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Abstract: Valine–glutamine (VQ) motif-containing proteins are transcriptional regulatory cofactors
that play critical roles in plant growth and response to biotic and abiotic stresses. However, infor-
mation on the VQ gene family in foxtail millet (Setaria italica L.) is currently limited. In this study, a
total of 32 SiVQ genes were identified in foxtail millet and classified into seven groups (I–VII), based
on the constructed phylogenetic relationships; the protein-conserved motif showed high similarity
within each group. Gene structure analysis showed that most SiVQs had no introns. Whole-genome
duplication analysis revealed that segmental duplications contributed to the expansion of the SiVQ
gene family. The cis-element analysis demonstrated that growth and development, stress response,
and hormone-response-related cis-elements were all widely distributed in the promoters of the SiVQs.
Gene expression analysis demonstrated that the expression of most SiVQ genes was induced by
abiotic stress and phytohormone treatments, and seven SiVQ genes showed significant upregulation
under both abiotic stress and phytohormone treatments. A potential interaction network between
SiVQs and SiWRKYs was predicted. This research provides a basis to further investigate the molecular
function of VQs in plant growth and abiotic stress responses.

Keywords: foxtail millet; VQ gene family; expression patterns; plant hormone; abiotic stress

1. Introduction

Valine–glutamine (VQ) motif-containing proteins are transcriptional regulators that
interact with known transcription factors (TFs), such as WRKY, PIF, and bHLH-type TFs,
that are involved in regulating plant growth [1,2]. This interaction depends on the highly
conserved VQ motif (FxxhVQxhTG) in VQ proteins [3]. Among these amino acid residues,
x is any amino acid, h is a hydrophobic residue, and the last three residues show a variety
of differences; depending on those differences, the VQ motif can be divided into different
types, namely LTG, FTG, VTG, YTG, ITG, ATG, LTS, LTD, LTR, LTV, and LTA [3]. Aside
from the highly conserved VQ motif, the amino acid sequences at other positions of VQ
proteins show differences, leading to functional diversity among VQ family members [4].

VQ proteins are involved in seed germination [5], seedling development [2], leaf
senescence [6], flowering [7], and pollen development [8]. In Arabidopsis, mutations
in AtVQ20, AtWRKY2, and AtWRKY34 simultaneously cause male sterility and defects
in pollen development. Further studies have shown that the AtVQ20 protein interacts
with the TFs AtWRKY2 and AtWRKY34, affecting their transcriptional functions and
subsequently regulating male gametogenesis [8]. In rice, the knockout of OsVQ1 can
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suppress the expression of the genes that promote flowering, resulting in late flowering in
mutant plants under long-day conditions [7]. In tomato plants, the SlVQ7 protein interacts
with SlWRKY37 to increase the transcriptional activation ability of SlWRKY37, thereby
promoting the expression of the target genes SlSGR1 and SlWRKY53 and accelerating dark-
and JA-induced leaf senescence [6]. VQs are also involved in the response to biotic stresses
such as pathogens [9,10], and abiotic stresses such as high temperature [11,12], salt [13], and
drought [14]. OsVQ25 interacts with the TFs OsPUB73 and OsWRKY53 to balance plant
broad-spectrum disease resistance and growth in rice [15]. In apple, MdVQ37 regulates
the expression of the genes involved in SA catabolism. Under high-temperature stress,
endogenous SA levels are reduced, and SA-dependent signaling pathways are disrupted,
resulting in heat sensitivity in overexpressing MdVQ37 plants [11]. VQs are also involved
in plant hormone signaling, including responses to ABA [16], SA [11], and JA [17,18].
Thus, VQ proteins can influence the transcriptional activity of TFs and are involved in
plant development, stress responses, and hormone signaling pathways [19]. Therefore,
mining the potential VQ genes in plants will provide a useful basis for the analysis of plant
development and stress response mechanisms at the post-translational level.

Currently, 34, 39, 61, 65, and 74 VQs have been identified in Arabidopsis [3], rice [20],
maize [21], wheat [22], and soybean [23], respectively. Conserved motif analysis revealed
that six and four VQ motif types were found in Arabidopsis and rice, respectively, and
phylogenetic analysis enabled Arabidopsis and rice VQ proteins to be divided into seven
groups (groups I–VII), among which groups V and VI are FTG and VTG/ITG types,
respectively, and the remaining groups are the LTG type. Maize has six VQ motif types,
and the maize VQ proteins are classified into nine groups (groups I–IX). Among those,
maize group I belongs to the FTG/VTG/ATG/ITG types, which corresponds to groups V
and VI of Arabidopsis and rice, while groups II to IX in maize belong to the LTG type. The
results of gene structure analysis have revealed that most VQs lack introns. The biological
functions of VQs have been explored using quantitative real-time PCR (qRT-PCR) and
RNA-seq data, showing that the expression of many VQs significantly changes under stress
or hormone treatments.

Foxtail millet is a traditional grain crop in China and has advantages for research due
to its small genome size, strong abiotic stress resistance, and short growth period [24,25].
The potential tolerance to abiotic stress in foxtail millet has rendered it a favorable research
subject for studying the molecular mechanisms of abiotic stress resistance [26]. Thus, it is
emerging as a new model plant of Gramineae. Although the important biological role of
VQs has been demonstrated, little information is currently available on the VQ gene family
in foxtail millet, and how those genes might be involved in plant growth and response to
biotic and abiotic stresses.

In the present study, we identified 32 putative SiVQs in foxtail millet and carried out
comprehensive bioinformatic analyses, including analysis of gene location and structure,
phylogenetic relationships, synteny, and cis-elements. We also performed the expression
analysis of SiVQ genes under abiotic stresses and phytohormone treatments and predicted
the interaction network between SiVQs and SiWRKYs. Our results provide fundamental
information for the characterization and evolution of SiVQ genes and help build our
understanding of the functions of SiVQs, which will be valuable for further research on the
biological function of SiVQs involved in plant growth and stress responses.

2. Materials and Methods
2.1. Identification, Chromosomal Localization, and Phylogenetic Analysis of SiVQs

In the present study, the foxtail millet genome sequence was downloaded from the En-
sembl Plant database (http://plants.ensembl.org/index.html (accessed on 18 April 2022)).
The hidden Markov model (HMM) profile of the VQ domain (PF05678) was obtained
from the Pfam database (http://pfam.xfam.org/ (accessed on 18 April 2022)) [27]. The
SiVQ family members were retrieved from the foxtail millet genome database using the
HMMSEARCH program of the HMMER software. The online program SMART tool (http:
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//smart.embl-heidelberg.de/ (accessed on 20 April 2022)) and the Conserved Domains
Database Search (https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi (accessed on
20 April 2022)) were used to ultimately determine the SiVQ genes. The biophysical prop-
erties of the SiVQs, including peptide length, isoelectric point (pI), and molecular weight
(MW), were estimated using the online program ExPasy (http://www.expasy.org/tools/
(accessed on 23 April 2022)) [28]. The physical locations of the SiVQs on the chromosomes
were visualized using the Mapchart software [29], and the subcellular localization predic-
tion tool WoLF PSORT (https://www.genscript.com/wolf-psort.html (accessed on 24 April
2022)) was used to predict the likely location of the SiVQs.

According to previous research on the genome-wide identification of AtVQ and OsVQ
proteins in Arabidopsis and rice [3,20], 34 Arabidopsis and 36 rice VQ protein sequences
were downloaded from the Phytozome database (https://phytozome-next.jgi.doe.gov/
(accessed on 26 April 2022)). Based on the AtVQ and OsVQ protein sequences, combined
with all the SiVQs, a multiple sequence alignment was carried out using the ClustalW tool
to study the evolutionary relationships and classification of the SiVQs. Depending on the
alignment results, the phylogenetic tree was constructed using the MEGA11 software with
the maximum likelihood method, and the parameters were as follows: JTT matrix-based
model, complete deletion, and 1000 bootstrap replications [30]. The online tool Evolview
(https://evolgenius.info//evolview-v2/#login (accessed on 29 April 2022)) was used to
draw the phylogenetic tree.

2.2. Conserved Sequence and Gene Structure Analysis

The conserved motifs of the SiVQs were detected using the online program multiple ex-
pectation maximization for motif elicitation (MEME) (http://meme.ebi.edu.au/ (accessed
on 1 May 2022)) with the following parameters: The maximum number of motifs was five,
and the optimal width ranged from 6 to 100 [31]. Conserved motifs were drawn using the
TBtools software. The exon and intron structures were determined by aligning the coding
sequences (CDSs) of the SiVQ genes with their corresponding genomic DNA sequences.
The gene structures of the SiVQs were visualized using the online program Gene Structure
Display Server (GSDS) (http://gsds.cbi.puk.edu.cn/ (accessed on 3 May 2022)).

2.3. Gene Duplication and Collinearity Analysis

To identify segmental and tandem duplication events in the foxtail millet SiVQ gene
family, the amino acid sequences of all SiVQs were aligned using BLASTp at a 1 × 10−10

significance level. As described in previous research, two or more SiVQ genes located
within 200 kb of each other on the same chromosome and sharing more than 70% identity
can be defined as tandem duplication events [32]. In addition, we used a multiple collinear
scanning kit (MCScanX) to identify segmental duplication events [33]. The collinearity
maps were drawn using the Circos program to visualize the duplicated gene pairs between
the SiVQ genes, and the orthologous VQ gene pairs between foxtail millet and Arabidopsis
(Arabidopsis thaliana), tomato (Solanum lycopersicum), alfalfa (Medicago truncatula ), rice
(Oryza sativa), sorghum (Sorghum bicolor), and maize (Zea mays), respectively. The values of
nonsynonymous (Ka) and synonymous (Ks) substitutions of duplicated VQ gene pairs were
calculated to evaluate the divergence time and selection history using the KaKs_Calculator
2.0 [34]. The divergence time (T) for each duplicated gene pair was estimated using the
following equation: T = Ks/(2 × 6.5 × 10−9) × 10−6 million years ago (MYA) [35].

2.4. Cis-Element Analysis of SiVQ Genes in Foxtail Millet

The upstream regulatory regions of the SiVQ genes (the genomic DNA sequences
2000 bp upstream of the cDNA) were retrieved from the foxtail millet genome and were
used to predict the potential cis-acting element using the PlantCARE website
(https://bioinformatics.psb.ugent.be/webtools/plantcare/html/ (accessed on 7 May
2022)) [36]. The results were categorized, counted, and ultimately visualized using the
TBtools software [37].
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2.5. Analysis of Gene Expression Patterns and Potential Protein Interactions in SiVQs

The transcriptome data of SiVQs in 11 different tissues were obtained from the
NGDC (https://ngdc.cncb.ac.cn/ (accessed on 11 May 2022)), with accession number
PRJCA001726. Transcript abundance was described as fragments per kilobase of exon per
million mapped fragments (FPKMs) [38]. If the FPKM value was less than 1 in all tissues,
the gene was considered to be non-expressed. If the expression of a gene in one tissue was
10-fold higher than the sum of the expression of this gene in other tissues, this gene was
considered to be tissue-specifically expressed, and if the expression of a gene in most tissues
was 5-fold higher than other genes, this gene was considered to be highly expressed. The
log10-transformed FPKM values were used to draw heatmaps of the expression profiles
using the TBtools software. The prediction of interaction networks between SiVQs and
SiWRKYs was achieved using the STRING online database with the confidence parameter
set to a threshold of 0.4 and the other parameters were as default, and the Cytoscape 3.9.1
software was used to draw the interaction network [39].

2.6. Plant Materials and Treatments

Foxtail millet Yugu1 was used in the present study. Seeds were sown evenly in
seedling pots covered with vermiculite and watered with distilled water for seed germina-
tion. Seedlings were cultured in a greenhouse kept at 24 ◦C with an 18/6 h photoperiod
(day/night) using Hoagland’s nutrient solution (pH 6.0) [40]. Three-leaf stage seedlings
were treated with three different abiotic stress treatments: 20% PEG6000 (drought), 200 mM
NaCl (salt), 4 ◦C (cold), and four different hormone treatments: 200 µM abscisic acid
(ABA), 0.1 mM salicylic acid (SA), 0.1 mM gibberellin (GA), and 100 µM methyl jasmone
(MeJA) [41–43]. Plant material was sampled at 0, 6, 12, and 24 h after treatment with three
biological replicates for each treatment. All the samples were frozen in liquid nitrogen and
stored at −80 ◦C for subsequent total RNA extraction.

2.7. RNA Extraction and Quantitative Real-Time PCR (qRT-PCR)

A plant RNA extraction kit (Accurate Biotechnology Co., Ltd., Changsha, China) was
used to extract the total RNA from foxtail millet tissue, according to the manufacturer’s
instructions. The M-MLV reverse transcriptase (Promega, Shanghai, China) was used to
synthesize the cDNA using RNA as a template. qRT-PCR was carried out using a GoTaq®

qPCR Master Mix kit (Promega) and the C1000 real-time PCR system (Bio-Rad, Hercules,
CA, USA). All reactions were conducted with three independent biological replicates. The
relative expression level was calculated using the 2−∆∆Ct method and compared with that
of the control sample at 0 h [44]. The SETIT_010361mg was used as an internal control [41].
The primer sequences used in the present study are listed in Table S1. Significant differences
between the treatment and control values were tested through one-way ANOVA analysis
at a significance level of p = 0.05 using the IBM SPSS Statistics software.

3. Results
3.1. Identification of VQ Gene Family Members in Foxtail Millet

In total, 32 VQs were identified in the foxtail millet, designated SiVQ01 to SiVQ32
based on their chromosomal physical location (Table 1). These 32 SiVQs were not evenly
distributed across all 9 chromosomes (Figure 1). In particular, chromosome IX had the
maximum number of seven SiVQs, while no SiVQ gene was detected on chromosome VIII.
Meanwhile, based on the sequence alignment results of the SiVQs, no tandem duplication
event was detected in the millet genome.

https://ngdc.cncb.ac.cn/
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Table 1. Information on the SiVQ gene family in foxtail millet.

Gene ID Alias Chr Position Protein
Length (aa) Type Pi a MW (kD) b Subcellular

Localization c

SETIT_019438mg SiVQ01 I 1,341,861−1,342,593 128 LTG 7.71 13.49 mito:11, chlo:1, nucl:1
SETIT_018158mg SiVQ02 I 1,345,238−1,346,666 253 LTG 10.05 26.07 chlo:10, nucl:3
SETIT_019357mg SiVQ03 I 26,627,391−26,628,299 302 LTG 7.23 31.88 nucl:12.5, nucl_plas:7
SETIT_033098mg SiVQ04 II 3,233,035−3,233,550 171 LTG 6.09 17.58 nucl:6, chlo:5, mito:3
SETIT_033394mg SiVQ05 II 46,041,085−46,041,753 222 FTG 6.62 22.99 nucl:12, chlo:2
SETIT_031131mg SiVQ06 II 48,839,908−48,840,856 204 ITG 6.35 21.21 nucl:13
SETIT_025350mg SiVQ07 III 375,390−375,974 220 LTG 10.45 23.79 chlo:6, mito:6, nucl:1
SETIT_024180mg SiVQ08 III 1,806,197−1,806,655 157 LTG 5.72 16.52 chlo:6, nucl:4, mito:4

SETIT_024489mg SiVQ09 III 4,820,089−4,820,346 85 LTG 5.64 8.95 chlo:8, nucl:2, cyto:2,
mito:1

SETIT_024902mg SiVQ10 III 9,644,821−9,645,084 87 LTG 5.08 9.22 nucl:7, cyto:5, chlo:2
SETIT_023066mg SiVQ11 III 13,094,141−13,095,404 248 LTG 10.46 25.72 chlo:7, nucl:4, mito:3

SETIT_023655mg SiVQ12 III 50,301,917−50,302,794 122 LTG 10.45 13.01 mito:7, nucl:3, chlo:2,
cyto:2

SETIT_007480mg SiVQ13 IV 26,904,107−26,904,951 136 LTG 7.86 14.55 mito:12, nucl:1
SETIT_007126mg SiVQ14 IV 33,220,220−33,222,190 256 LTG 5.70 27.14 chlo:10, nucl:3
SETIT_007257mg SiVQ15 IV 34,348,031−34,349,338 217 LTG 10.86 22.11 nucl:8, cyto:3, chlo:2
SETIT_008810mg SiVQ16 IV 38,605,126−38,606,413 239 FTG 7.33 24.50 nucl:14

SETIT_004264mg SiVQ17 V 12,570,630−12,571,331 220 LTG 9.2 22.23 nucl:4.5, nucl_plas:3.5,
chlo:3, mito:3, cyto:2

SETIT_003551mg SiVQ18 V 30,882,273−30,882,824 85 LTG 6.90 9.11 nucl:6, mito:4, chlo:3
SETIT_002727mg SiVQ19 V 36,762,032−36,763,259 241 LTG 10.25 25.22 nucl:14
SETIT_004625mg SiVQ20 V 39,570,237−39,570,797 186 LTG 5.36 18.98 nucl:7, mito:5, cyto:2

SETIT_015774mg SiVQ21 VI 230,417−231,199 260 LTG 9.57 26.86 nucl:11.5, cyto_nucl:6.5,
chlo:1

SETIT_013900mg SiVQ22 VI 25,319,524−25,320,889 390 FTG 6.62 38.97 nucl:13
SETIT_010684mg SiVQ23 VII 19,742,260−19,743,177 305 LTG 6.43 31.60 chlo:7, mito: 4, nucl:3
SETIT_011801mg SiVQ24 VII 31,441,450−31,442,073 207 LTG 9.30 22.31 nucl:11, chlo:1, mito:1
SETIT_012398mg SiVQ25 VII 34,606,788−34,607,282 165 VTG 11.21 17.14 chlo:10, nucl:3

SETIT_037845mg SiVQ26 IX 3,581,772−3,582,555 160 LTG 10.01 16.48 nucl:8, nucl_plas:5.5,
mito:3, chlo:2

SETIT_038017mg SiVQ27 IX 9,013,531−9,014,140 129 LTG 9.80 13.09 mito:8, nucl:5
SETIT_038033mg SiVQ28 IX 35,017,910−35,018,366 126 LTG 9.68 13.06 chlo:8, nucl:6
SETIT_038923mg SiVQ29 IX 35,040,070−35,040,444 124 LTG 7.91 13.01 nucl:7, mito:5, chlo:2
SETIT_039726mg SiVQ30 IX 35,814,363−35,816,103 238 LTG 9.10 23.84 chlo:11, nucl:2
SETIT_036960mg SiVQ31 IX 44,006,470−44,007,643 209 FTG 9.51 20.88 nucl:8, chlo:5
SETIT_037859mg SiVQ32 IX 47,969,328−47,970,225 157 LTG 7.96 16.37 nucl:8, chlo:3, pero:3

Abbreviations: a pI, theoretical isoelectric point; b MW, theoretical molecular weight, kDa; c mito, mitochondria;
chlo, chloroplast; nucl, nuclear; plas, plasma membrane; cyto, cytoplasmic; nucl_plas, nuclear and plasma
membrane; cyto_nucl, nuclear and cytoplasmic; pero, peroxisome.

The detailed data for each SiVQ, including gene ID, genomic position, VQ protein
length, VQ motif type, isoelectric point, molecular weight, and subcellular localization, are
shown in Table 1. The nucleotide lengths of these SiVQs ranged from 257 bp (SiVQ09) to
1970 bp (SiVQ14), and the length of their encoded protein sequences ranged from 85 amino
acids (SiVQ09 and SiVQ18) to 390 amino acids (SiVQ22). The analysis of physiochemical
properties further revealed that SiVQ proteins widely varied in molecular weight (MW),
ranging from 8.95 (SiVQ09) to 38.97 kDa (SiVQ22). The isoelectric point (pI) of the SiVQs
varied from 5.08 to 11.21, with a minimum pI noted for SiVQ10 and a maximum pI noted
for SiVQ25 (Table 1). In addition, four VQ motif types (LTG, FTG, ITG, and VTG) were
identified. Most SiVQs belonged to the LTG type (26/32), four SiVQ proteins belonged to
the FTG type, one SiVQ protein belonged to the ITG type, and one SiVQ protein belonged
to the VTG type (Table 1). The subcellular localization analysis revealed that 18 SiVQs
were predicted as nuclear-localized proteins, 10 were predicted as chloroplast proteins, and
4 were predicted as mitochondrial proteins.
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3.2. Phylogenetic, Conserved Motif, and Gene Structure Analysis of SiVQs

Notably, 102 VQ protein sequences, including 34 Arabidopsis AtVQs, 36 rice OsVQs,
and 32 foxtail millet SiVQs, were used for the phylogenetic analysis to explore the evolu-
tionary relationship of the SiVQs (Table S2 and Figure 2). Based on the classification of
Arabidopsis and rice VQs [20], the SiVQs were classified into seven groups (I–VII). Groups
VI and VII contained the least number of SiVQs with two members, group II had the largest
number of SiVQs with ten members, and groups I, III, IV, and V had six, four, four, and
four SiVQs, respectively. According to the results of the multiple sequence alignment of
SiVQ proteins, group V belonged to the FTG type, group VI belonged to VTG and ITG
types, and the remaining groups belonged to the LTG type (Figure 3), which is consistent
with the results found for Arabidopsis and rice [20].

The conserved motifs analysis of the SiVQs revealed that all SiVQs had motif 1, which
corresponds to the VQ motif (Figure 4A). It is noteworthy that SiVQs within the same
group had similar conserved motifs, whereas SiVQs had differences in motifs between
groups, also indicating that the phylogenetic classification was reliable. All members of
groups I, III, V, VI, and VII contained only motif 1 except SiVQ16 and SiVQ32. Group IV
contained motifs 2, 3, and 4, most members of group II contained motif 5, and SiVQ23 and
SiVQ03 also contained motif 4 (Figure 4A). The exon–intron structure of all 32 SiVQ genes
was analyzed (Figure 4B). Most of them (27 SiVQs) had no intron, and only 5 SiVQs had
1 intron.

3.3. Synteny Analysis of SiVQ Genes

To understand the evolutionary mechanism of SiVQ in foxtail millet, the segmental
duplication events of the SiVQ gene family were analyzed. Following the BLAST results, a
total of three homologous gene pairs with six SiVQs were identified in the whole genome
(Figure 5). Group II exhibited two segmental duplication events, whereas group IV ex-
hibited one segmental duplication event. The selective evolutionary pressure on all three
homologous SiVQ gene pairs was investigated by calculating the Ka, Ks, and Ka/Ks ratios
of the duplication events. The Ka/Ks values of two of the gene pairs were more than
1.0 (Table 2). In addition, the divergence times were calculated to estimate the SiVQ du-
plication events of the syntenic blocks (Table 2), and the divergence time of the three
SiVQ-duplicated gene pairs varied from 24.0 to 45.7 MYA.
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Table 2. Analysis of SiVQ genes synteny blocks.

Gene 1 Gene 2 Ka a Ks b Ka/Ks T(MYA) c Group

SiVQ03 SiVQ23 0.52951 0.412243 1.28446 31.7 II
SiVQ11 SiVQ19 0.307855 0.311895 0.987048 24.0 IV
SiVQ07 SiVQ21 0.742654 0.595114 1.24792 45.7 II

a Ka non-synonymous substitution. b Ks synonymous substitution. c The divergence time (T) is given as millions
of years ago (MYA).
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The synteny analysis was also conducted between foxtail millet and six other species:
three dicot species, namely Arabidopsis, alfalfa, and tomato (Arabidopsis thaliana, Medicago
truncatula, and Solanum lycopersicum), and three monocot species, i.e., maize, rice, and
sorghum (Zea mays, Oryza sativa, and Sorghum bicolor). Overall, the SiVQs had the most
orthologous gene pairs with maize (n = 41), followed by sorghum (n = 29), and rice (n = 22).
Only two orthologous gene pairs were observed between foxtail millet and Arabidopsis,
but no orthologous gene pairs were observed between foxtail millet and tomato or alfalfa,
respectively (Figure 6). In addition, 19 SiVQs had a collinear relationship with the VQs of
all the three monocots studied (Table S3), indicating that these genes are evolutionarily
conserved and may play a vital role in the evolution of the VQ gene family. The divergence
times were also calculated to estimate the VQ duplication events between foxtail millet and
the three monocots, and the divergence times of these VQ gene pairs ranged from 8.3 to
141.6 MYA (Table S4).
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3.4. Cis-Element Analysis of the SiVQ Gene Promoter Region

Cis-acting elements in the gene promoter regions were identified to explore the regula-
tory mechanism of SiVQs. In total, 105 cis-elements were obtained and further classified
into 5 categories: phytohormone responsive, abiotic and biotic stress, plant growth and
development, light responsive, and unknown functions (Table S5 and Figure 7).

In the phytohormone-responsive category, 17 cis-elements associated with different
phytohormone responses such as ABA, auxin, ethylene, GA, SA, and MeJA were observed.
The largest proportion of these elements was the ABRE element involved in responding
to ABA, which represented 22.7%. The second majority was the as-1 element involved in
responding to SA, and the TGACG and CGTCA motifs involved in responding to MeJA,
representing 16.0% of the total found in this category (Table S5 and Figure 7).

Regarding the abiotic and biotic stress category, the cis-acting elements responsive to
drought, salt, and temperature, such as MYB, MBS, STRE, MYC, CCAAT box, the CCGTCC
motif, the DRE core, and LTR motifs, represented 78% of the total elements. Additionally,
other stress-specific cis-elements were also identified, such as the W box, the TC-rich repeat,
the box S, and the WUN motif in response to the wounding and pathogens, and ARE and
GC motifs in response to anaerobic conditions (Table S5 and Figure 7).
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A total of 27 elements belonged to the light-responsive elements. Most of them were
the G box, representing 32.0% of the total identified in this category. Other specific elements
were also found, such as circadian (Table S5). In the plant growth and development
category, 13 cis-elements were observed, the majority of which belonged to the CAAT-box
motif involved in transcriptional regulation, representing 87.4% of the cis-acting elements
present within this category. Several elements associated with meristem development were
identified, such as CAT box, CCGTCC box, dOCT, NON box, and O2 site. Some elements
associated with endosperm and seed development, such as the GCN4 motif and the RY
element, were also observed (Figure 7 and Table S5).

3.5. Expression Patterns of SiVQ Genes in Different Tissues

To characterize the expression patterns of SiVQs, the expression levels of the 32 SiVQs
were analyzed in 11 different tissues to gain a preliminary insight into their potential
functions (Figure 8). Based on the FPKM values, we found that 11 SiVQ genes (SiVQ03,
SiVQ11, SiVQ12, SiVQ13, SiVQ14, SiVQ16, SiVQ19, SiVQ20, SiVQ23, SiVQ27, and SiVQ32)
were highly expressed in different tissues, which were widely distributed in groups I to V,
most of which belonged to groups II and III. By contrast, six SiVQ genes (SiVQ04, SiVQ07,
SiVQ09, SiVQ10, SiVQ21, and SiVQ30) were low or not expressed in different tissues, which
were clustered in groups I and II. (Figure 8). Certain genes had high expression levels in
only one tissue. For example, SiVQ15 was highly expressed only in the root. Interestingly,
the two SiVQs (SiVQ28 and SiVQ29) clustered in group VII showed similar expression and
were relatively strongly expressed in the seed, and the paralogous gene pairs SiVQ03 and
SiVQ23, as well as SiVQ11 and SiVQ19, also showed very similar expression patterns, with
highest levels in the root. These results implicate that these SiVQs may have different roles
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during plant growth and development and that SiVQs within the same group may have
similar or redundant functions.

Genes 2023, 14, x FOR PEER REVIEW 13 of 20 
 

 

 
Figure 8. The expression patterns of SiVQ genes in various tissues of foxtail millet. Panicle1: panicle 
of two days after heading; Panicle2: panicle at pollination stage; Panicle3: panicle at filling stage; 
Leaf1: the uppermost leaf of two weeks; Leaf2: the uppermost second leaf of 30 days; Leaf3: flag leaf 
at filling stage; Leaf4: the uppermost fourth leaf at filling stage. 

3.6. Expression Analysis of SIVQ Genes under Abiotic Stress and Exogenous Hormone  
Treatments 

Many VQs have been implicated to be involved in abiotic stresses [11,12]. To clarify 
whether SiVQ genes respond to abiotic stresses, the expression levels of SiVQs under 
drought, salt, and low temperature were analyzed using qRT-PCR. Overall, many SiVQs 
exhibited upregulated expression under abiotic stress conditions (Figure 9). Under 
drought treatment, all SiVQs except SiVQ32 showed upregulated expression levels. Six 
and eight SiVQ genes started to respond to drought stress at 6 h and 12 h, respectively. 
Additionally, most of the upregulated SiVQ genes peaked at 12 h. Notably, the expression 
of four genes (SiVQ10, SiVQ18, SiVQ26, and SiVQ28) increased at least 10-fold under 
drought treatment (Figures 9A and S1). Following salt stress treatment, all SiVQs exhib-
ited upregulated expression levels. The expression of four SiVQ genes (SiVQ06, SiVQ07, 
SiVQ08, and SiVQ10) continuously increased and peaked at 24 h, while the expression of 
other SiVQs first increased and then decreased. In particular, the expression levels of six 
SiVQs (SiVQ05, SiVQ12, SiVQ18, SiVQ19, SiVQ22, and SiVQ23) were significantly upreg-
ulated (>20 fold) under salt stress (Figures 9B and S1). Under cold treatment, the expres-
sion levels of 22 genes were induced, and the expression levels of 5 genes were inhibited. 
Overall, the response to cold was not as significant as the response to drought and salt 
stress for all SiVQs. Only four genes (SiVQ06, SiVQ14, SiVQ24, and SiVQ25) showed the 
most significant upregulated expression (>8 fold), and one gene (SiVQ07) showed signifi-
cantly downregulated expression (13-fold) (Figures 9C and S1). 
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of two days after heading; Panicle2: panicle at pollination stage; Panicle3: panicle at filling stage;
Leaf1: the uppermost leaf of two weeks; Leaf2: the uppermost second leaf of 30 days; Leaf3: flag leaf
at filling stage; Leaf4: the uppermost fourth leaf at filling stage.

3.6. Expression Analysis of SiVQ Genes under Abiotic Stress and Exogenous Hormone Treatments

Many VQs have been implicated to be involved in abiotic stresses [11,12]. To clarify
whether SiVQ genes respond to abiotic stresses, the expression levels of SiVQs under
drought, salt, and low temperature were analyzed using qRT-PCR. Overall, many SiVQs
exhibited upregulated expression under abiotic stress conditions (Figure 9). Under drought
treatment, all SiVQs except SiVQ32 showed upregulated expression levels. Six and eight
SiVQ genes started to respond to drought stress at 6 h and 12 h, respectively. Additionally,
most of the upregulated SiVQ genes peaked at 12 h. Notably, the expression of four genes
(SiVQ10, SiVQ18, SiVQ26, and SiVQ28) increased at least 10-fold under drought treatment
(Figures 9A and S1). Following salt stress treatment, all SiVQs exhibited upregulated
expression levels. The expression of four SiVQ genes (SiVQ06, SiVQ07, SiVQ08, and
SiVQ10) continuously increased and peaked at 24 h, while the expression of other SiVQs
first increased and then decreased. In particular, the expression levels of six SiVQs (SiVQ05,
SiVQ12, SiVQ18, SiVQ19, SiVQ22, and SiVQ23) were significantly upregulated (>20 fold)
under salt stress (Figures 9B and S1). Under cold treatment, the expression levels of 22
genes were induced, and the expression levels of 5 genes were inhibited. Overall, the
response to cold was not as significant as the response to drought and salt stress for
all SiVQs. Only four genes (SiVQ06, SiVQ14, SiVQ24, and SiVQ25) showed the most
significant upregulated expression (>8 fold), and one gene (SiVQ07) showed significantly
downregulated expression (13-fold) (Figures 9C and S1).
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Furthermore, changes in the expression levels of SiVQs were analyzed under four
exogenous phytohormone treatments (MeJA, SA, GA, and ABA) (Figure 10). All SiVQ
genes exhibited upregulated expression, peaking at 6 h or 12 h after GA treatment. Seven
SiVQ genes (SiVQ13, SiVQ17, SiVQ19, SiVQ20, SiVQ22, SiVQ25, and SiVQ28) responded
significantly to GA treatment, with >12-fold changes (Figures 10A and S2). Under MeJA
treatment, the expression of most SiVQ genes was upregulated at early treatment time
points, and five SiVQ genes (SiVQ12, SiVQ17, SiVQ18, SiVQ23, and SiVQ27) responded
significantly to MeJA treatment, with >20-fold changes (Figures 10B and S2). The expression
levels of SiVQ genes were also analyzed in seedlings under SA and ABA treatments. Eight
SiVQ genes (SiVQ05, SiVQ08, SiVQ13, SiVQ15, SiVQ18, SiVQ22, SiVQ24, and SiVQ31) and
three SiVQ genes (SiVQ12, SiVQ25, and SiVQ28) responded significantly (>20-fold) to SA
and ABA treatments, respectively (Figures 10C,D and S2).
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3.7. The Interaction Network of SiVQs with SiWRKYs

A protein interaction network between SiVQs and SiWRKYs was constructed using
the STRING database to better understand the potential interactions. Notably, 15 SiVQs
were predicted to interact with 28 SiWRKYs (Figure 11 and Table S6). Among these 15 SiVQ
proteins, 3 SiVQs (SiVQ11, SiVQ17, and SiVQ19) interacted with only 1 SiWRKY, while
12 SiVQs interacted with more than 1 SiWRKY. Five SiVQs (SiVQ03, SiVQ20, SiVQ21,
SiVQ23, and SiVQ32) interacted with more than seven SiWRKYs to generate a key node
(Figure 11). Similar to some WRKYs [23,45], most SiVQ proteins interacted with other SiVQ
proteins to function. These results may provide helpful information for future studies on
the regulatory network of VQs.
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and black letters represent SiVQ proteins and WRKY TFs, respectively. Purple and light blue lines
represent known interactions determined from the experiments and database, respectively. Red,
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respectively. Black, light green, and grey lines represent other interactions from coexpression, text
mining, and protein homology, respectively. Empty nodes and filled nodes indicate proteins with
unknown and known or predicted three-dimensional structures, respectively.

4. Discussion

Previous studies have revealed that VQ proteins play an important role in plant growth
and stress responses [46,47]. The VQ gene family has been systematically analyzed in many
species, including cucumber [48], sugarcane [49], and tea [50], and the genes have been
proven to respond to various abiotic and biotic stresses. However, limited information
on VQ characteristics in foxtail millet is available. Thus, a comprehensive bioinformatic
analysis of foxtail millet VQs and their expression analysis under different abiotic stresses
and hormonal treatments can provide a basis for functional studies of SiVQs.

In this study, we identified 32 SiVQ genes in foxtail millet, a similar number to
that in rice and Arabidopsis but significantly less than in maize, wheat, and soybean,
indicating that the number of VQs in the genome might be largely dependent on the
evolutionary position and/or genome size of the species. The SiVQs were classified into
seven groups from our phylogenetic analysis, and we found these SiVQs had a close
affinity to the VQs of the monocot rice but a relatively low distant affinity to the VQs of
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the dicot Arabidopsis. This suggests that SiVQs are conserved in the evolutionary history
of monocots. Additionally, the SiVQs in the same group shared similar conserved motifs,
suggesting a potential functional similarity between SiVQs within the same group. Most
SiVQs lacked introns, which is consistent with previous research on VQs in other species,
including Arabidopsis [3], rice [20], maize [21], tomato [51], and apple [52]. This might be
the result of the loss of introns in plant VQ genes during their evolutionary history [48].

Segmental duplication is a major mechanism for the amplification of the VQ gene
family [53]. We found three segmental duplication events among the SiVQ genes, while no
tandem duplication was detected, indicating that segmental duplication was a major mode
of expansion of the SiVQ gene family. The Ka/Ks ratio was calculated to investigate whether
the SiVQ genes underwent selection pressure. The results demonstrate that positive
selection (Ka/Ks > 1) and purifying selection (Ka/Ks < 1) play a role in the evolution of
the SiVQ gene family. Furthermore, many orthologous gene pairs were detected between
foxtail millet and monocot species, whereas few gene pairs were observed between foxtail
millet and dicot species. The results of synteny analysis further indicate that the VQ genes
are highly conserved in monocots. We calculated the divergence time to estimate the VQ
duplication events between foxtail millet and three monocot species. Previous studies have
demonstrated that foxtail millet diverged from sorghum and maize before ~27 MYA and
from rice before ~48 MYA [54]. In this study, we found that the divergence time of most
VQ duplication events (61/69) between foxtail millet and maize or sorghum was greater
than 27 MYA, and the divergence time of most VQ duplication events (17/22) between
foxtail millet and rice was also greater than 48 MYA. These results suggest that the genome
duplication of the VQ genes in foxtail millet mainly occurred before the divergence of the
Gramineae and after the divergence of dicots and monocots.

In this study, many cis-acting elements associated with responses to drought, salt,
and cold stresses were found in the promoter region of SiVQs, suggesting that they might
play a role in abiotic stress responses. Therefore, the expression levels of SiVQs under
these three abiotic stress treatments were further analyzed. The expression of SiVQ10,
SiVQ18, SiVQ26, and SiVQ28 showed significant upregulation under drought treatment,
and drought-stress-responsive cis-acting elements were found in their promoters. Among
them, SiVQ10 and SiVQ18 belonged to group I, the same group as OsVQ02 in rice, and
SiVQ18 was orthologous to OsVQ02. SiVQ26 and SiVQ28 were in group II and group VII,
the same groups as OsVQ14 and OsVQ36 in rice, respectively. The rice genes OsVQ02,
OsVQ14, and OsVQ36 were all upregulated under drought treatment [20]. We, therefore,
speculate that SiVQ10, SiVQ18, SiVQ26, and SiVQ28 might be involved in responding to
drought stress in foxtail millet. SiVQ06, SiVQ14, SiVQ24, and SiVQ25 exhibited significant
upregulation under cold treatment, and cis-acting elements associated with responses
to low temperature were detected in their promoters. The fold change in expression
was largest for SiVQ06 and SiVQ25, both of which belong to group VI and are probably
functionally similar. Previous studies in Arabidopsis found that the expression levels
of AtVQ15 and AtVQ24, which belong to group VI, were also significantly upregulated
under low-temperature treatment [55]. We, therefore, speculate that SiVQ06 and SiVQ25
might be involved in response to cold stress in foxtail millet. SiVQ05, SiVQ12, SiVQ18,
SiVQ19, SiVQ22, and SiVQ23 showed significant upregulation under salt treatment, and
salt-stress-responsive cis-acting elements were found in their promoters. The fold change
in expression patterns was largest for SiVQ12, SiVQ18, and SiVQ19, belonging to groups I,
II, and IV, respectively. Previous studies found that most VQs belonging to groups I, II, and
IV respond to salt stress in Arabidopsis [55]. Therefore, we speculate that SiVQ12, SiVQ18,
and SiVQ19 might be implicated in the salt stress response in foxtail millet. However, the
SiVQ-duplicated genes in foxtail millet showed diverse expression profiles. It seems that
mutations in critical regions, including promoters and coding sites, might have altered
their gene expression patterns.

Previous studies have provided evidence indicating that plant hormones can regulate
the expression of VQs [49]. The cis-acting elements associated with responses to various
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hormones were found in the promoters of SiVQs, and the expression of most SiVQ genes
was induced after hormone treatment, suggesting that the expression of SiVQ genes might
be influenced by hormones. Overall, more cis-acting elements responsive to ABA, SA, and
MeJA were found in the promoters of SiVQs than those responsive to GA. The expression
levels of SiVQs were also more strongly upregulated after ABA, SA, and MeJA treatment
than after GA treatment. The cis-acting elements of the corresponding hormones were not
found in the promoter region of some SiVQs, such as SiVQ03 and SiVQ20, but nonetheless,
their expression levels were upregulated after hormone treatment. This finding might
be caused by the possible presence of cis-acting elements of more than 2000 bp in their
promoters, or it might be that their expression was not directly regulated by hormone
contents but was influenced by hormone signaling. Previous studies have demonstrated
that plant hormones act as signaling compounds in regulating responses to abiotic stresses
and thereby affect plant growth and survival [56]. In this study, SiVQ05, SiVQ12, SiVQ18,
and SiVQ28 were significantly upregulated under drought treatment or after treatment
with ABA, GA, and SA hormones. We also found that SiVQ05, SiVQ12, SiVQ18, SiVQ19,
and SiVQ22 were significantly induced by salt stress or treatment with ABA, GA, and SA
hormones, while SiVQ2a5 showed significant upregulation under cold stress or treatment
with ABA and GA hormones, suggesting that these genes might be involved in responding
to abiotic stresses through hormone signaling pathways. These results will help to select
candidate genes for the subsequent in-depth studies of the role of VQ in plant abiotic
stress responses.

VQs can interact with WRKY TFs and participate in various plant biological pro-
cesses [4,57]. In this study, we predicted the potential interaction between SiVQs and
SiWRKYs. Interestingly, SiVQ03 was predicted to interact with SiWRKY33, and both were
highly expressed in the root, implying that they might be involved in root development. In
addition, the W box element (the WRKY binding site) was observed in the promoters of
most SiVQs, indicating that WRKYs might regulate not only the encoded protein action of
SiVQ genes but also their gene expression. Further verification and experimental analysis
are required to study the physical interactions between SiVQ proteins and SiWRKY TFs in
foxtail millet.

5. Conclusions

In this research, 32 SiVQ genes in foxtail millet were identified and systematically
analyzed for the first time. The SiVQ genes were classified into seven groups through phy-
logenetic analysis, and the gene family was shown to have been expanded via chromosome
segment duplication. The promoters of SiVQs were enriched with the cis-acting elements
involved in responses to plant growth and development, abiotic and biotic stresses, and
hormone responses. Further expression analysis showed that the expression levels of SiVQ
genes were induced by abiotic stress and hormone treatments. Protein interaction analysis
revealed that 15 SiVQ proteins interacted with SiWRKY TFs. Overall, these results provide
a basis for exploring the functions of VQs in growth and development in foxtail millet and,
more broadly, in plants.
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S4: Evolutionary analysis of VQ genes between millet and the other three monocots; Table S5: List of
cis-acting elements of the SiVQ gene family members; Table S6: Prediction of the interaction network
of SiVQ proteins with SiWRKY transcription factors using the STRING online program.
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