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Abstract: Comorbidities are prevalent in digestive cancers, intensifying patient discomfort and com-
plicating prognosis. Identifying potential comorbidities and investigating their genetic connections
in a systemic manner prove to be instrumental in averting additional health challenges during diges-
tive cancer management. Here, we investigated 150 diseases across 18 categories by collecting and
integrating various factors related to disease comorbidity, such as disease-associated SNPs or genes
from sources like MalaCards, GWAS Catalog and UK Biobank. Through this extensive analysis, we
have established an integrated pleiotropic gene set comprising 548 genes in total. Particularly, there
enclosed the genes encoding major histocompatibility complex or related to antigen presentation.
Additionally, we have unveiled patterns in protein-protein interactions and key hub genes/proteins
including TP53, KRAS, CTNNB1 and PIK3CA, which may elucidate the co-occurrence of digestive
cancers with certain diseases. These findings provide valuable insights into the molecular origins of
comorbidity, offering potential avenues for patient stratification and the development of targeted
therapies in clinical trials.

Keywords: digestive cancers; comorbidity; pleiotropic gene set; protein-protein interaction; heterogeneity
in genetic predisposition; immunity-related function

1. Introduction

Cancer stands as a leading cause of death worldwide, posing a significant obstacle to
the increase in life expectancy across every country [1]. Among these cancers, digestive
cancers are particularly severe, constituting 26% of global cancer incidence but account-
ing for 35% of all cancer-related deaths [2]. This places a substantial burden on global
healthcare systems. The most prevalent digestive cancers include colorectal cancer (with
approximately 1.15 million new cases in 2020), esophageal cancer (0.60 million new cases),
liver cancer (0.91 million new cases), pancreatic cancer (0.50 million new cases) and stomach
cancer (1.09 million new cases) [3]. As we continue to confront the challenges posed by
cancer, there is an escalating demand for clinical healthcare to address the management of
cancer patients who are coping with multiple concurrent diseases, commonly referred to as
comorbidities. This is increasingly recognized as the new norm in cancer care [4]. Numer-
ous studies have demonstrated that patients with digestive cancers frequently present with
or develop a range of complex diseases that can significantly complicate their prognosis.
For instance, various gastrointestinal complications, including increased odds ratio or
relative risk of esophageal cancer, stomach cancer, liver diseases (including hepatobiliary
cancer) and pancreatic cancer, have been associated with obesity [5]. In the case of male hep-
atocellular carcinoma, diabetes, alcohol-related liver disease and hepatitis C virus infection
were identified as major individual comorbidities, with population-attributable fractions
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exceeding 10% [6]. In China, cardiometabolic diseases, particularly hypertension, were the
most common comorbidities of gastric cancer and esophageal cancer, with hypertension
being predominant. The proportion of esophageal cancer patients with three or more
comorbidities increased from 0.1% to 2.2% from 2010 to 2019 [7]. Diabetes, hyperlipidemia,
inflammatory bowel disease and polyps were identified as four types of comorbidities
in colorectal cancer [8]. It is important to note that in patients with advanced pancreatic
cancer, it is comorbidity, not age, that serves a prognostic factor [9]. Despite the prevalence
of comorbidities in digestive cancers, integrated reporting on this topic has been limited.

Exploring the underlying genetic factors can also provide insights into the shared
mechanisms of diseases’ comorbidity and aid in the identification of potential drug targets.
Multidrug resistance displays a major obstacle to effective therapeutic interventions against
cancer. The development of resistance against anticancer agents can be due to individual
genetic differences, such as mutations, gene drug-resistant genes expression, altered epige-
netics, enhanced drug efflux, cell death inhibition, and various other molecular and cellular
mechanisms [10]. Genetic pleiotropy, a phenomenon where a single gene or genetic variant
influences multiple traits, appears to be a common occurrence in human genome [11].
A comprehensive analysis by Watanabe et al. [12], which examined over 4000 publicly
available Genome-Wide Association Studies (GWAS), revealed widespread pleiotropy at
both the gene level (63%) and single nucleotide polymorphism (SNP) level (31%). The
identification of potential susceptibility genes and the discovery of pleiotropic effects can
help elucidate the reasons behind shared heritability and comorbidity among various
complex traits and provide valuable insights into the underlying biological mechanisms
governing these traits [11].

However, prior studies have typically focused on individual diseases or a limited set
of known health conditions, leaving many diseases under-studied or undetected. Another
limitation of the traditional approach is its concentration on examining a small number
of genes in isolation, overlooking the intricate interconnectedness of genes through path-
ways and protein-protein interactions (PPIs). This places a substantial burden on global
healthcare systems, particularly in terms of their pleiotropic structures and their impact
on outcomes.

The modern era presents us with an abundance of publicly available genetic data
resources related to human diseases, offering a unique opportunity to construct an inte-
grated set of pleiotropic genes (genes that directly influence multiple traits [13]) associated
with both five digestive cancers and comorbid diseases. We list a few of these exemplary
resources here. MalaCards [14], an integrated human disease knowledge base, aggregates
annotated disease information from various data sources, including Elite genes (genes
presumed to cause diseases) and variations from ClinVar [15] and UniProt [16]. The GWAS
Catalog [17], provided by NHGRI-EBI, compiles a reliable database of summary-level
information regarding SNP-trait associations in human genome-wide association studies.
The UK Biobank [18] (UKB) serves as a large-scale individual-level database, encompassing
genetic data, diagnoses, lifestyle information, and many other health-related data from
over half a million participants in the United Kingdom. FUMA [19] is a web-based tool
platform capable of annotating, prioritizing, visualizing and interpreting GWAS results.
EpiGraphDB [20], both a graph database and a tool platform, houses a wide array of
biomedical and epidemiological relationships. With the availability of these databases and
tools, we shall shift the research paradigm from considering only a handful of co-occurring
diseases associated with a few pleiotropic genes to encompassing a broad spectrum of
diseases attributed to interacting gene networks. Consequently, methods that enable such
research are highly desirable.

Our study seeks to address the three aforementioned issues by developing an inte-
grated analysis workflow that leverages the resources mentioned, allowing us to gain
deeper insights into digestive cancers.
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2. Materials and Methods
2.1. Data Sources

We aimed to include as many diseases as possible from a selection of 567 major groups
of disease diagnoses [21]. These groups were created based on the unique International
Classification of Diseases (ICD) codes, which were organized according to diagnosis records
and clinical manifestations. Consequently, we identified a total of 150 diseases that were
present in at least one of the following databases: MalaCards and GWAS Catalog, and had
corresponding entries in the UK Biobank (UKB) electronic health record (EHR) database.
More details about the data sources can be found in the ‘URLs’ section.

2.2. Data Analysis Methods
2.2.1. Identification of Comorbid Diseases in Five Digestive Cancers

We conducted an integrated study to identify the presence of comorbid diseases
associated with five digestive cancers. This investigation was based on the UKB dataset
(Approval ID 78814), and EHRs from a cohort of 458,038 individuals were extracted. We
aimed to explore the associations between digestive cancers and other diseases. In this
regard, Fisher’s exact tests were performed in the R programming language for each pair of
diseases by calculating their co-occurrence within the UKB’s diagnosis records phenotypic
data. We considered a disease to be a comorbidity only if the odds ratio was larger than
1, and the false discovery rate (i.e., the p-value adjusted through the Benjamini-Hochberg
procedure) was less than 0.05 in the Fisher’s exact test.

2.2.2. Pleiotropic Gene Set Construction

We gathered potential susceptibility genes of each disease from five distinct types of
data, which were obtained from three primary sources:

(1) MalaCards Database: We initiated the process by searching for the disease name on
the MalaCards website (refer to URLs) and clicking on the ‘show all’ button for related
sections, including ‘Genes’, ‘ClinVar’, and ‘UniProtKB/Swiss-Prot’. We retrieved
relevant information that contained in each of these URLs

(2) GWAS Catalog: First, we searched each disease’s name on the GWAS Catalog web-
site (see URLs) and downloaded the relevant GWAS Catalog files for each disease
(see Table S1). Second, we extracted the genes associated with each disease from
these downloaded files. Our selection criteria included a significance threshold
(PGWAS < 5 × 10−8) and manual inspection (excluding unrelated diseases, such as
those labelled as ‘measurement’ in the ‘MAPPED TRAIT’ column).

(3) UKB GWAS Data: This dataset was curated following GWAS analysis of 7221 phe-
notypes across six continental ancestry groups in the UKB [22]. Our approach was
based on the ‘UKBB GWAS Imputed v3-File Manifest Release 20180731.xlsx’ file (see
URLs). Firstly, we queried each disease name in the ‘Description Lookup’ sheet to
obtain the ‘phenotype code’ for each disease (see Table S1). Secondly, we downloaded
‘variants.tsv.bgz’ and each ‘<phenotype code>.gwas.imputed v3.both sexes.tsv.bgz’ us-
ing the provided commands in the ‘Manifest 201807’ sheet. We then converted variant
locations to variant rsids, beta coefficients to odds ratios (OR = exp(beta)) and so on in
order to obtain the GWAS summary statistics file in the required FUMA format [23].
Thirdly, we uploaded these GWAS summary statistics to the FUMA ‘SNP2GENE’
website, setting default parameters (such as PGWAS < 5 × 10−8), except for specific
configurations: Reference panel population: UKB release2b; Minimum Minor Allele
Frequency (≥): 0.001; eQTL mapping → Tissue types: Select all; Gene types → Gene
type: Protein coding; MAGMA gene expression analysis: Select ‘GTEx v8:54 tissue
types’ and ‘GTEx v8:30 general tissue types’. Subsequently, we downloaded the ‘Gene
table (mapped genes)’ files, which provided us with the list of genes.

We then created the potential susceptibility gene set for each disease by amalgamating
the susceptibility genes from the three aforementioned sources. Finally, we constructed the
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pleiotropic gene set by identifying overlapped susceptibility genes for each disease pair
among the five digestive cancers and the other 145 diseases.

2.2.3. Dendrogram Analyses

To construct dendrogram trees for all 150 diseases, we employed several R functions
and tools. Initially, we used the ‘dist’ function in R to compute and generate a distance
matrix based on a specified distance measure. This matrix computed the distances between
the rows of a data matrix, considering the susceptibility genes associated with all diseases.
Subsequently, we applied the ‘hclust’ function in R, which conducts hierarchical cluster
analysis using a set of dissimilarities to cluster the objects. The result obtained from the
‘dist’ operation served as the input for ‘hclust’. We further transformed the ‘hclust’ object
into a newick file format using the ‘hc2Newick’ function from the ctc R package. This
step was pivotal in creating the dendrogram trees for all 150 diseases. To visualize these
dendrogram trees, we utilized the iTOL [24] online platform (accessible via URLs). iTOL is
an online tool designed for displaying, annotating and managing phylogenetic and other
tree-like structures.

2.2.4. Definition of Pleiotropic Structure and Hub Genes/Proteins in Disease Pairs

For evaluating the potential pleiotropy type, we harnessed the R package ‘epigraph-
db’ [20,25], which integrates gene-protein connections with comprehensive information
about biological pathways and protein-protein interactions (PPIs). Primarily, we employed
the querying function ‘query_epigraphdb’ within this package to submit data requests to
an EpiGraphDB API endpoint. This function facilitated the mapping of genes to proteins
(UniProt [16]) and proteins to the pathways in which they are found, using Reactome [26]
data. Subsequently, we extracted information regarding the specific pathways associ-
ated with these genes and proteins. In the implementation, we imported the overlapped
susceptibility genes for each disease pair.

We established criteria for determining the type of pleiotropy in disease pairs. When
a group of proteins linked to a single SNP was mapped to the same biological pathway
and/or exhibited protein-protein interactions, we considered it more likely that the SNP
operated through vertical pleiotropy [20]. If these proteins were involved in the same
biological pathway and/or possessed PPIs, we categorized the disease pair as exhibiting
vertical pleiotropy; otherwise, we categorized it as exhibiting horizontal pleiotropy.

In network analysis, a hub node is characterized by having a high degree of edges,
indicating that it interacts with numerous other nodes in the network [27]. Therefore, if the
protein(s) shared the most pathways and PPIs in a disease pair, we identified the protein(s)
and their corresponding gene(s) as the hub protein(s)/gene(s) for that disease pair.

2.2.5. Functional Enrichment Analysis

In our functional enrichment analysis, we aimed to assess the enrichment levels of
pleiotropic susceptibility genes for each disease pair in various biologically relevant cate-
gories. This included the Gene Ontology (GO) gene sets, consisting of 10,532 items, which
were obtained for this study through the use of the ‘msigdbr’ function from the ‘msigdbr’
R package. To determine the statistical significance of the enrichment, we employed the
hypergeometric distribution, utilizing the ‘phyper’ function from the ‘stats’ R package and
calculating p-values, following the equation below:

p-value =
n

∑
i=k

(n
i )(

N−n
K−i )

(N
K)

(1)

In this equation, binom N represents the sample size, which corresponds to the total
number of genes considered in the enrichment analysis; K is the number of pleiotropic
susceptibility genes associated with the disease pair; n is the number of genes associated
with the reference gene set, and; k denotes the number of correct predictions, indicating the
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number of genes in the set K that also appear in the reference set n. When assessing the
entire gene sets for enrichment, the estimated significance level was adjusted to account for
multiple hypothesis testing. Thus q-values were calculated using the Benjamini-Hochberg
procedure, ensuring a robust evaluation of the statistical significance of enrichment in
different biologically relevant categories.

2.3. URLs

Here are the URLs for the various resources mentioned in the text:
MalaCards: http://www.malacards.org/ (accessed on 1 March 2024).
EpiGraphDB: https://epigraphdb.org/ (accessed on 1 March 2024).
GWAS Catalog: https://www.ebi.ac.uk/gwas/ (accessed on 1 March 2024).
UK Biobank: https://www.ukbiobank.ac.uk/ (accessed on 1 March 2024).
FUMA: https://fuma.ctglab.nl (accessed on 1 March 2024).
UKBB GWAS Imputed v3: https://docs.google.com/spreadsheets/d/1kvPoupSzsS

FBNSztMzl04xMoSC3Kcx3CrjVf4yBmE (accessed on 1 March 2024).

3. Results
3.1. Developing a Workflow to Collect Potential Susceptibility Genes for Five Digestive Cancers
and Other Diseases

In order to extensively identify comorbidities for the five digestive cancers, we adopted
extensive searches. We referred to total of 567 major groups of disease diagnoses [21],
categorized based on ICD unique codes and clinical manifestations. These 567 traits were
used as queries across four different databases: MalaCard, GWAS Catalog, UKB GWAS
and UKB EHR. Due to variations in disease labeling schemes in these databases, we used
the most similar keywords to manually establish mappings between these databases (see
Table S1 for detailed query disease names). As a result, we identified a total of 150 diseases
that appeared in at least one of the three databases and also existed in the UKB EHR
database. These diseases spanned across 18 different disease categories (see Supplementary
Table S6 for the detailed information), covering a broad spectrum of the human system.
For instance, the Digestive disease category included 11 diseases, which encompassed
the five digestive cancers and six other digestive diseases; the Immune disease category
included 22 diseases, which is maximum among all the categories, and Metabolic disease
category contained 2 diseases. The diverse range of diseases ensured the representativeness
of the comorbidity sources for the five digestive cancers.

By amalgamating data from five different sources of genetic data (elite, ClinVar,
UniProtKB, GWAS Catalog and UKB GWAS) and from three sources database (Malacard,
GWAS Catalog and UKBB GWAS), we compiled the susceptibility genes for each of the
150 diseases (see Table S3). The dendrogram in Figure 1 depicted a landscape of the
similarities between these 150 diseases based on their susceptibility genes. Regarding
the count of susceptibility genes, frequently-researched diseases generally exhibited the
highest number of susceptibility genes. For example, Type II Diabetes Mellitus possessed
the most susceptibility genes (1567 genes), followed by Schizophrenia Related Psychosis
(1175 genes), Benign Bone Connective Tissue Neoplasm (977 genes) and Bone Cancer
(958 genes). In contrast, rarely-researched diseases harbored fewer susceptibility genes,
with Urinary Tract Infection (UTI) having only 5 genes, Cellulitis with 3 genes, Esophagitis
with 2 genes, and Benign Skin Neoplasm with the fewest at just 1 gene.

In terms of dendrogram similarity, it was observed that shared susceptibility genes
formed the basis of similarity between diseases. This was evident in the dendrogram
displayed in Figure 1 and Table S4, where: (I) Among the five digestive cancers, Pancreatic
Cancer was the most distant from the other four, with Stomach Cancer in the middle.
Colorectal Cancer and Hepatobiliary Cancer were closer to each other, sharing as many as
21 susceptibility genes, greater than any other cancer pairs (see Figure S2). (II) For Colorectal
Cancer, Thyroid-related diseases, including Goiter (12 shared genes), Thyroiditis (16 shared
genes) and Acquired Hypothyroidism (23 shared genes), were closely related to it, as well as

http://www.malacards.org/
https://epigraphdb.org/
https://www.ebi.ac.uk/gwas/
https://www.ukbiobank.ac.uk/
https://fuma.ctglab.nl
https://docs.google.com/spreadsheets/d/1kvPoupSzsSFBNSztMzl04xMoSC3Kcx3CrjVf4yBmE
https://docs.google.com/spreadsheets/d/1kvPoupSzsSFBNSztMzl04xMoSC3Kcx3CrjVf4yBmE
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Type I Diabetes Mellitus (18 shared genes), Multiple Sclerosis Other Demyelinating Disease
(19 shared genes) and Lung Cancer (44 shared genes). (III) For Hepatobiliary Cancer,
cardiovascular and cerebrovascular diseases, including General Hypertension (13 shared
genes), Cerebrovascular Disease (7 shared genes), Migraine (8 shared genes), Obsessive-
Compulsive Disorder (OCD, 4 shared genes), Peripheral Nerve Disorder (7 shared genes)
and Parkinson’s Disease (10 shared genes), were very close to it. (IV) For Stomach Cancer,
Ophthalmological diseases, including Macular Degeneration (7 shared genes), Vitreous
Body Disorder (6 shared genes)) and Multiple Endocrine Neoplasia Type I (MENI, 2 shared
genes) were closely related to it. (V) For Esophageal Cancer, Sarcoidosis (6 shared genes)
and Benign Female Genital Neoplasm (1 shared gene) were close to it. (VI) For Pancreatic
Cancer, Poliomyelitis (6 shared genes) was related to it.

Figure 1. The landscape of the 150 diseases based on overlapped potential susceptibility genes. The
150 diseases were ordered basing on their potential susceptibility genes. The lines between diseases
indicate comorbidity relationship of the connected diseases, different colours represent different
digestive cancers, the line thickness is proportional to ORlog. The bar height and the number on the
outermost layer indicate the number of potential susceptibility genes of each disease.
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These findings highlight the interconnectedness and shared susceptibility genes be-
tween digestive cancers and various comorbid diseases, providing valuable insights into
disease relationships and potential comorbidities.

3.2. Establishing a Catalogue of Comorbidities for Five Digestive Cancers from EHRs

Understanding the relationships between diseases, such as comorbidities, has sig-
nificant socio-economic implications, influencing clinical study design and healthcare
planning [28]. The presence of comorbidity can markedly alter the clinical symptoms,
prognoses and characteristics of diseases. Thus, we investigated these relationships across
various disease categories. The logarithm of odds ratio (ORlog) of two diseases represents
the strength of their co-occurrence, indicating the degree of comorbidity between each
disease pair.

In total, there were 725 (5 × 145) disease pairs formed between the five digestive
cancers and the 145 diseases; there were 10 (c2

5) disease pairs within the five digestive
cancers themselves, resulting in 735 disease pairs overall. With the threshold of the adjusted
p-value less than 0.05 and ORlog larger than 0 (i.e., OR > 1), we identified a total of 251 co-
morbidity pairs out of 735 pairs (34.15%). These comorbidity pairs involved 85 diseases out
of the 150 studied (57.33%). As shown in Figure 1 and Table S2, the comorbidities of each
digestive cancer were dispersed across diverse disease categories. Twenty-five diseases
were shared comorbidities among all five digestive cancers, including Acute Renal Fail-
ure, Cerebrovascular Disease, Myocardial Infarction, General Hypertension, Lung Cancer,
and Diabetes Mellitus, among others (a complete list of comorbid diseases can be found in
Figure S1). Conversely, some diseases, such as Acquired Hypothyroidism, Allergic Rhinitis
and Autism, were not comorbid with any of the digestive cancers.

Each of the five digestive cancers had its own set of comorbidities. For example,
Colorectal Cancer had 64 comorbidities, with the highest number in the Immune disease
category (9 comorbidities), followed by the Cardiovascular disease category (8 comor-
bidities). Esophageal Cancer had 49 comorbidities in total, with the highest numbers in
the Immune and Cardiovascular disease categories (both with 7 comorbidities), followed
by the Digestive disease category (6 comorbidities). Hepatobiliary Cancer had a total
of 52 comorbid diseases, with the highest numbers in the Immune and Cardiovascular
disease categories (both with 8 comorbidities), followed by the Digestive disease category
(7 comorbidities). Pancreatic Cancer had 44 comorbidities, primarily in the Immune disease
category (8 comorbidities), followed by the Cardiovascular disease category (7 comorbidi-
ties). Stomach Cancer had a total of 51 comorbidities, spread across the Immune, Digestive
and Infectious disease categories (all of the three with 7 comorbidities).

As illustrated in Figure S1, Stomach Cancer and Esophageal Cancer exhibited a similar
pattern of comorbidity consistency, as did Hepatobiliary Cancer and Pancreatic Cancer.
In contrast, Colorectal Cancer displayed a distinct profile of comorbidities, including
conditions like Cardiomyopathy, Benign Ovarian Neoplasm, Goiter, Uterine Cancer and
Urethral Disorder.

At the disease category level, as illustrated in Figure 2, the most likely comorbid
category of the Digestive disease category was Neoplastic Process with the highest ORlog
median value. It was not a surprise since the five digestive cancers are considered neoplastic
diseases. Additionally, the Digestive disease category showed a strong tendency for
comorbidity within the category itself. The top comorbid categories for the Digestive
disease category were Hematologic, Respiratory, Cardiovascular, Metabolic and Infectious
disease, suggesting that these diseases may be susceptibility comorbidities for the five
digestive cancers and should receive increased attention in healthcare planning.

Our findings also aligned with known comorbidity patterns reported in the medical
community, such as Colorectal Cancer and Diverticulosis Diverticulitis [29], Esophageal
Cancer and Obesity [30], Hepatobiliary Cancer and HIV [31], Pancreatic Cancer and Type
II Diabetes Mellitus [32], and Stomach Cancer and Cerebrovascular Disease [33]. These
reports corroborated our results, confirming the clinical relevance of the identified comor-
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bidities. For example, complications associated with Stomach Cancer included bleeding,
perforation and pyloric stenosis, with bleeding being the most common issue requiring
modern surgery [34,35]. Colorectal Cancer was linked to complications such as obstruction,
perforation, abscess formation, acute appendicitis, ischemic colitis and intussusception [36].
Patients with Hepatobiliary Cancer often had underlying chronic liver disease, cirrhosis,
chronic kidney disease and end-stage renal disease, and tumor rupture was a potentially
life-threatening complication [37–39]. Thrombosis was often linked to Pancreatic Cancer,
with a prevalence of thromboembolism in Pancreatic Cancer patients as high as 60% at
autopsy compared to 15–25% in other malignancies [40]. Moreover, diabetes associated
with Pancreatic Cancer was often diagnosed concomitantly with the cancer or within two
years before the cancer diagnosis [41].

Figure 2. Odds ratio distribution between digestive category and other categories. Each dot represents
ORlog value between any one disease from digestive category and any one disease from other disease
category. The distribution is in a descending order of the median of ORlog between each disease of
digestive category and each disease of other categories. ORlog was set to ‘−6’ if ORlog eq ‘−Inf’.
Each category’s diseases are listed in Supplementary Table S6.

3.3. Identifying Integrated Pleiotropic Genes and Pleiotropic Structures between Five Digestive
Cancers and 145 Diseases

Among the 251 comorbid disease pairs found in the catalogue of comorbidity of
the five digestive cancers, 175 pairs (69.7%) shared overlapped genes. For the remaining
484 (735 − 251) non-comorbidity disease pairs, 338 pairs (69.8%) exhibited overlapped
genes. By combining the genes shared among the 175 comorbidity pairs and 338 non-
comorbidity disease pairs, we created an integrated pleiotropic gene set within and between
the five digestive cancers and the other 145 diseases. Overall, this gene set encompassed
548 pleiotropic genes (see Figure S2), with Colorectal Cancer and Hepatobiliary Cancer
having the highest number of pleiotropic genes (21 genes).

Colorectal Cancer had 52 comorbidities with pleiotropic genes, with the highest num-
ber in the Cardiovascular disease category (8 comorbidities), followed by the Immune dis-



Genes 2024, 15, 478 9 of 17

ease category (7 comorbidities). Esophageal Cancer had 35 comorbidities with pleiotropic
genes, with the highest number in the Cardiovascular disease category (6 comorbidities),
followed by the Immune category (4 comorbidities). Hepatobiliary Cancer had a total of
41 comorbidities with pleiotropic genes, with the highest number in the Immune category
(7 comorbidities) and the Cardiovascular category (7 comorbidities), followed by the Diges-
tive category (5 comorbidities). Pancreatic Cancer had 19 comorbidities with pleiotropic
genes in total, with the highest number in the Cardiovascular category (4 comorbidities)
and the Immune category (4 comorbidities). Stomach Cancer had 37 comorbidities with
pleiotropic genes, with the highest number in the Digestive category (6 comorbidities),
followed by the Immune category (4 comorbidities) and the Infectious disease category
(4 comorbidities).

Regarding the 175 comorbidity disease pairs, 74 pairs (42.3%) exhibited horizontal
pleiotropic structures (as defined in the Methods section), while 101 pairs (57.7%) displayed
vertical pleiotropic structures after an analysis of shared pathways and PPIs (see Table S4).
Notably, as illustrated in Figure S3, more than 50% of the comorbidity disease pairs for
Colorectal Cancer and Hepatobiliary Cancer exhibited vertical pleiotropic structures, sug-
gesting that vertical pleiotropy plays a dominating role in these two digestive cancers and
distinguishes them from the other three digestive cancers.

In order to find out hub genes that may underlie the co-occurrence between a digestive
cancer and other diseases, we examined the combined frequencies of each protein in shared
pathways and PPIs (see Methods). As presented in Table S4, we identified 33 hub proteins
between Colorectal Cancer and other diseases, with P01911 (encoded by the HLA-DRB1
gene) being the most frequently occurring protein (7 times). There were 27 hub proteins
between Esophageal Cancer and other diseases. There were 29 hub proteins between
Hepatobiliary Cancer and other diseases, with Q14765 (encoded by the STAT4 gene) being
the most frequently occurring protein (4 times). There were 13 hub proteins between
Pancreatic Cancer and other diseases, with P04637 (encoded by the TP53 gene) as the most
frequently occurring protein (4 times). There were 19 hub proteins between Stomach Cancer
and other diseases, again with P04637 as the most frequently occurring protein (4 times).

Interestingly, in addition to TP53, genes like KRAS, CTNNB1 and PIK3CA were also
found among the high-occurrence hub proteins for the five digestive cancers. TP53 is
a well-known tumor suppressor gene, with mutations found in over half of all human
cancers, particularly in the early stage of cancer, playing a crucial role in the carcinogenesis
of the digestive tract [42]. KRAS is an oncogene, mutated in approximately 35–45% of
colorectal cancers [43]. CTNNB1 is part of a complex of proteins that constitute adherens
junctions, essential for the formation and maintenance of epithelial cell layers by regulating
cell growth and adhesion. It is a driver gene in stomach cancer [44]. PIK3CA, the catalytic
subunit of PI3K, coordinates a diverse range of cell functions, including proliferation and
survival, and is the third most frequently mutated gene in stomach cancer [45]. These
findings suggest that these well-known oncogenes and tumor suppressor genes of digestive
cancers may drive or mediate pleiotropy between the five digestive cancers and the other
145 diseases.

3.4. Correlating the Likelihood of Co-Occurrence and Shared Genetic Factors for Disease Pairs

After establishing a catalogue of comorbidity and an integrated pleiotropic gene set
between five digestive cancers and other diseases, we aimed to investigate the associations
between comorbidities and hereditary factors. Many studies often characterize disease
comorbidity solely based on shared genetic origins, overlooking pathway-based common-
alities between diseases [28]. To overcome this limitation, a few studies have aimed to
infer disease-disease relationships by considering genetic overlaps, functional overlaps and
comorbidity [46]. We, therefore, sought to explore the relationships between comorbidities
and their shared genetic factors, not only based on the ratio of overlapped susceptibility
genes, but also on the ratios of shared pathways and PPIs.
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It is important to note that two categories (Metabolic and Neoplastic Process), each
containing fewer than 3 diseases, were excluded from this analysis, as they did not pro-
vide sufficient data to calculate R2 values. Figure 3a illustrates the correlations between
logarithm of odds ratio (ORlog) and the ratio of overlapped susceptibility genes, shared
pathways ratio and PPIs between five digestive cancers and other diseases. The posi-
tive relationships were not statistically significant at the levels of both gene number ratio
(p = 0.896) and shared pathways ratio (p = 0.343), but they became significant at the level of
PPIs ratio (p = 0.001). Figure 3b demonstrates that the differences between non-comorbidity
disease pairs and comorbidity disease pairs were not statistically significant at the lev-
els of both gene number ratio (p = 0.51) and shared pathways ratio (p = 0.087), but they
became significant at the level of PPIs ratio (p = 0.05). Both Figure 3a,b indicate that the
number of overlapped genes and shared pathways alone may not predict the likelihood of
co-occurrence. Instead, the more extensive the interactions (PPIs) between disease pairs,
the greater the likelihood of these disease pairs co-occurring. In other words, disease pairs
with higher correlations (odds ratios) tended to be exhibit stronger connections within the
PPI network. This suggests that PPIs could potentially mediate comorbid relationships be-
tween diseases. This finding aligns with the observations made in Carlota et al.’s work [28],
where it was revealed that functional overlap contributed to nearly 95% of the associations
in the disease network.

Figure 3. Correlation of odds ratio and overlapped potential susceptibility genes, shared path-
ways and PPI pairs. Overlap.GeneRatio: OverlapGeneNum/(Disease1Ngene × Disease2Ngene);
shared.pathwayRatio: shared_pathwayNum/(Disease1Ngene × Disease2Ngene); ppi.pairsRatio:
ppi_pairsNum/(Disease1Ngene × Disease2Ngene). OverlapGene: pleiotropic genes of each disease
pair; Disease1Ngene: the number of susceptibility genes for disease 1; Disease2Ngene: the number
of susceptibility genes for disease 2; shared_pathway: in each disease pair, for each pair of proteins
we match and get the pathways they have in common; ppi_pairs: protein-protein interactions (PPIs)
pairs in a disease pair. (a) Correlation for disease pairs of vertical pleiotropic structure at three
levels (three ratios). (b) Statistic differences between comorbid and non-comorbid disease pairs at
three levels. ‘YES’ indicates comorbidity disease pairs, ‘NO’ indicates non-comorbidity disease pairs.
(c) Significant positive correlations for the digestive and respiratory categories at at least one level.
(d) Non-significant positive correlations for other 14 disease categories at all three levels.
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In Figure 3c, we see that for the Respiratory disease category (comprising three
diseases), the positive correlations were all statistically significant at all three levels (gene
number ratio (p = 0.04), shared pathways ratio (p = 0.032) and PPIs ratio (p = 0.044)).
Similarly, for the Digestive disease category (with 11 diseases), the positive correlations
were statistically significant at both the shared pathways ratio (p = 0.023) and PPIs ratio
levels (p = 0.007). This suggests that comorbidity disease pairs involving diseases in the
Respiratory or Digestive categories and other diseases categories were more likely to be
genetically linked. For example, certain inherited mutations increase the risk of developing
Lung Cancer [47] and Sleep Apnea [48] and about 8% of lung cancer patients have familial
risk factors [47,49]. However, in Figure 3d, for the remaining 14 disease categories, none of
the relationships were significantly positive at all three levels. This discrepancy may be
attributed to the fact that many diseases within these categories lack sufficient susceptibility
genes, indicating that not all diseases within each category are primarily genetically driven
and promoted. Some diseases might be more influenced by environmental factors, lifestyle
or treatment-induced factors [50]. This diversity may reflect disease-category-specific
heterogeneity in the hereditary risk factors underlying these conditions.

3.5. Unravelling Functional Pathways for Pleiotropic Genes in Disease Pairs between Five
Digestive Cancers and 145 Diseases

Although digestive cancers exhibit diverse etiology and the underlying genetic mech-
anisms are better understood in specific cell and tissue types, there are still shared features
among gastrointestinal cancers of different origins. Our study aimed to identify common
genes and molecular mechanisms, and to analyze the pleiotropic effects that contribute to
the pathogenesis of five digestive cancers. Even though digestive cancers can originate
from different organs, they may have some correlations. The presence of complex comorbid
diseases can complicate cancer prognosis but may also indicate common pathogenic mech-
anisms. However, the mechanisms underlying these common links between five digestive
cancers and other diseases are not well understood. To address this, we investigated the
functional pathways associated with pleiotropic genes using Gene Ontology (GO) gene
sets, which include 10,532 gene sets categorized into Molecular Function (MF, 1772 gene
sets), Cellular Component (CC, 1009 gene sets) and Biological Process (BP, 7751 gene sets).

As illustrated in Table S5, there were a total of 514 gene sets in which pleiotropic genes
shared between digestive cancers and other diseases were significantly enriched. There
were 55 diseases in total that had significantly enriched gene sets shared with digestive
cancers. Figure 4a shows all 55 diseases on the y-axis and the top 30 enriched gene sets
on the x-axis. Among the five digestive cancers, Colorectal Cancer and Hepatobiliary
Cancer shared the largest number of functional gene sets, with a cosine similarity of
33% (see Figure 4b). Conversely, Hepatobiliary Cancer and Stomach Cancer shared the
smallest number of functional gene sets, with a cosine similarity of 3% (see Figure 4b),
in concordance with the shared gene situations previously mentioned.

At the disease level, Lung Cancer exhibited the most instances of enriched gene
sets with five digestive cancers, occurring 484 times. This was followed by Melanoma
(154 times), Uterine Cancer (138 times), Brain Cancer (73 times) and Multiple Myeloma
(48 times). At the gene set level, among the top 30 gene sets, there were two MF gene sets,
six CC gene sets and 22 BP gene sets. Notably, gene sets related to the Major Histocom-
patibility Complex (MHC) (e.g., MF MHC Class II Receptor Activity, CC MHC Protein
Complex, BP Peptide Antigen Assembly With MHC Class II Protein Complex) and antigen
processing and presentation (e.g., MF Peptide Antigen Binding, BP Antigen Processing And
Presentation Of Peptide Antigen, BP Antigen Processing And Presentation Of Endogenous
Peptide Antigen) were the most frequently enriched gene sets, appearing six times out of
the top 30 gene sets.
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Figure 4. (a) Distribution of enrichment in GO gene-sets between five digestive cancers and other
diseases. Dots indicate that there are pleiotropic genes for the disease pair and the adjusted p-value of
enrichment analysis is less than 0.05. Dot size is proportional to enrichment score. X axis only shows
the top 30 most-times enriched gene sets, purple colour indicates MF in GO, blue colour indicated CC
in GO, and red colour indicates BP in GO. (b) Within five digestive cancers cosine similarity based on
all 514 enriched GO gene sets’ enrichment score.

In summary, the 55 diseases that share enriched functional gene sets with digestive
cancers, as well as the 514 identified gene sets, especially MHC and antigen related ones
should be given top priority in future research. By thoroughly investigating the genetic
pathogenesis underlying their co-occurrence, a better understanding of their intercon-
nected pathogenetic processes can contribute to more effective disease prevention and early
intervention, ultimately leading to better outcomes and prognosis for patients.

4. Discussion

Comorbidities driven by pleiotropic genes represent a critical aspect of the complex
relationships between digestive cancers and other diseases. These comorbidities can po-
tentially manifest symptoms earlier than the digestive cancers themselves, which typically
remain asymptomatic in their early stages. As a result, they can serve as valuable indi-
cators for early detection and diagnosis of digestive cancers. However, It is essential to
acknowledge that explaining or predicting comorbidity risks solely based on genetics is
challenging, as numerous non-genetic factors, such as diet and lifestyle, play significant
roles in disease development. Diet, for instance, is a well-established factor influencing
digestive cancers. Diet choices, including the consumption of salty and smoked foods,
and low intake of fruits and vegetables can increase the risk of gastric cancer [51], while
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a diet rich in processed or red meat can increase the risk of colorectal cancer [52]. Recent
advances in nutritional management for patients with digestive cancers highlight the role
of protein intake modulation in achieving nutritional and clinical benefits. Optimizing both
the quantity and quality of protein intake is a potential avenue for improving outcomes for
individuals with these cancers [53].

There were streamlined approaches that had general applicability, especially consider-
ing the fact of disease co-occurrence. People often reported PPIs [54], shared metabolism [55],
and multiple types of input data at the same time [56]. There were a few of studies using
topological methods for disease analysis, focusing on one or a few specific diseases [57].
These analyses used EHRs for topological inference, sometimes incorporating the tempo-
ral order of diseases in a patient’s history, producing topological disease networks [58].
Another group of studies generated disease networks by computing pairwise, disease-
disease correlations or relative risk scores [59,60]. These were inferring correlation instead
of causation. We preferred to look for genetic roots, acting mechanism and workable
intervention. Statistical approaches to infer causation, such as mendelian randomization
(causal inference) coupled with the wealth of data present an opportunity to investigate
a working mechanism in depth. Here, this study is deliciated to deeply examine genetic
pleiotropy that can drive the co-occurrence between digestive cancers and other diseases.

Our understanding of the genetic players involved in complex traits is currently
limited, resulting in what is referred to as “missing heritability” [61]. To address this issue,
our approach offers two key contributions. First, we propose extending the analysis to
include potential genes through expression quantitative trait loci (eQTL) mapping and to
identify new pathways by leveraging known pathway players. Second, we can provide a
rationalization of the relationships between genes, thereby enhancing our understanding of
their interactions. We applied data mining techniques to the integrated dataset to uncover
valuable insights into disease mechanisms and potential interventions with relevance to
population health. Our study offers a in-depth examination of genetic pleiotropy and its
role in driving the co-occurrence of digestive cancers and other diseases. By analyzing
relationships at the genetic level, we provide a foundation for understanding how genes
and pathways interact to contribute to disease comorbidity. The strategy proposed here
involves targeting drug interventions based on the structure of the disease pair. In cases
where the disease pair form horizontal structures, interventions shall be designed to target
multiple proteins, whereas vertical structures would involve targeting a single upstream
casual protein.

Despite the advantages of our strategy, there are still rooms to be improved. Firstly,
the method used to define disease comorbidity based on the associations between diseases
could be enhanced to consider sequential occurrences [62]. Additionally, although we were
able to expand the gene set through eQTL mapping, our analysis was still constrained by
the lack of comprehensive coverage of GWAS data for all diseases. Third, the results of
functional enrichment analyses depend on the chosen database and the parameters setting.
Different databases may contain different genetic and functional information, which can
lead to inconsistencies and biases in the results. Some databases may contain hypothetical
or computational gene sets, which can lead to unconfirmed results. Strict parameters
setting may filter out some intrinsic functional pathways while lenient parameters setting
may introduce artifacts. Fourth, our study was also constrained by the current state
of knowledge about pathways and their statistical significance. It is important to note
that the biological processes described by pathways leave the possibility of inaccuracy
or incompleteness [63]. Therefore, our findings should be considered as meta-analysis,
and further validation may be required. Fifth, the complexity of protein participation in
various pathways depending on context [64] underscores the importance of confirming
the validity of these relationships. Lastly, gene-targeted cancer therapies this study mainly
discussed were mainly about chemotherapeutic agents. But most chemotherapeutic agents
are related to multidrug resistances [10], while natural compounds produced by living
organisms are potential efficient agents for treating cancer without or with much less
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multidrug resistances, enhancing survival rates and reducing the number of deaths [65].
For example, the therapeutic efficacy of Berberine on colon, pancreatic, liver, and intestine
cancers has been reported in several studies. Berberine inhibits cancer cell proliferation by
lowering epithelial-mesenchymal transition protein expression, or inducing apoptosis and
regulating the cell cycle as well as autophagy, or hinders cancer cell invasion and metastasis
by down-regulating metastasis-related proteins [66]. So, natural compounds agents are
also needed to be considered into gene-targeted cancer therapies.

5. Conclusions

This study has provided an integrated data resource, encompassing an integrated
collection of susceptibility genes and a pleiotropic gene set containing 548 genes associated
with five digestive cancers and 145 other diseases. We found disease-category-specific
heterogeneity in terms of hereditary risk factors by correlating co-occurrence likelihood
and genetic factors for disease pairs. In addition, we identified specific functions such as
MHC or antigen-related gene sets, patterns of PPIs and hub genes/proteins (e.g., TP53,
KRAS, CTNNB1 and PIK3CA) that may underlie the comorbidity between digestive cancers
and other diseases. These molecular insights shed light on how comorbidity may initiate
at the molecular level. We also compared the similarities among five digestive cancers
in terms of potential susceptibility genes, comorbidities, pleiotropic gene structures and
enrichment analyses. We aimed to identify mechanistic pathways underlying disease
pathogenesis, actionable targets, and potential intervention strategies. Additionally, this
study unveiled multiple pleiotropic structures associated with the co-occurrence of complex
diseases. This insight deepens the understanding of the underlying mechanisms of disease
co-occurrence and facilitates the development of precision treatments. The potential impact
of this research extends beyond digestive cancers to other complex diseases with multiple
comorbidities. Identifying distinct pathogenetic mechanisms underlying complex disease
co-occurrence is crucial for the development of specific therapeutic strategies. This research
contributes to the advancement of precision medicine and has the potential to impact public
healthcare costs and improve quality of life for individuals affected by these conditions.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/genes15040478/s1, Figure S1: The comorbidities for five
digestive cancers. Column is ordered by correlation distance using hierarchical clustering using
‘Euclidean’ distance and “complete” method. “YES” indicates the disease is the comorbidity of the
corresponding digestive cancer, vice versa; Figure S2: Overlapped potential susceptibility genes
among five digestive cancers. Intersection size indicates the unique or shared susceptibility genes
number for the digestive cancer(s) with black dot(s); Figure S3: Pleiotropic structure composition for
the five digestive cancers. Y axis “Count” means the number of disease pairs. The number on the
top of each bar means the proportion (the number of horizontal pleiotropic structure disease pairs
divided by all pleiotropic structure disease pairs) within each digestive cancer; Table S1: Abbreviation,
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cancers and other diseases.; Table S4: Pleiotropic genes, pathways, PPI, hub proteins and pleiotropic
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