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Abstract: Frailty is an aging-related pathology, defined as a state of increased vulnerability to
stressors, leading to a limited capacity to meet homeostatic demands. Extracellular microRNAs
(miRNAs) were proposed as potential biomarkers of various disease conditions, including age-related
pathologies. The primary objective of this study was to identify blood miRNAs that could serve
as potential biomarkers and candidate mechanisms of frailty. Using the Fried index, we enrolled
22 robust and 19 frail subjects. Blood and urine samples were analysed for several biochemical
parameters. We observed that sTNF-R was robustly upregulated in the frail group, indicating the
presence of an inflammatory state. Further, by RNA-seq, we profiled 2654 mature miRNAs in the
whole blood of the two groups. Expression levels of selected differentially expressed miRNAs were
validated by qPCR, and target prediction analyses were performed for the dysregulated miRNAs.
We identified 2 miRNAs able to significantly differentiate frail patients from robust subjects. Both
miR-101-3p and miR-142-5p were found to be downregulated in the frail vs. robust group. Finally,
using bioinformatics targets prediction tools, we explored the potential molecular mechanisms and
cellular pathways regulated by the two miRNAs and potentially involved in frailty.

Keywords: microRNA; frailty; smRNA-seq; miRNome; biomarkers; RNA-seq; miR-101-3p; miR-142-5p

1. Introduction

Frailty is an aging-related condition, generally defined as a state of increased vulnera-
bility to endogenous and exogenous stressors that results from a decreased physiological
reserve in multiple organs and systems [1,2]. Frail subjects have a limited capacity to
meet homeostatic demands and a high risk of developing adverse health outcomes [3].
The prevalence of frailty has been assessed in many studies worldwide using a variety
of frailty measures. Although the results are highly variable, the overall prevalence has
been estimated at around 11–16% in the population 60 years and older [4,5]. Frailty is more
prevalent in women compared to men, and the prevalence increases with age, being the
highest in subjects over 85 years [4,6]. The majority of studies are based on the definition of
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frailty introduced by Fried and collaborators in 2001, which considers frailty as a clinical
syndrome in which three or more of the following criteria are present: unintentional weight
loss, fatigue or self-reported exhaustion, weakness, slow walking speed, and reduced or
absent physical activity [2,7].

In the last years, many efforts have been made to understand the molecular mecha-
nisms underlying frailty [8] and to find biomarkers for a correct diagnosis [9]. Research
evidence suggests that, among the cellular mechanisms that might underlie frailty, senes-
cence, oxidative stress, mitochondrial dysfunctions, and inflammation have major roles in
frailty pathophysiology [10,11]. However, despite the progress in identifying biomarkers
of frailty in recent years, currently there is not a clear consensus. Different studies have
identified promising candidates including markers across the immune system, endocrine
system, clinical blood markers, proteins, markers of oxidative damage, and epigenetic
markers [8,12,13]. Among the latter, microRNAs (miRNAs) are emerging as promising non-
invasive diagnostic and prognostic biomarkers, as well as potential therapeutic agents [14].
Importantly, miRNAs have been proposed as both peripheral biomarkers and potential
molecular factors involved in physiological and pathological aging [15–17]. Thanks to the
miRNA ability to target hundreds of transcripts at once, mainly repressing translation or
inducing mRNA degradation of target transcripts through sequence-specific binding [18],
miRNAs are key fine-tuning regulators in most physiological processes [19,20]. Thus,
it should not be surprising that miRNAs are recognized as key modulators of virtually
all physiological processes and, consequently, miRNA dysregulation has been reported
in a multiplicity of clinical conditions [14]. To date, only two studies have investigated
changes in miRNA expressions in frail subjects [21,22]. These two studies identified several
miRNAs as possible novel candidate biomarkers for frailty in old age, without overlap in
their results [23].

Research into the epigenetics of frailty could be very useful, not only for the identifica-
tion of potential frailty biomarkers but also to understand the underlying mechanisms of
frailty and aging. Indeed, miRNAs are emerging as promising potential therapeutic agents,
given their role as novel regulators of the human protein-coding genes [24].

In the present work, we analyzed the whole miRNome of frail vs. robust subjects
and identified miR-101-3p and miR-142-5p as specifically down-regulated in frail patients.
Furthermore, using bioinformatic target prediction tools, we explored the potential molec-
ular mechanisms and cellular pathways regulated by these two miRNAs that might be
potentially involved in frailty.

2. Materials and Methods
2.1. Patients’ Recruitment and Clinical Assessment

This study was approved by the local Ethical Committee, registration number “91
A/CESC 16/10/2018”, and performed following the Declaration of Helsinki principles. All
the subjects were recruited at ULSS 3 “Dolo” (Venezia) and clinically evaluated by expert
clinicians in geriatric medicine. As inclusion criteria, we considered both genders and
age > 70 years, while the exclusion criteria were life expectancy of fewer than 12 months
or the presence of an acute or chronic condition that could interfere with the study out-
comes (e.g., heart failure in NYHA class 3–4, severe renal or liver failure, dementia, major
depression, or other relevant neurological/psychiatric diseases). After obtaining the partic-
ipant’s informed consent, a questionnaire regarding past and recent medical history and
medications was administered. Then, a physical examination was performed, including
measurements of weight and height.

Patient classification in the robust and frail was based on Fried’s criteria [7]: (I) un-
intentional weight loss > 5% in the last year; (II) weakness, as measured by handgrip
strength; (III) slow gait speed over 4 m of walking; (IV) exhaustion, ascertained by asking
the question on the 30-item Geriatric Depression Scale (GDS), “Do you feel full of energy?”,
considering participants as exhausted if they gave a negative answer and also had a GDS
score ≥ 10; and (V) low energy expenditure, defined as weekly physical activity below
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383 kcal/week in males and 270 kcal/week in females, as calculated through the PASE
(Physical Activity Scale for the Elderly) [25]. People having at least three of these criteria
were defined as frail [7]. A Mini-Mental State Examination (MMSE) was applied to all sub-
jects to evaluate their cognitive status, and only subjects with a score≥ 20/30 were included
in the study [26]. Frail and robust subjects were age- and sex-matched. Other clinical tests
were performed to characterize the patient cohorts by assessing autonomy in basic activities
of daily living (ADL) and instrumental activities of daily living (Instrumental-ADL), quality
of life (Short Form 12), and comorbidities (Cumulative Illness Rating Scale, CIRS).

2.2. Biochemical Analyses

Blood and urine samples were obtained from subjects to analyze biochemical parameters.
Serum/plasma protein levels (total protein (PRO), albumin (ALB)) were measured to evaluate
general health; creatinine (CRE), urea, uric acid (UA), glomerular filtration rate test (GFR),
alkaline phosphatase (ALP), alanine aminotransferase (ALT), aspartate aminotransferase
(AST), and γ-glutamyl transferase (GGT) were measured to evaluate kidney and liver func-
tions; high-sensitivity C-reactive protein (hsCRP), Interleukin-1 (IL-1), Interleukin-6 (IL-6),
tumor necrosis factor α (TNFalpha), and soluble tumor necrosis factor receptor (sTNF-R) were
measured to evaluate inflammatory state; plasma 3-nitrotyrosine (3NT), total glutathione
(GSH tot), reduced glutathione (GSH rid), GSH ratio (GSH rid/GSH tot), biological antioxi-
dant potential (BAP), REDOX index (normalized ROM/BAP ratio), serum reactive oxygen
metabolites (ROM), 8-hydroxy-deoxyguanosine (U-8OHdG), 2-deoxyguanosine (U-2dG), and
ratio U-8OHdG/U-2dG were measured to evaluate oxidative stress level. All the parameters
were measured by HPLC, colorimetric or fluorometric methods, according to standard pro-
cedures. Statistical analyses were carried out using GraphPad Prism version 8.2.1 program
(GraphPad software, Inc, San Diego, CA, USA); the statistical significance between groups
was determined using two-tailed t-test, and the differences were considered significant with
a p value < 0.05 (*), <0.01 (**), <0.001 (***) and <0.0001 (****).

2.3. miRNome Sequencing and Analysis

Whole blood of robust and frail subjects was collected in the PAXgene Blood RNA
Tube (PreAnalytiX GmbH, Hombrechtikon, Switzerland), and total RNA enriched of
small RNAs (smRNAs) was extracted using the PAXgene Blood miRNA kit (PreAnalytiX
GmbH) according to the manufacturer’s protocol. RNA quality control was assessed
on an Agilent 2100 BioAnalyzer (Agilent Technologies, Santa Clara, CA, USA). Small
RNA sequencing (smRNA-seq) was performed using the Illumina technology platform.
smRNA-seq analysis was performed starting from 250 ng of total RNA per sample using
the SMARTer smRNA-Seq kit (Takara Bio USA, Inc, San Jose, CA, USA) according to the
manufacturer’s protocol. Briefly, the protocol starts with a first phase of polyadenylation
in which a poly(A) tail is added to the starting RNA. Subsequently, reverse transcription
is carried out using an oligo (dT) primer which allows the incorporation of an adaptive
sequence at the 5′ end of each single-stranded cDNA molecule. Furthermore, when the
retro-transcriptase enzyme reaches the 3′ end of each RNA template, it adds some non-
complementary nucleotides which are recognized by a second primer, the SMART smRNA
Oligo, which allows the addition of a second adaptive sequence at the 3′ end of each single-
stranded cDNA molecule. cDNA is thus amplified using specific primers that recognize
the adapter sequences inserted during the retro-transcription phase which allow for the
insertion of two additional adapters. The PCR products are subsequently purified, and the
obtained libraries are quantified and qualitatively evaluated by capillary electrophoresis to
verify that the fragment size is correct for the subsequent sequencing step. The amplified
products are sequenced on the Illumina platform, based on Solexa technology (Illumina,
Inc., San Diego, CA, USA). The sequencing takes place through chemical synthesis with
terminators which are added automatically, and when a cluster incorporates one, there will
be an emission of fluorescence detected by the instrument.
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Subsequently, bioinformatic analysis was performed on the raw data obtained from
sequencing. After the alignment of the raw data to the reference database (miRbase Release
22.1: October 2018, which contains 38,589 miRNAs, of which 1917 miRNA precursors and
2654 mature miRNAs for Homo sapiens (GRCh38) [27]) the stably expressed miRNAs were
selected by applying a cut-off of at least 10 reads in 50% of patients in each group. To
detect differentially expressed miRNAs between the frail and robust groups, a negative
binomial regression considering several biological covariates (i.e., BMI, smoking, alcohol,
pharmacological therapy) was used as a criterion for the selection of miRNAs. To assess
significant differences in the miRNome expression profile in frail subjects, we selected
miRNAs with log2(FC) > |1| a p value < 0.05. Multiple testing correction was applied
to control the false-discovery rate (FDR) using the Benjamini–Hochberg (BH) procedure.
miRNAs with an FDR < 0.25 were selected and retained for further analysis.

2.4. Validation of smRNA-Seq Expression Data by Quantitative PCR and Statistical Analyses

Blood level expression of selected miRNAs was evaluated by quantitative PCR (qPCR)
in each sample, using the TaqMan Advanced miRNA Assay kit (Thermo Fisher Scientific,
Waltham, MA, USA) according to the manufacturer’s protocol on ABI PRISM 7500 sequence
detection system (Thermo Fisher Scientific, Waltham, MA, USA). To analyze the qPCR data,
the averages of the CT values of each miRNA measured in triplicate in robust and frail
subjects, determined by the 7500 system SDS software (version 1.3.1, Life Technologies)
were used. The data were expressed as the variation of the log2 fold in the frail subjects
compared to the robust samples. Based on RNA-seq data, miR-486-5p, identified as the
most stable expressed miRNA, was used as an endogenous control to normalize each
sample. The expression values obtained were used for the statistical analysis carried out
with GraphPad Prism, version 8.2.1 (GraphPad Software, www.graphpad.com, accessed
on 23 December 2021); the statistical significance between groups was determined using
two-tailed t-tests, and the differences were considered significant with a p value < 0.05 (*),
<0.01 (**), <0.001 (***) and <0.0001 (****). The receiving operating characteristic (ROC) curve
was used to assess the ability of differentially expressed miRNAs to distinguish frail from
robust subjects.

2.5. Bioinformatic Targets Prediction

Potential mRNA targets of differentially expressed miRNAs were determined by bioin-
formatic analysis. The miRNAs’ targets were determined by integrating the results of three
software: TargetScan (http://www.targetscan.org, accessed on 27 August 2021) [28], MicroT-
CDS (http://www.microrna.gr/microT-CDS/, accessed on 27 August 2021) [29], and MirDB
(http://mirdb.org, accessed on 27 August 2021) [30]; the miRNA targets predicted by at least
two of the three software packages were retained for further bioinformatic analyses.

The EnrichR web server (http://amp.pharm.mssm.edu/Enrichr, accessed on 6 October
2021) [31,32] was queried for the identification of significantly enriched functional anno-
tations, Gene Ontology (GO), biological processes and molecular functions, and pathway
analysis using the integrated databases KEGG [33] and PANTHER [34]. Specifically, the
main GO categories and pathways were examined with an FDR < 20%.

In addition, the target genes were compared with the genes present in the Aging Atlas
(https://ngdc.cncb.ac.cn/aging/index, accessed on 31 August 2021) [35] that reports data
on genes/proteins involved in aging biology.

3. Results
3.1. Patient Evaluation and Biochemical Analyses

A total of 41 subjects over 70 years of age and matched for gender, were recruited at
ULSS 3 “Dolo” (Venezia) by expert clinicians in geriatric medicine, following the Fried’s
index and the MMSE to assess the cognitive domain (only subjects with MMSE over 20/30
were included in the study). People having at least three of Fried’s criteria were defined as
frail, while the others were placed in the robust group. By applying these criteria, 22 subjects

www.graphpad.com
http://www.targetscan.org
http://www.microrna.gr/microT-CDS/
http://mirdb.org
http://amp.pharm.mssm.edu/Enrichr
https://ngdc.cncb.ac.cn/aging/index


Genes 2022, 13, 231 5 of 18

were classified as robust, and 19 as frail (Table S1). As expected, the frail subjects performed
worst in the tests to assess the autonomy in basic ADL (p = 0.01) and IADL (p < 0.0001),
and had less PCS (p < 0.0001) while having the same MSC as robust subjects (Table S2).
Moreover, as reported in Table S2, several biochemical parameters were measured in the
patients’ serum/plasma and urine samples. Among all the biochemical parameters analyzed,
only the plasma level of soluble tumor necrosis factor receptor was found to be dysregulated
(1.7-fold increase in frail patients p = 0.01). Trends of variations were observed also for
albumin (p = 0.05), total protein level (p = 0.05), glomerular filtration rate (p = 0.06), and
3-nitrotyrosine (p = 0.09).

3.2. Human Blood miRNome Profiling Identifies 9 miRNAs Differentially Expressed in Frail
Compared to Robust Subjects

To find selectively up-or down-regulated miRNAs associated with frailty, we com-
pared the whole miRNome of frail subjects to that of the robust group to find selectively
up-or down-regulated miRNAs in whole blood. We tested 2654 mature miRNAs. By select-
ing small RNAs with at least 10 reads in 50% of the patients in each group, we identified
210 mature miRNAs. Applying a log2FC > |1|, a p < 0.05, and an FDR of 25%, 9 miRNAs
were found to be differentially expressed between the frail and robust groups. Among
these, 7 miRNAs were down-regulated while two were up-regulated (Table 1).

Table 1. miRNAs identified as differentially expressed by RNA-seq analysis in frail vs. robust patients.

miRNA logFC p Value FDR

hsa-miR-101-3p −2.23 2.71 × 10−9 1.39 × 10−6

hsa-miR-16-2-3p −1.71 4.67 × 10−9 1.39 × 10−6

hsa-miR-19a-3p −1.69 3.17 × 10−8 6.28 × 10−6

hsa-miR-144-5p −1.67 2.92 × 10−7 4.33 × 10−5

hsa-miR-126-5p −1.21 2.20 × 10−4 2.09 × 10−2

hsa-miR-142-5p −1.10 7.92 × 10−5 9.41 × 10−3

hsa-miR-19b-3p −1.01 2.47 × 10−4 2.09 × 10−2

hsa-miR-125b-5p 1.09 8.28 × 10−4 5.47 × 10−2

hsa-miR-5690 1.20 4.23 × 10−4 3.14 × 10−2

3.3. Validation of RNA-Seq Expression Data by Quantitative PCR

The levels of the 9 miRNAs identified by miRNomic analysis were measured by
qPCR (not shown) and the differential expression in the frail samples of miR-101-3p and
miR-142-5p was confirmed (Figure 1A,B). Indeed, both miRNAs were found to be down-
regulated in the frail group, as compared to robust subjects (miR-101-3p: logFC −1.64,
p = 0.0014; miR-142-5p: logFC −3.40, p < 0.0001). The diagnostic significance of miR-101-
3p was further tested by ROC curve analysis. The calculated area under the ROC curve
(AUC) of 0.792 (95% CI = 0.6463−0.9376; p = 0.016) indicated that the levels of this miRNA
may discriminate frail from robust subjects with good accuracy in the examined cohort
(Figure 1C). Similarly, the calculated AUC of 0.882 (95% CI = 0.7664−0.9983; p = 0.0002)
for miR-142-5p indicated that the levels of this miRNA may discriminate frail from robust
subjects with excellent accuracy in the examined cohort (Figure 1D).
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miR-142-5p levels (D) to discriminate between frail and robust subjects.

3.4. Bioinformatic Analysis of miR-101-3p Target Genes

For miR-101-3p, the bioinformatics target prediction analysis identified 1063 targets
from miRDB, 956 from TargetScan, and 1428 from MicroT-CDS. Of these, 1002 target genes
were predicted by at least two of the three software packages, and 513 were predicted by
all of them (Figure 2A).

As reported in Table 2, the analysis of the pathways of the 1002 targets of miR-101-3p
highlighted the involvement of numerous genes in significant neuronal processes such
as axon guidance and the formation and regulation of dopaminergic and cholinergic
synapses. Various signal transduction pathways were also involved, including PI3K-Akt
pathway, Erb and MTOR signaling, and the insulin/IGF pathway, in addition to the signal
cascade mediated by TGF-β, Wnt, EGF, FGF, MAPK, Ras, and cAMP. Moreover, several
genes were implicated in the regulation of cellular senescence, apoptosis, and signaling
pathways regulating pluripotency of stem cells. Finally, various genes were involved in the
inflammatory response. Regarding the GO analysis, many genes were involved in basic
cellular mechanisms such as the regulation of transcription and gene expression, protein
modification, intracellular signaling, and cell migration (Table 2).
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Table 2. Bioinformatic analysis of miR-101-3p target genes. The table reports the 20 most representa-
tive terms of pathways and GO analysis of miR-101-3p target genes.

TOP 20 KEGG Pathways

Term Overlap p Value FDR

Axon guidance 26/182 1.40 × 10−6 3.74 × 10−4

PI3K-Akt signaling pathway 35/354 1.04 × 10−4 0.006

Focal adhesion 23/201 1.93 × 10−4 0.007

MAPK signaling pathway 29/294 4.08 × 10−4 0.014

Ras signaling pathway 24/232 0.001 0.019

TGF-β signaling pathway 13/94 0.001 0.020

Parathyroid hormone synthesis, secretion and action 14/106 0.001 0.020

Dopaminergic synapse 16/132 0.001 0.021

GnRH secretion 10/64 0.001 0.021

ErbB signaling pathway 12/85 0.001 0.021

cAMP signaling pathway 22/216 0.001 0.021

Sphingolipid signaling pathway 14/119 0.003 0.038

Inositol phosphate metabolism 10/73 0.003 0.041

Phosphatidylinositol signaling system 12/97 0.003 0.041

Thyroid hormone signaling pathway 14/121 0.003 0.041

AGE-RAGE signaling pathway in diabetic complications 12/100 0.004 0.044

Cholinergic synapse 13/113 0.004 0.044

Endocytosis 23/252 0.004 0.044
Signaling pathways regulating pluripotency of stem cells 15/143 0.005 0.050

Cellular senescence 16/156 0.005 0.050

TOP 20 PANTHER Pathways

Term Overlap p Value FDR

EGF receptor signaling pathway Homo sapiens P00018 16/109 1.04 × 10−4 0.006

Wnt signaling pathway Homo sapiens P00057 29/278 1.59 × 10−4 0.006
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Table 2. Cont.

TOP 20 PANTHER Pathways

Term Overlap p Value FDR

FGF signaling pathway Homo sapiens P00021 14/99 4.09 × 10−4 0.007

Integrin signaling pathway Homo sapiens P00034 19/156 3.07 × 10−4 0.007

CCKR signaling map ST Homo sapiens P06959 19/165 0.001 0.009

PI3 kinase pathway Homo sapiens P00048 7/42 0.005 0.046

VEGF signaling pathway Homo sapiens P00056 8/54 0.005 0.047

Alzheimer disease-amyloid secretase pathway Homo sapiens P00003 8/56 0.006 0.052

Ras Pathway Homo sapiens P04393 9/69 0.007 0.053

Alzheimer disease-presenilin pathway Homo sapiens P00004 11/99 0.011 0.064

PDGF signaling pathway Homo sapiens P00047 12/112 0.010 0.064

Oxytocin receptor mediated signaling pathway Homo sapiens P04391 6/39 0.012 0.064

Endothelin signaling pathway Homo sapiens P00019 9/75 0.012 0.064

Apoptosis signaling pathway Homo sapiens P00006 10/102 0.032 0.113

Hypoxia response via HIF activation Homo sapiens P00030 4/24 0.030 0.113

Insulin/IGF pathway-protein kinase B signaling cascade Homo sapiens P00033 5/34 0.026 0.113

5HT2 type receptor mediated signaling pathway Homo sapiens P04374 6/46 0.026 0.113

T-cell activation Homo sapiens P00053 8/73 0.029 0.113

Interleukin signaling pathway Homo sapiens P00036 9/86 0.028 0.113

Cadherin signaling pathway Homo sapiens P00012 13/150 0.038 0.122

TOP 20 GO Biological Process

Term Overlap p Value FDR

regulation of transcription by RNA polymerase II (GO:0006357) 209/2206 1.27 × 10−20 4.68 × 10−17

regulation of transcription, DNA-templated (GO:0006355) 197/2244 8.24 × 10−16 7.61 × 10−13

regulation of gene expression (GO:0010468) 103/1079 1.67 × 10−10 6.87 × 10−8

protein phosphorylation (GO:0006468) 58/496 1.69 × 10−9 4.82 × 10−7

cellular protein modification process (GO:0006464) 96/1025 1.99 × 10−9 5.26 × 10−7

epithelial to mesenchymal transition (GO:0001837) 13/47 3.33 × 10−7 7.23 × 10−5

negative regulation of transmembrane receptor protein serine/threonine kinase
signaling pathway (GO:0090101) 20/108 3.63 × 10−7 7.45 × 10−5

mesenchymal cell differentiation (GO:0048762) 13/51 9.34 × 10−7 1.73 × 10−4

blood vessel morphogenesis (GO:0048514) 13/56 2.94 × 10−6 4.93 × 10−4

chromatin remodeling (GO:0006338) 18/103 3.30 × 10−6 0.001

regulation of BMP signaling pathway (GO:0030510) 15/76 4.55 × 10−6 0.001

regulation of transforming growth factor β receptor signaling pathway
(GO:0017015) 17/100 9.00 × 10−6 0.001

negative regulation of cell migration (GO:0030336) 21/144 1.02 × 10−5 0.001

regulation of cellular macromolecule biosynthetic process (GO:2000112) 46/468 1.05 × 10−5 0.001

regulation of microtubule polymerization (GO:0031113) 10/40 2.04 × 10−5 0.003

protein localization to nucleus (GO:0034504) 17/106 1.99 × 10−5 0.003

neuron migration (GO:0001764) 11/50 2.92 × 10−5 0.003

chromatin organization (GO:0006325) 20/142 2.76 × 10−5 0.003
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Table 2. Cont.

TOP 20 GO Biological Process

Term Overlap p Value FDR

generation of neurons (GO:0048699) 25/202 2.84 × 10−5 0.003

axonogenesis (GO:0007409) 28/240 2.89 × 10−5 0.003

TOP 20 GO Molecular Function

Term Overlap p Value FDR

protein serine/threonine kinase activity (GO:0004674) 47/344 4.00 × 10−10 2.70 × 10−7

sequence-specific double-stranded DNA binding (GO:1990837) 75/712 8.63 × 10−10 2.88 × 10−7

RNA polymerase II cis-regulatory region sequence-specific DNA binding
(GO:0000978) 105/1149 1.28 × 10−9 2.88 × 10−7

cis-regulatory region sequence-specific DNA binding (GO:0000987) 104/1149 2.61 × 10−9 4.39 × 10−7

RNA polymerase II transcription regulatory region sequence-specific DNA
binding (GO:0000977) 117/1359 4.57 × 10−9 6.15 × 10−7

sequence-specific DNA binding (GO:0043565) 67/707 4.01 × 10−7 4.50 × 10−5

transcription regulatory region nucleic acid binding (GO:0001067) 29/212 8.81 × 10−7 8.47 × 10−5

nuclear import signal receptor activity (GO:0061608) 7/16 5.96 × 10−6 4.71 × 10−4

DNA binding (GO:0003677) 70/811 6.30 × 10−6 4.71 × 10−4

transcription cis-regulatory region binding (GO:0000976) 52/549 8.18 × 10−6 0.001

DNA-binding transcription activator activity, RNA polymerase II-specific
(GO:0001228) 36/333 1.25 × 10−5 0.001

double-stranded DNA binding (GO:0003690) 58/651 1.58 × 10−5 0.001

nuclear localization sequence binding (GO:0008139) 7/24 1.27 × 10−4 0.007

mRNA binding (GO:0003729) 28/263 1.45 × 10−4 0.007

nuclear receptor binding (GO:0016922) 16/120 3.23 × 10−4 0.015

DNA-binding transcription repressor activity, RNA polymerase II-specific
(GO:0001227) 26/256 0.001 0.022

GTPase regulator activity (GO:0030695) 24/233 0.001 0.027

adenyl ribonucleotide binding (GO:0032559) 29/306 0.001 0.029

histone demethylase activity (H3-K27 specific) (GO:0071558) 3/5 0.001 0.041

zinc ion binding (GO:0008270) 30/336 0.002 0.054

3.5. Bioinformatic Analysis of miR-142-5p Target Genes

For miR-142-5p the bioinformatics target prediction analysis identified 1135 targets
from miRDB, 950 from TargetScan, and 1939 from MicroT-CDS. Of these, 1008 target genes
were predicted by at least two of the three software packages, and 334 were predicted by
all of them (Figure 2B).

Pathway analysis of the 1008 targets of miR-142-5p highlighted that several genes
were involved in brain functions, such as axon guidance, formation and regulation of
dopaminergic and cholinergic synapses, glutamatergic synapse, and metabotropic gluta-
mate receptor activity. Various signal transduction pathways were also involved, including
TGF-β signaling, signaling mediated by MAPK, the insulin/IGF pathway, and Erb and
mTOR signaling. Moreover, inflammation mediated by chemokine and cytokine signaling
pathways was identified as associated with miR-142-5p targets. The GO analysis shows that
most genes were involved in the maintenance of cellular mechanisms such as regulation of
transcription and gene expression, cell migration and cytoskeleton organization, protein
modification, and intracellular signaling transduction (Table 3).
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Table 3. Bioinformatic analysis of miR-142-5p target genes. The table reports the most representative
terms of pathways and the GO analysis of miR-142-5p target genes.

TOP 20 KEGG Pathways

Term Overlap p Value FDR

Axon guidance 29/182 3.57 × 10−8 9.47 × 10−6

Signaling pathways regulating pluripotency of stem cells 20/143 3.33 × 10−5 0.003

Endocytosis 29/252 3.02 × 10−5 0.003

Ubiquitin mediated proteolysis 19/140 7.88 × 10−5 0.005

Regulation of actin cytoskeleton 25/218 1.10 × 10−4 0.006

TGF-β signaling pathway 14/94 2.51 × 10−4 0.007

MAPK signaling pathway 30/294 2.02 × 10−4 0.007

Dopaminergic synapse 16/132 0.001 0.022

Cholinergic synapse 14/113 0.002 0.031

Oxytocin signaling pathway 17/154 0.002 0.035

Aldosterone-regulated sodium reabsorption 7/37 0.002 0.037

ErbB signaling pathway 11/85 0.004 0.046

Phosphatidylinositol signaling system 12/97 0.003 0.046

Thyroid hormone signaling pathway 14/121 0.003 0.046

Hippo signaling pathway 17/163 0.004 0.046

Glutamatergic synapse 13/114 0.005 0.056

mTOR signaling pathway 16/154 0.005 0.056

Long-term potentiation 9/67 0.006 0.066

Hedgehog signaling pathway 8/56 0.007 0.068

Sphingolipid signaling pathway 13/119 0.007 0.069

PANTHER Pathways

Term Overlap p Value FDR

PDGF signaling pathway Homo sapiens P00047 15/112 4.98 × 10−4 0.040

Ras Pathway Homo sapiens P04393 10/69 0.002 0.075

Alzheimer disease-presenilin pathway Homo sapiens P00004 12/99 0.004 0.075

CCKR signaling map ST Homo sapiens P06959 17/165 0.004 0.075

Angiogenesis Homo sapiens P00005 15/142 0.005 0.075

Hypoxia response via HIF activation Homo sapiens P00030 5/24 0.006 0.075

Insulin/IGF pathway-protein kinase B signaling cascade Homo sapiens P00033 6/34 0.006 0.075

Vasopressin synthesis Homo sapiens P04395 3/10 0.012 0.117

TGF-β signaling pathway Homo sapiens P00052 10/88 0.013 0.117

Inflammation mediated by chemokine and cytokine signaling pathway Homo
sapiens P00031 17/188 0.014 0.117

Metabotropic glutamate receptor group III pathway Homo sapiens P00039 7/54 0.018 0.134

Ubiquitin proteasome pathway Homo sapiens P00060 6/43 0.020 0.135

TOP 20 GO Biological Process

Term Overlap p Value FDR

regulation of transcription by RNA polymerase II (GO:0006357) 183/2206 3.58 × 10−12 8.72 × 10−9

regulation of transcription, DNA-templated (GO:0006355) 185/2244 4.57 × 10−12 8.72 × 10−9
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Table 3. Cont.

TOP 20 GO Biological Process

Term Overlap p Value FDR

positive regulation of cell differentiation (GO:0045597) 33/258 8.64 × 10−7 0.001

regulation of cell migration (GO:0030334) 43/408 4.15 × 10−6 0.002

ubiquitin-dependent protein catabolic process (GO:0006511) 38/354 9.75 × 10−6 0.005

protein phosphorylation (GO:0006468) 48/496 1.20 × 10−5 0.005

actin cytoskeleton reorganization (GO:0031532) 13/63 1.25 × 10−5 0.005

phosphorylation (GO:0016310) 41/400 1.35 × 10−5 0.005

proteasome-mediated ubiquitin-dependent protein catabolic process
(GO:0043161) 35/321 1.55 × 10−5 0.005

sensory organ development (GO:0007423) 12/56 1.80 × 10−5 0.005

regulation of BMP signaling pathway (GO:0030510) 14/76 2.30 × 10−5 0.006

visual system development (GO:0150063) 10/41 2.71 × 10−5 0.007

modification-dependent protein catabolic process (GO:0019941) 25/201 2.88 × 10−5 0.007

peptidyl-threonine phosphorylation (GO:0018107) 12/60 3.74 × 10−5 0.008

negative regulation of cellular response to growth factor stimulus (GO:0090288) 14/80 4.18 × 10−5 0.008

regulation of cytoskeleton organization (GO:0051493) 17/112 4.46 × 10−5 0.008

protein ubiquitination (GO:0016567) 48/525 5.15 × 10−5 0.009

positive regulation of RIG-I signaling pathway (GO:1900246) 5/10 6.56 × 10−5 0.011

nervous system development (GO:0007399) 42/447 8.14 × 10−5 0.012

mRNA destabilization (GO:0061157) 9/38 8.78 × 10−5 0.012

TOP 20 GO Molecular Function

Term Overlap p Value FDR

ubiquitin-protein transferase activity (GO:0004842) 46/392 8.92 × 10−8 6.15 × 10−5

sequence-specific double-stranded DNA binding (GO:1990837) 66/712 1.31 × 10−6 4.52 × 10−4

ubiquitin protein ligase activity (GO:0061630) 32/263 3.73 × 10−6 0.001

protein serine/threonine kinase activity (GO:0004674) 35/344 6.57 × 10−5 0.006

mRNA 3’-UTR binding (GO:0003730) 14/85 8.34 × 10−5 0.007

myosin binding (GO:0017022) 11/56 9.31 × 10−5 0.007

nuclear receptor binding (GO:0016922) 17/120 1.08 × 10−4 0.007

purine ribonucleoside triphosphate binding (GO:0035639) 42/460 1.53 × 10−4 0.010

DNA-binding transcription activator activity, RNA polymerase II-specific
(GO:0001228) 33/333 1.73 × 10−4 0.010

transcription cis-regulatory region binding (GO:0000976) 47/549 2.87 × 10−4 0.015

RNA polymerase II transcription regulatory region sequence-specific DNA
binding (GO:0000977) 97/1359 3.04 × 10−4 0.015

RNA polymerase II cis-regulatory region sequence-specific DNA binding
(GO:0000978) 84/1149 3.70 × 10−4 0.017

GDP binding (GO:0019003) 11/67 4.85 × 10−4 0.020

kinase activity (GO:0016301) 15/112 4.98 × 10−4 0.020

GTPase binding (GO:0051020) 22/201 0.001 0.020



Genes 2022, 13, 231 12 of 18

Table 3. Cont.

TOP 20 GO Molecular Function

Term Overlap p Value FDR

cis-regulatory region sequence-specific DNA binding (GO:0000987) 83/1149 0.001 0.021

mRNA 3′-UTR AU-rich region binding (GO:0035925) 6/22 0.001 0.021

myosin V binding (GO:0031489) 5/15 0.001 0.021

guanylate kinase activity (GO:0004385) 4/9 0.001 0.021

mRNA binding (GO:0003729) 26/263 0.001 0.024

3.6. Bioinformatic Analysis of miRNAs’ Target Genes Related to Aging

A Venn diagram shows that 33 genes out of the 1002 miR-101-3p targets, and 35 out of
the 1008 targets of miR-142-5p were involved in aging processes (Figure 3A, Table 4A and
Figure 3B, Table 4B respectively).
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Table 4. The table reports the miR-101-3p and miR-142-5p target genes that are in common with the
aging atlas database. (A) Common miRNAs between miR-101-3p targets and those present in the
aging atlas database. (B) Common miRNAs between miR-142-5p targets and those present in the
aging atlas database. (C) Common miRNAs between miR-101-3p and miR-142-5p target genes and
those present in the aging atlas database.

A mir-101-3p targets present in aging atlas

PLCG1, ADH5, GCLM, KL, PIK3CB, FGFR3, PRKAA1, MTOR, ELN, JAK2,
PTGS2, EIF5A2, ITGA2, GSK3B, FOXO1, GCLC, SESN3, LMNB1, RORA,

TNFSF11, CREB1, FOS, CXCL12, LRP2, CEBPA, SOCS2, NOG, CXCL6, MXD1,
AKT3, HGF, APP, TOP1

B miR-142-5p targets present in aging atlas

PRKCB, NRG1, IGF1, RPS6KA5, RICTOR, HSPA8, NFE2L2, BMP2, GSK3B,
TNFAIP3, SIRT7, RB1CC1, CREB1, LRP2, PDGFRA, NBN, PTEN, ULK1, KRAS,

PAPPA, SUN1, EIF5A2, TOPORS, CLOCK, PRKAA2, RORA, FGF7, MXI1,
PIK3CA, PSAT1, TNFSF13B, IL6ST, NOG, APPL1, PRKCA

C miR-101-3p and miR-142-5p targets
present in aging atlas LRP2, GSK3B, NOG, RORA, CREB1, EIF5A2

Comparing the selected miRNAs target genes and the aging database, 6 aging-related
genes were found to be potentially targeted by both miRNAs (LRP2, GSK3B, NOG, RORA,
CREB1, EIF5A2) (Figure 4, Table 4C).
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4. Discussion

In the present study, we profiled clinical and biochemical parameters and sequenced
the entire miRNome from 41 old subjects divided into two cohorts: 22 robust and 19 frail in-
dividuals. The goal was the identification of possible biomarkers, pathways, and molecular
mechanisms underlying the pathophysiology of frailty. Among the biochemical param-
eters analyzed, we observed that sTNF-R, the soluble receptor of the pro-inflammatory
cytokine TNFalpha, was robustly upregulated in the frail group. Furthermore, whole blood
miRNome analysis, followed by validation with qPCR, identified miR-101-3p and miR-142-
5p as strongly downregulated in frail subjects. These two miRNAs could be considered
potential biomarkers of frailty.

Frailty is a common condition in the old people, defined as a state of increased vulner-
ability to stressors that can cause a limited ability to recover [7]. Clinical features of frailty
are associated with age-related chronic inflammation (inflammaging), oxidative stress,
mitochondrial dysfunctions, insulin resistance, aging-related loss of anabolic hormones,
diminished strength, and diminished tolerance to physical activity [10,11]. Nevertheless,
the molecular mechanisms underlying frailty are still largely unknown.

Previous studies have analyzed several biochemical parameters as potential frailty
biomarkers [36–38]. However, no clear common deregulated parameters have been identi-
fied to date [8]. Specifically, in our study, among all the biochemical parameters analyzed,
only the plasma levels of sTNF-R were significantly different in frail subjects compared
to robust subjects. The upregulation of sTNF-R1 levels was previously associated with
frailty [39,40]. TNFR1 belongs to the TNF-receptor superfamily; it is constitutively ex-
pressed on most cell types and is activated by TNFalpha. The intracellular signaling
mediated by TNFR1 can mediate both cell survival and apoptosis through the activation
of the NF-κB, JNK, and p38 pathways or Caspase 8, respectively. Moreover, it functions
as a regulator of inflammation [41,42]. The strong upregulation of sTNF-R reported in the
frail group might indicate the presence of an inflammatory state, a typical pathological
condition present in frailty.

Recently, the study of miRNAs as putative biomarkers of aging diseases has gained
interest. miRNAs regulate several biological events related to the aging process, but their
expression is also influenced by aging processes themselves. At the same time, miRNAs
have been consistently linked to the main systemic and cellular processes associated with
frailty, including inflammaging [16,43–45], cellular senescence [46–48], skeletal muscle
maintenance and energetic metabolisms [15,49,50], and the maintenance of brain and
neuronal functions [51–54].

To the best of our knowledge, only two studies to date have investigated changes in
miRNA expressions in frail subjects [22,55]. In the first such work, Ipson and collaborators
evaluated the changes to the plasma-derived exosome miRNA profiles of young, old robust,
and old frail individuals, finding eight miRNAs specifically dysregulated in the frail group
(miR-10a-3p, miR-92a-3p, miR-185-3p, miR-194-5p, miR-326, miR-532-5p, miR-576-5p, and
miR-760) [22]. The second study evaluated the levels of three inflammation-related miRNAs
and one miRNA related to the control of melatonin synthesis in the plasma of healthy
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adults, older robust, and older frail subjects. Among these, miR-21 had a higher expression
level in frail subjects than controls [55]. Although very preliminary, these two studies
identified a few miRNAs as possible novel candidate biomarkers for frailty. Furthermore,
other miRNAs related to inflammaging, musculoskeletal system and muscle wasting,
and mitochondrial miRNAs have been proposed as candidates for an early diagnosis of
frailty [21].

Our miRNome profiling by whole blood RNA-seq analysis allowed for the identifica-
tion of 9 miRNAs differentially expressed in frail subjects compared to robust ones. The
observed differences in the RNA-seq of two miRNAs were confirmed by qPCR: miR-101-3p
and miR-142-5p, which appear to be robustly down-regulated in frail subjects, compared
to robust subjects. Interestingly, in previous studies, the downregulation in the expression
levels of both of these two miRNAs was related to aging [16,56,57].

Of the two validated miRNAs, miR-101-3p has been extensively studied in cancer [58].
It is known to regulate oxidative stress-induced apoptosis of breast cancer cells [59], pro-
liferation and apoptosis in osteosarcoma cells [60], and autophagy and apoptosis in hepa-
tocellular carcinoma cells [61]. Moreover, miR-101-3p was reported to play a key role in
regulating cell senescence [62,63], inflammation [64], and aging-related disorders such as
diabetes [65,66] and Parkinson disease [67].

Concerning miR-142-5p, its expression has been associated with immune and in-
flammatory responses and diseases [68–71], as well as with muscle maintenance and
homeostasis [72,73]. Moreover, it was found to play a role in the maintenance of redox
homeostasis [74,75]. In cancer, miR-142-5p suppresses proliferation and promotes apoptosis
of the human osteosarcoma cell line [76], promotes proliferation, invasion, and migration
in breast cancer [77], and suppresses tumorigenesis in non-small cell lung cancer [78].

The functional classification of the target genes of the two miRNAs has shown their
involvement in processes such as neural cell development and maintenance, and regulation
of stem cell pluripotency and cell senescence in addition to several intracellular signaling
pathways whose dysregulation could be linked to the pathophysiology of frailty.

It should be noted that sTNF-R, which we found to be up-regulated in the frail group, is
not a predicted target of either miR-101-3p or miR-142-5p. Thus, other molecular pathways
may be involved in sTNF-R level regulation.

Among the target genes also reported in the aging database with a potential role in
aging processes, six were targeted by both miRNAs and are aging-related genes (LRP2,
GSK3B, NOG, RORA, CREB1, EIF5A2). Of these, LRP2 encoding for the low-density
lipoprotein receptor-related protein 2 or megalin, is an endocytic receptor expressed on the
apical surface of epithelial cells that internalizes a variety of ligands, including nutrients,
hormones, signaling molecules, and extracellular matrix proteins [79]. Due to the important
roles of its ligands and its wide tissue expression pattern, megalin has been recognized
as an important component of many pathological conditions [79,80]. GSK3B encodes for
the Glycogen Synthase Kinase 3 β, a key regulator of several cellular functions, including
growth signaling, cell fate, cell senescence, inflammation, and metabolism [81]. Due to
its major role in several cellular processes, changes in GSK3B expression and function are
strongly related to several aging-related diseases such as diabetes, cancer, inflammatory
conditions, and neurodegenerative disorders [81,82]. NOG, or Noggin, is a binding partner
of BMPs (bone morphogenetic proteins) and an antagonist of BMP signaling. Noggin is
involved in the development of many body tissues, including nerve tissue, muscles, and
bones [83]. Moreover, it was shown to have a major role in cell senescence. Indeed, the
injection of Noggin into SAMP8 mice, a senescence-associated strain used to model aspects
of aging, restored neurogenesis and neural stem cell counts [84]. CREB1, CAMP responsive
element binding protein 1, is a protein that binds the cAMP response element and regulates
transcription. Its expression and function can modulate oxidative stress-induced senescence
in granulosa cells by reducing the mitochondrial function [85] and CREB signaling has
been related to lung and brain aging [86,87]. Finally, EIF5A2 encoding for the Eukaryotic
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Initiation Factor 5A2, plays a key role in the regulation of protein translation, and it has
been reported that, in transgenic mice, its overexpression enhances the aging process [88].

5. Conclusions

Overall, the results obtained here represent one of the first approaches for studying
the involvement of miRNAs in the pathophysiology of frailty. Moreover, we observed
that sTNF-R was robustly upregulated in the frail group, suggesting the presence of an
inflammatory state, a typical pathological condition present in frailty.

However, we recognize that this work might have some limitations. First, our findings
are derived from a limited number of subjects, implying that they should be confirmed in a
larger cohort of patients. Second, smRNA-seq was carried out on whole blood samples,
while plasma and serum have differences in the expression levels of some miRNAs, and
it would be interesting to evaluate the expression of miR-101-3p and 142-5p in these
blood components specifically. Finally, the miRNA target genes discussed here are only
bioinformatically predicted; their real interactions should be confirmed in the appropriate
biological samples.

More studies are warranted to confirm the validity of miR-101-3p and 142-5p as
peripheral biomarkers and/or molecular effectors of frailty. The effective validation of the
roles of certain miRNAs, including miR-101-3p and miR-142-5p, and their potential target
mRNAs could shed light on the biological and molecular mechanisms underlying this
condition and assist in the development of both preventive and treatment interventions
exploiting these specific miRNAs as possible biomarkers.
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