreaking approach
by differentiating human ESC into ENS cells after four weeks of in vitro culture. These cells
were then co-cultured with HIOs derived from human embryonic and iPSC. The process
involved differentiating the stem cells into definitive endoderm, followed by mid/hindgut
tube spheroids, and, finally, organoids [80]. When these ENS-containing HIOs were trans-
planted into mice, they exhibited a resemblance to the adult ganglia morphology observed
in the myenteric and submucosal plexuses. Likewise, another study devised a method for
constructing organoids by incorporating enteric neuroglial, mesenchymal, and epithelial
precursors, all of which were derived from iPSCs and subsequently differentiated [222].
However, it is worth considering alternative models, such as murine or human models, that
involve differentiating crypts to form organoids and isolating neurons from submucosal
and myenteric plexuses, which offer certain advantages in terms of neuronal complexity.
However, further characterization of the neuronal types and their functionality is needed to
fully assess the potential of this technique. Furthermore, relying solely on organoids based
on the crypt—villus unit does not fully represent the complexity of the neuronal interactions
in the gut. Therefore, expanding the scope of the co-culture model to include components
beyond the crypt-villus unit, including additional cell types such as smooth muscle cells or
ICCs, into the co-culture system could improve the accuracy and representation of the phys-
iological environment of the gut. To advance our understanding of the interaction between
the GI tract and the ENS and achieve breakthroughs in this field, we recommend the use of
our developed co-culture system. For further guidance, we recommend consulting the com-
panion protocol article titled ‘Isolation of Myenteric and Submucosal Plexus from Mouse
Gastrointestinal Tract and Subsequent Co-culture with Small Intestinal Organoids.” This
article describes a novel protocol for the isolation of myenteric and submucosal plexuses
from the mouse GI tract and their subsequent co-culture with small intestinal organoids.

2. Conclusions

The imperative for developing co-culture systems, integrating myenteric and sub-
mucosal neurons with intestinal organoids, arises from the essential need to establish
transformative models for GI diseases. These include neuropathies, liver diseases, and
other extra-intestinal conditions influenced by the intestinal microbiome or immune sys-
tem. The aim is to understand the physiopathological processes and pioneer innovative
therapeutic interventions. These co-culture techniques promise to revolutionize the treat-
ment landscape for GI diseases by providing accessible models, defining new molecular
targets, and facilitating the development and testing of innovative therapies. Additionally,
by integrating myenteric and submucosal neurons with organoids, these systems reveal
benefits that extend beyond these aspects.

The integration of myenteric neurons, submucosal neurons, and organoids is cru-
cial to open up avenues for exploring the communication between neurons and the gut
microbiota. These endeavors hold the potential to provide valuable insights into the mi-
crobiome’s role in intestinal health and disease. Moreover, this type of integrated model
is needed to study the influence of specific pathobionts. Another benefit of creating and
improving these systems is reducing the reliance on germ-free mice and enhancing the
cost-effectiveness of molecular mechanism investigations. It would also allow the genera-
tion of other complex co-culture systems by integrating isolated intestinal immune cells to
understand microbiome-neuroimmune interactions. Additionally, expanding the scope of
the co-culture model to integrate components beyond the crypt-villus unit, such as smooth
muscle cells or ICCs, holds the potential for better replicating the microenvironment cru-
cial for shaping the phenotype of the enteric neurons. These elements could enhance the
accuracy and fidelity of the gut’s physiological representation.

The emerging field of ENS stem cell therapies for enteric neuropathies, along with the
use of intestinal organoids in regenerative medicine for GI diseases, holds promise. The
integration of co-cultured ENS—intestinal organoids with preestablished innervations could
offer new alternatives in regenerative medicine. Leveraging patient-derived autologous
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cells may eliminate the need for immune suppression, presenting a revolutionary step
forward. Refining cell isolation, culture methods, and engineering strategies is a must for
substantial progress in the field.

As we delve into the complex interactions within the intestinal mucosal barrier, the
creation of ENS models considering both myenteric and submucosal neurons and co-
culturing them with intestinal organoids represents a groundbreaking advance in organoid
technology. While successful clinical translation remains a future goal, improvements
in multicellular co-culture systems, including material and technical enhancements, are
essential for better simulating the in vivo intestinal environment and establishing efficacy.
The development of this novel system is imperative, as it offers promise for future research
and the treatment of digestive diseases, signifying a significant leap toward revolutionizing
patient outcomes.
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cells; TBX2, T-box transcription factor 2; TBX3, T-box transcription factor 3; TGFf, transforming
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growth factor beta; TGR5, G-protein coupled bile acid receptor 5; TK, tachykinin; TLRs, toll-like
receptors; TMR, tetramethylrhodamine-dextran; Treg cells, regulatory T cells; TUBB3, neuron marker
B-tubulin IIT; UC, ulcerative colitis; UEA-I, Ulex Europaeus Agglutinin I; VIP, vasoactive intestinal
peptide; VIPR2, VIP receptor type 2; Wnt3a, wingless-type MMTYV integration site family member
3A;YFP, yellow fluorescent protein; «234 nAChR, alpha-2 beta-4 nicotinic acetylcholine receptor;
B-NAD, B-nicotinamide adenine dinucleotide.
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