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Abstract: Rett Syndrome (RTT) is a severe neurodevelopmental disorder predominately diagnosed
in females and primarily caused by pathogenic variants in the X-linked gene Methyl-CpG Binding
Protein 2 (MECP2). Most often, the disease causing the MECP2 allele resides on the paternal X
chromosome while a healthy copy is maintained on the maternal X chromosome with inactivation
(XCI), resulting in mosaic expression of one allele in each cell. Preferential inactivation of the paternal
X chromosome is theorized to result in reduced disease severity; however, establishing such a
correlation is complicated by known MECP2 genotype effects and an age-dependent increase in
severity. To mitigate these confounding factors, we developed an age- and genotype-normalized
measure of RTT severity by modeling longitudinal data collected in the US Rett Syndrome Natural
History Study. This model accurately reflected individual increase in severity with age and preserved
group-level genotype specific differences in severity, allowing for the creation of a normalized clinical
severity score. Applying this normalized score to a RTT XCI dataset revealed that XCI influence
on disease severity depends on MECP2 genotype with a correlation between XCI and severity
observed only in individuals with MECP2 variants associated with increased clinical severity. This
normalized measure of RTT severity provides the opportunity for future discovery of additional
factors contributing to disease severity that may be masked by age and genotype effects.

Keywords: Rett syndrome; X chromosome inactivation; longitudinal modeling

1. Introduction

Rett syndrome (RTT) is a severe neurodevelopmental disorder that predominantly, but
not exclusively, affects females and is characterized by apparently normal early develop-
ment followed by regression of purposeful hand use and acquired verbal communication,
development of repetitive hand stereotypies, and impaired gait or the inability to walk [1,2].
With an incidence of 1 in 10,000 live female births, RTT poses a considerable clinical and
financial burden on affected individuals and their families, culminating in mean-yearly
healthcare costs approaching USD 46,000 per individual [3,4]. Disease burden in RTT is
primarily driven by the lack of a cure for the disorder, although approved targeted therapies
(e.g., Trofinetide) and symptomatic treatments (e.g., antiepileptics) can improve clinical
presentation [5–7]. Additional symptoms can be managed through surgical interventions,
including spinal fusion to correct scoliosis and gastronomy tube placement to address
feeding concerns common among individuals with RTT [8,9]. While these interventions
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are effective in their own domains, they do not cure nor resolve the molecular basis of
the disorder.

Most cases of RTT are caused by de novo heterozygous pathogenic loss-of-function vari-
ants in the X-linked transcriptional regulator Methyl-CpG Binding Protein 2 (MECP2) [10–12].
Although all people with RTT share these characteristic clinical features, overall clinical
severity is variable between affected individuals [13,14]. At the group level, MECP2 genotype–
phenotype relationships have been shown to be a major driver of this clinical variability,
with some MECP2 variants (e.g., R133C, R294X, and R306C) associated with milder clinical
severity and other variants (e.g., R106W, T158M, R168X, R255X, and R270X) associated with
increased clinical severity [13,15,16]. Although this genotype–phenotype relationship is ro-
bust at the group level, some affected individuals display clinical severity discordant from
expected severity predicted by this group-level genotype–phenotype relationship [13,15–17];
for example, some people with “severe” MECP2 variants have mild clinical severity and vice
versa. This individual-level variation suggests that additional factors such as differences in
environment, treatment interventions, or biological/genetic features play a role in determining
individual-level clinical severity in RTT.

Because most cases of RTT are caused by de novo heterozygous variants in the X-linked
gene MECP2, differential X chromosome inactivation (XCI) has been proposed as a source
of variation in clinical severity. During female embryonic development, XCI randomly
silences one X chromosome in each cell [18]. In RTT, this results in cellular mosaicism, with
some cells expressing a wild-type copy of MECP2 and others expressing a disease-causing
MECP2 allele [19]. In the majority of RTT cases, de novo pathogenic MECP2 variants
arise on the paternal X chromosome during spermatogenesis, and increased silencing of
the diseased paternal allele (pXCI) is expected to result in milder disease severity owing
to more cells expressing functional MeCP2 [20–22]. In extreme cases, rare incidences of
familial RTT have been reported where an unaffected mother has a disease-causing variant
in MECP2 but is protected by preferential inactivation of the mutant allele [11,23,24].

The impact of pXCI on disease severity in the general RTT population is less clear. One
study restricted analysis to affected individuals with either T158M or R168X variants and
found that increased activation of the X chromosome harboring the disease allele correlates
with increased severity [25]. However, a larger study including multiple MECP2 variants
did not find a correlation between pXCI and clinical severity [26]. Additional studies
reported conflicting results of the effect of non-random XCI on disease severity, although
these studies were limited by the lack of information of the directionality of XCI skewing
related to mutant MECP2 allele expression [27,28]. Furthermore, previous studies also
had limitations related to the fact that measures of clinical severity in RTT are correlated
with both age and specific MECP2 variants, with a clear age-dependent increase in clinical
severity and well-established genotype–phenotype relationships that may outweigh the
contribution of pXCI [13,15]. Ideally, evaluation of the effect of XCI on clinical severity
in RTT would use age- and genotype-matched cohorts; however, in a rare disorder such
as RTT, with a limited population this is not feasible. While previous work addressed
the genotype–phenotype issue by restricting analysis to the recurrent T158M and R168X
variants, variation in genotype frequency limits the feasibility of this approach for other
variants [25,29].

To circumvent the problem of age- and genotype-dependent effects on severity, we uti-
lized data from the US Rett Syndrome Natural History Study (RNHS) to develop age- and
genotype-normalized clinical severity scores. Applying this normalized clinical severity
score, we found that pXCI had a minor influence on severity in individuals with severe
MECP2 variants but did not contribute to clinical severity in individuals with mild MECP2
variants. The ability to utilize this normalized clinical severity score provides the opportu-
nity to compare severity across ages and MECP2 genotypes, and has the potential to help
identify other biological or environmental factors that contribute to overall clinical severity
in RTT in future studies.
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2. Materials and Methods
2.1. Participants

Participants in this study were enrolled in the Rett syndrome and RTT-related Disor-
ders Natural History Study (RNHS, NCT00299312, NCT02738281), a longitudinal investiga-
tion into caregiver-provided historical and clinically observed information spanning from
2006 to 2021. A total of 1826 individuals participated in the RNHS with an average of 5 visits
per individual (ranging from 1 to 17 visits). In addition to following individuals with RTT
(classic or atypical), this study included people who did not meet RTT diagnostic criteria but
had pathogenic variants in MECP2, and individuals with RTT-related disorders including
MECP2 duplication syndrome, CDKL5 deficiency disorder, and FOXG1 syndrome.

The Clinical Severity Score (CSS) was employed as one metric to track severity pro-
gression in RNHS participants. The CSS is a summation of 13 individual clinical parameters
assessed with Likert scores from 0 to 4 or 0 to 5. The total CSS score ranges from 0 to 58,
with 0 corresponding to normal and 58 representing the most severe presentation of the
disorder [13]. Clinicians rating the CSS were provided in-person training at site visits to
ensure consistent scoring across study locations.

2.2. Data Used for This Manuscript

Longitudinal CSS and individual parameters used to calculate the CSS were retrieved
from the RNHS. A systematic algorithmic method was used to identify and revise longitudi-
nal data on individual CSS entries in the RNHS that were logically inconsistent to generate
revised longitudinal CSS scores for 1819 individuals (7 individuals from the total RNHS had
missing data, precluding further processing). A schematic of the data correction algorithm
is presented in Supplementary Table S1. Briefly, individuals who showed variation in fixed
historical scores (e.g., Age of Onset of Regression) were isolated and values deviating from
the earliest reported observation were replaced with this value. For metrics which can only
increase with time or follow a plateau (e.g., Scoliosis), values that showed a decrease or
deviation from the plateau were replaced with the nearest previous observation. Revised
CSS scores were calculated from these cleaned parameters for use in downstream analysis.

2.3. XCI Data Generation

Paternal X chromosome inactivation status was obtained as part of a previously pub-
lished study [26]. Briefly, maternal and proband peripheral blood samples were obtained
as part of the RNHS (NCT02738281) under the protocol Biobanking of Rett Syndrome and
Related Disorders (NCT02705677). DNA samples isolated from peripheral blood samples
were analyzed for repeat length and methylation status at the AR locus [30]. The percentage
of paternal X inactivation was extrapolated by comparing maternal and proband samples.
From 320 individuals with available XCI records in the RNHS, 198 had an informative XCI
result and met restrictions for the current study as outlined above.

2.4. CSS Model Development

Data processing and analysis were performed using R version 4.1.3. The analysis is
readily conducted using the provided R code and supplemental data by someone proficient
in using R and associated packages.

2.4.1. Model Development

The statistical analysis training was restricted to female individuals with a confirmed
pathogenic variant in MECP2 belonging to one of the eleven common variant groupings
(R106W, R133C, T158M, R168X, R255X, R270X, R294X, R306C, large deletion, early trun-
cation, or C-terminal truncating variant). Participants were also restricted to those with
visits between 2 and 25 years of age to account for low numbers of observations beyond
this window. A total of 1178 individuals met these requirements for downstream analysis
(1003 with a diagnosis of “Classic” and 175 with a diagnosis of “Atypical”; see Table 2 and
Supplementary Table S2 for demographic information). Following further restriction to in-
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dividuals with a classic diagnosis for purposes of model training, 5469 observations across
1003 individuals were available for model development, with an average of 5 observations
per individual.

A mixed effects model was chosen for further analysis to accommodate the longi-
tudinal nature of the data and between-subject differences in observation number and
interval of observation [31]. Exploratory data analysis indicated CSS progression follows a
logarithmic growth-like pattern (Supplementary Figure S1), so age was log transformed
to accommodate this observation. Transformed age values were further decomposed into
between- and within-person components to parse out subject versus group effects [32–34].
The between-person component was calculated from the centered mean transformed age of
observation within an individual (“Mean_lnage_center”, while the within-person compo-
nent (“Duration”) was defined as the distance from the between-person component to the
transformed age of observation within an individual. A conditional growth mixed effects
model of MECP2 genotype and age impact on clinical severity (1) was fitted to the trans-
formed decomposed data using the lme function within the nlme package. In this model,
age was defined as the interaction of between- and within-subject time components, with
only the within-subject component considered for subject-specific random effects. Mean
genotype-specific clinical severity trajectories were calculated using the predict function
from the nlme package to provide a top-level view of CSS progression with time for each
common MECP2 genotype.

Level 1 Yij = β0j + β1jtij + Rij

tij = Mean_lnage_centerj + Mean_lnage_centerj : Durationij + Durationij

Level 2 β0j = γ00 + γ01MECP2_genotypej + U0j

β1j = γ10 + γ11MECP2_genotypej + U1j

(1)

2.4.2. Model Validation

A pseudo leave-one-out cross-validation approach was used to determine model
accuracy. Model performance was assessed on any female with one of the above variants
regardless of diagnosis (1178 individuals total). The model was iteratively trained on
individuals with a classic diagnosis, leaving out the test subject if they had a classic diagnosis.
For novel subjects with an atypical diagnosis, no exclusion was warranted. A total of
1178 test subject–model pairs were run. Individual level predictions were made for each
test subject–model pair using the IndvPred_lme function in the JMbayes package to allow
Bayesian prediction of the novel test subject [35]. The root mean squared error was calculated
by standard methods for predicted and observed values for each individual. For a subset
of individuals with numerous observations, individual-level predicted trajectories were
plotted alongside observed CSS values for visual inspection (Supplementary Figure S2).

2.4.3. CSS Trajectory Prediction

An overarching model was trained on individuals with a classic diagnosis as de-
scribed in Model Development. Using the IndvPred_lme function in the JMbayes package,
predicted clinical severity scores were calculated for ages 2 to 25 in 0.1-year bins for all
1178 individuals in this study regardless of diagnosis. Mean predicted CSS values were
then calculated for each individual by averaging predicted severity scores across time. The
mean predicted CSS is analogous to calculating the area under the curve of a predicted
severity trajectory over time, as equal numbers of predicted scores are calculated for each in-
dividual over the same intervals. The mean predicted CSS therefore provides an integrated
view of severity progression without retaining age as a factor, effectively normalizing the
score across ages.
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2.4.4. CSS Percentile Estimation and Normative CSS Calculation

Mean predicted CSS scores for individuals with a classic diagnosis were isolated and
cumulative distributions of mean predicted CSS were calculated for each variant group
using the ecdf function in the stats package. Using these genotype specific cumulative
distributions of CSS, percentiles were assigned to the mean predicted CSS scores for all
individuals in this study regardless of diagnosis. This mean percentile score was defined
as normative CSS (nCSS), an age- and genotype-normalized clinical severity score, in
downstream analysis.

2.5. Analysis of XCI Effect

Pearson’s correlation coefficients were calculated separately for the association of
paternal XCI with CSS for all individuals, those with mild MECP2 variants, and those
with severe variants. Potential interactions between MECP2 variant severity and XCI were
assessed by regression analysis of a simplified model of normative CSS:

nCSS = SevGroup + SevGroup : pXCI + pXCI (2)

where nCSS is the age- and genotype-invariant normative severity score described above,
SevGroup is the MECP2 variant severity grouping (mild or severe), and pXCI is the percent-
age of paternal X inactivation. Percentage variance explained by the simplified model was
determined by dividing an individual parameter’s sum of squares by the model total sum
of squares.

2.6. Data and Code Availability

Revised CSS scores, model predicted nCSS scores, and pXCI (if available) are provided
in the Supplementary Materials. Code employed for model development, analysis, and
figure generation is available at https://github.com/jkmerrit/2023_RTT_XCI (accessed on
19 March 2024).

3. Results
3.1. pXCI Does Not Correlate with Raw CSS Scores

To evaluate the effect of skewed X chromosome inactivation (XCI) on severity in RTT,
we obtained XCI information on 320 people with RTT and maternal XCI data, which allows
the determination of paternal XCI (pXCI) in the affected individuals. For the 320 affected
probands, informative pXCI results were obtained for 198 participants with RTT (Table 1,
Classic RTT n = 183, Atypical n = 15).

To account for the observed age-dependent increase in clinical severity in the entire
cohort of people with RTT enrolled in the RNHS (Figure S1A), we assessed the association
between pXCI and CSS score observed nearest to 9.7 years of age, the mean all-visit age
for the cohort with informative pXCI information. For many participants with informative
pXCI, the nearest CSS score was several years removed from the 9.7-year-old mean, and
we observed the same overall increase in CSS with age in this group (Figure 1A). Using
the CSS score closest to 9.7 years old for participants with informative pXCI data did not
show any correlation between pXCI and CSS (Figure 1B). To control for known MECP2
genotype–phenotype relationships where some variants have a mild phenotype (R133C,
R294X, R306C, C-terminal truncations; Supplementary Figure S1B,C) and others present a
more severe disorder (R106W, T158M, R168X, R255X, R270X, early truncations, and large
deletions), we looked at pXCI/CSS relationships separately within these groups. While
no correlation is present in individuals with mild MECP2 variants (Figure 1C), a trend
towards a negative correlation exists in individuals with severe variants (Figure 1D). The
presence of age and genotype effects in this analysis may mask less salient contributors
to RTT severity and obscure true pXCI/CSS relationships, highlighting the necessity of a
severity metric independent of these factors.

https://github.com/jkmerrit/2023_RTT_XCI
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Table 1. X chromosome inactivation study cohort. Phased XCI records were available for
320 individuals with RTT and related disorders. A total of 198 individuals met the restriction of
having one of eleven common RTT-causing MECP2 variants. CTT: C-terminal Truncation.

Participants Classic RTT Atypical RTT Age of First Visit
(Years, Mean ± SD)

Early Truncation 17 16 1 5.7 ± 6.2

R106W 8 7 1 6.7 ± 4.5

R133C 10 9 1 6.1 ± 5.6

T158M 26 26 0 7.8 ± 6.5

R168X 25 25 0 5.9 ± 4.3

R255X 24 23 1 5.7 ± 5.3

R270X 14 13 1 6.0 ± 4.3

R294X 16 14 2 8.2 ± 4.2

R306C 19 17 2 7.2 ± 4.8

Large Deletion 18 17 1 6.9 ± 6.4

CTT 21 16 5 6.6 ± 5.4

Total 198 183 15 6.6 ± 5.3
Genes 2024, 15, x FOR PEER REVIEW 7 of 15 
 

 

 
Figure 1. X chromosome inactivation does not correlate with raw clinical severity scores. (A) Raw 
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cohort. Linear regression (red line) shows an age-dependent increase in severity. (B) Raw CSS scores 
plotted against percentage of pXCI for all participants (n = 198, red line: linear regression of plotted 
values, shaded area: standard error) showing no correlation (Pearson’s r = 0.074; p = 0.298; 95% CI: 
−0.066 to 0.212). (C) No correlation between pXCI and raw CSS for individuals with mild MECP2 
variants (R133C, R294X, R306C, or CTT; n = 66; Pearson’s r = 0.20; p = 0.103; 95% CI: −0.042 to 0.424). 
(D) A trend towards a weak negative correlation between pXCI and raw CSS is seen for individuals 
with severe MECP2 variants (early truncation, R106W, T158M, R168X, R255X, R270X, or large dele-
tions; n = 132; Pearson’s r = −0.17; p = 0.055; 95% CI: −0.329 to 3.33 × 10−3). 
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rated a logarithmic transform for time. To accommodate variation in observed severity 
trajectories between individuals, we incorporated individual identifiers as a random ef-
fect, and decomposed time in the model into two components: the mean age of observa-
tion (between-subject effects) and the length of time separating an individual observation 
from the mean age (within-subject effects) [33]. Acknowledging known MECP2 genotype–
phenotype relationships, we treated genotype as a fixed effect in the model such that each 
variant grouping would have a separate baseline intercept and trajectory consistent with 
clinical observations [13,15]. This accurately modeled the expected rapid increase in se-
verity from 2 to 10 years of age with subsequent deceleration in the rate of CSS increase 
and approaching a plateau in later years (Figure 2A, black dashed line overall group). For 

Figure 1. X chromosome inactivation does not correlate with raw clinical severity scores. (A) Raw
clinical severity scores (CSS) at visit closest to 9.7 years old, the mean age of all visits for the XCI
cohort. Linear regression (red line) shows an age-dependent increase in severity. (B) Raw CSS
scores plotted against percentage of pXCI for all participants (n = 198, red line: linear regression of
plotted values, shaded area: standard error) showing no correlation (Pearson’s r = 0.074; p = 0.298;
95% CI: −0.066 to 0.212). (C) No correlation between pXCI and raw CSS for individuals with mild
MECP2 variants (R133C, R294X, R306C, or CTT; n = 66; Pearson’s r = 0.20; p = 0.103; 95% CI: −0.042
to 0.424). (D) A trend towards a weak negative correlation between pXCI and raw CSS is seen for
individuals with severe MECP2 variants (early truncation, R106W, T158M, R168X, R255X, R270X, or
large deletions; n = 132; Pearson’s r = −0.17; p = 0.055; 95% CI: −0.329 to 3.33 × 10−3).
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3.2. Modeling Accurately Predicts Rett Syndrome Severity over Time

To develop an age- and genotype-normalized CSS, we constructed a mixed effects
model incorporating the contribution of assessment age and MECP2 genotype on CSS
score, which enables the prediction of an individual’s CSS at any age from a limited set
of observations. To generate this model, we focused on individuals in the RNHS with
classic RTT and common MECP2 variants or variant groups to model the typical clinical
severity progression (n = 1003; Table 2 red dashed area; Table S2). Because the observed
age-dependent increase in CSS follows a logarithmic growth pattern (Figure S1A), we
incorporated a logarithmic transform for time. To accommodate variation in observed
severity trajectories between individuals, we incorporated individual identifiers as a ran-
dom effect, and decomposed time in the model into two components: the mean age of
observation (between-subject effects) and the length of time separating an individual ob-
servation from the mean age (within-subject effects) [33]. Acknowledging known MECP2
genotype–phenotype relationships, we treated genotype as a fixed effect in the model
such that each variant grouping would have a separate baseline intercept and trajectory
consistent with clinical observations [13,15]. This accurately modeled the expected rapid
increase in severity from 2 to 10 years of age with subsequent deceleration in the rate of
CSS increase and approaching a plateau in later years (Figure 2A, black dashed line overall
group). For individual variants, the model produced similar growth trajectories with a
pattern of genotype-specific severity consistent with previous reports (Figure 2A, colored
lines) [13,15].

Table 2. Model development and validation cohort. RNHS participants were restricted to female
individuals with one of eleven common MECP2 variants and at least one visit between the ages of
2 and 25. These individuals were further restricted to those with a diagnosis of classic RTT for model
training (red box).

Participants Classic RTT Atypical RTT Age of First Visit
(Years, Mean ± SD)

Study Duration
(Years, Mean ± SD)

Early Truncation 111 100 11 7.6 ± 6.1 5.2 ± 3.9

R106W 40 35 5 5.5 ± 4.2 5.8 ± 4.4

R133C 94 70 24 8.2 ± 6.1 4.3 ± 4.2

T158M 124 119 5 8.8 ± 6.4 5.1 ± 3.9

R168X 133 122 11 7.3 ± 6.2 4.7 ± 4.3

R255X 123 111 12 6.9 ± 5.3 5.1 ± 4.1

R270X 77 67 10 7.3 ± 5.4 4.4 ± 3.8

R294X 77 65 12 10.4 ± 6.0 4.9 ± 4.4

R306C 106 92 14 8.0 ± 5.7 5.1 ± 4.6

Large Deletion 117 102 15 8.0 ± 6.0 4.8 ± 3.9

CTT 176 120 56 8.9 ± 5.9 4.2 ± 3.8

Total 1178 1003 175 8.0 ± 5.9 4.8 ± 4.1

To validate the model, we assessed the accuracy of individual participant model pre-
dicted scores compared to observed CSS scores. Visual inspection of predicted individual
participant-level severity trajectories showed a close relationship to observed CSS scores for
all common variant groups (example images shown in Figure S2). We empirically assessed
the accuracy of this model using a leave-one-out cross-validation approach to determine the
predictive error (root mean square error [RMSE]) of the model for all individuals with RTT
(classic and atypical) in the RNHS (n = 1178, Table 2 and Table S1). The overall RMSE was
~2, indicating good fit and demonstrating that the model is able to predict an individual’s
CSS within ± 2 points on the 58-point CSS (Figure 2A inset). Using individual mean
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predicted CSS as an age-normalized score, we found MECP2 genotype–phenotype rela-
tionships seen with the observed CSS score (Supplementary Figure S1B,C) were preserved
using the individual model-predicated mean CSS score (Figure 2B,C), demonstrating that
the model accurately represents observed RTT severity. However, this genotype–phenotype
relationship highlights the need for a genotype-normalized measure of RTT severity to
enable comparison across genotypes as well as ages.
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in severity between MECP2 variant groups. (C) Heatmap showing pairwise comparisons of mean
predicted CSS by variant (ANOVA with post hoc pairwise comparisons using Tukey’s HSD), with
color indicating p-value cutoffs as indicated in panel legend.

3.3. Age- and Genotype-Normalized CSS Scores Reveal a Genotype-Dependent Correlation between
pXCI and Severity

To control for MECP2 genotype effects on disease severity, we created a genotype-
normalized CSS by calculating the within-genotype cumulative distribution of age-normalized
mean predicted CSS scores from participants with classic RTT and common MECP2 variants or
variant groups (Figure 3A). This allows the conversion of the age-normalized mean predicted
CSS score to a standardized MECP2 variant-specific score based on the percentile within
the variant-specific cumulative distribution (percentile/100, thus ranging from 0 to 1). We
then calculated the MECP2 genotype-normalized scores for all RTT participants (classic
and atypical) from individual model-predicted mean CSS scores. Using these genotype-
normalized scores as a normative CSS (nCSS) removes the genotype–phenotype impact on
severity, as demonstrated by the cumulative distribution plot of nCSS (Figure 3B), which lacks
the genotype–phenotype relationship observed in Figure 3A. This nCSS (which incorporates
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both age and genotype effects) allows for standardized comparison of clinical severity in RTT
between individuals at different ages and with different MECP2 genotypes.

Genes 2024, 15, x FOR PEER REVIEW 10 of 15 
 

 

 
Figure 3. Generation of variant-specific normative CSS scores. (A) Cumulative distributions of 
within-subject mean predicted CSS for MECP2 variant groups showing expected genotype–pheno-
type relationship as presented in Figure 2. Normative CSS for each participant is generated by de-
termining the variant group-specific percentile for the participant’s mean predicted CSS. (B) Cumu-
lative distributions of normative CSS scores by MECP2 variant group demonstrates expected loss of 
genotype–phenotype relationship for variant-specific normative CSS scores. 

We then used this age- and genotype-normalized nCSS to evaluate the contribution 
of pXCI to clinical severity in RTT. For the entire cohort with informative pXCI data (Table 
1), we did not find a relationship between pXCI and nCSS (Figure 4A), consistent with the 
lack of an observed relationship between raw CSS scores and pXCI (Figure 1A). Similarly, 
we found no relationship between pXCI and nCSS scores in individuals with mild MECP2 
variants (Figure 4B), as observed for raw CSS and pXCI (Figure 1C). However, we found 
that pXCI was negatively correlated with nCSS scores for people with severe variants in 
MECP2 (Figure 4C, p = 0.013, r = −0.215), whereas there was only a trend towards the cor-
relation between raw CSS and pXCI in this group (Figure 1C, p = 0.055, r = −0.17). The 
presence of a unique pXCI/nCSS relationship in the context of severe MECP2 variants 
(Figure 4C) suggests pXCI impacts disease severity through an interaction with MECP2 
variant severity. To further explore this relationship, we assessed how pXCI and MECP2 
variant severity contribute to the nCSS score (Figure 4D). As expected, MECP2 variant 
severity alone does not affect normative severity due to elimination of genotype–pheno-
type effects in the nCSS (see Figure 3B). pXCI alone was also not found to significantly 
explain variation in nCSS between individuals (Figure 4D), consistent with the lack of cor-
relation between pXCI/nCSS in the entire cohort (Figure 4A). However, we found the in-
teraction between MECP2 variant severity and pXCI notably contributes to nCSS and ex-
plains ~3% of the variation in severity between individuals (Figure 4D). 

Figure 3. Generation of variant-specific normative CSS scores. (A) Cumulative distributions of within-
subject mean predicted CSS for MECP2 variant groups showing expected genotype–phenotype
relationship as presented in Figure 2. Normative CSS for each participant is generated by determining
the variant group-specific percentile for the participant’s mean predicted CSS. (B) Cumulative
distributions of normative CSS scores by MECP2 variant group demonstrates expected loss of
genotype–phenotype relationship for variant-specific normative CSS scores.

We then used this age- and genotype-normalized nCSS to evaluate the contribution of
pXCI to clinical severity in RTT. For the entire cohort with informative pXCI data (Table 1),
we did not find a relationship between pXCI and nCSS (Figure 4A), consistent with the
lack of an observed relationship between raw CSS scores and pXCI (Figure 1A). Similarly,
we found no relationship between pXCI and nCSS scores in individuals with mild MECP2
variants (Figure 4B), as observed for raw CSS and pXCI (Figure 1C). However, we found
that pXCI was negatively correlated with nCSS scores for people with severe variants in
MECP2 (Figure 4C, p = 0.013, r = −0.215), whereas there was only a trend towards the
correlation between raw CSS and pXCI in this group (Figure 1C, p = 0.055, r = −0.17). The
presence of a unique pXCI/nCSS relationship in the context of severe MECP2 variants
(Figure 4C) suggests pXCI impacts disease severity through an interaction with MECP2
variant severity. To further explore this relationship, we assessed how pXCI and MECP2
variant severity contribute to the nCSS score (Figure 4D). As expected, MECP2 variant
severity alone does not affect normative severity due to elimination of genotype–phenotype
effects in the nCSS (see Figure 3B). pXCI alone was also not found to significantly explain
variation in nCSS between individuals (Figure 4D), consistent with the lack of correlation
between pXCI/nCSS in the entire cohort (Figure 4A). However, we found the interaction
between MECP2 variant severity and pXCI notably contributes to nCSS and explains ~3%
of the variation in severity between individuals (Figure 4D).
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Figure 4. Paternal X inactivation correlates with reduced normative CSS for severe MECP2 variants.
(A) Normative CSS plotted against pXCI for all individuals shows no correlation (n = 198; Pearson’s
r = −0.073; p = 0.310; 95% CI: −0.210 to 0.068). Regression line and standard error shading as in
Figure 1. (B) pXCI shows no correlation with normative CSS scores in individuals with mild MECP2
variants (n = 66; Pearson’s r = 0.139; p = 0.265; 95% CI: −0.106 to 0.369). (C) Increased pXCI shows
a minor correlation with reduced clinical severity as measured by normative CSS in individuals
with severe MECP2 variants (n = 132; Pearson’s r = −0.215; p = 0.013; 95% CI: −0.372 to −0.0456).
(D) Summary of a simplified model where normative CSS is described by the interaction between
pXCI and MECP2 variant severity.

4. Discussion

Here we describe a model of RTT severity that allows for generation of an age- and
genotype-normative CSS. We show that application of this method to analysis of an XCI
dataset reveals a previously unidentified correlation between increased pXCI and decreased
disease severity in individuals with severe MECP2 variants, but not those with mild
variants. From the current data, we estimate that three percent of the variation in severity
between individuals with RTT is attributed to the interaction between pXCI and MECP2
variant severity driven by the specific interaction of pXCI and severe variants.

While previous analysis of the same XCI dataset did not identify a correlation between
XCI and disease severity, our ability to uncover a relationship in this study is aided by
the use of an age- and genotype-normalized severity score, in addition to restricting our
analysis to common MECP2 variants [26]. Our findings are consistent with previous reports
of a correlation between XCI and severity in individuals with R168X and T158M, variants
that are classified as severe in the current study [25]. Although a higher degree of correlation
between XCI and disease severity was previously reported for these variants, the current
study encompasses variants beyond R168X and T158M and employs a different severity
scale, so only qualitative comparisons between these two works can be made.

A key limitation in this and previous investigations into the contribution of XCI to
RTT severity is the use of peripheral blood as the source of genomic DNA for determining
XCI status. Concerns have been raised that XCI in peripheral blood may not accurately
represent states of mosaicism in the central nervous system relevant to RTT [27,36,37].
However, recent analysis by the GTEx consortium suggests XCI trends in peripheral blood
are maintained in the brain [38]. Having evidence that peripheral blood samples accurately
reflect CNS mosaicism supports continued use of whole blood as a surrogate for XCI in the
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brain, as obtaining suitable numbers of CNS samples for a well-powered investigation of
the impact of pXCI on RTT severity is not feasible.

The interaction between MECP2 variant severity and XCI contributing to nCSS is
an unexpected finding. Genotype–phenotype relationships are collapsed in the nCSS
(Figure 3B), so the presence of a genotypic interaction with XCI suggests a more complex
association. Mild variants invariant to the effects of XCI might represent a base level of
MECP2 dysfunction sufficient to cause RTT. The presence of even relatively small numbers
of mild mutant allele-expressing cells elicits hallmarks of the disorder; however, disease
severity is largely unaffected by the relative ratio of cells expressing healthy versus mild
mutant alleles. Conversely, for more severe variants, a greater ratio of dysfunctional cells
could have an additive effect on worsening disease severity. Preferential skewing of XCI
and silencing of the disease allele in this case provides a measurable reduction in clinical
severity. This is a key consideration as we enter the era of MECP2-targeted therapeutics
ranging from gene therapy to X chromosome reactivation [39–43]. Our findings suggest
MECP2 variant-specific differences in the percentage of functional MECP2-expressing cells
needed to elicit observable clinical improvement. For people with mild variants, expression
of functional MECP2 in a large percentage of cells may be required for observable clinical
improvement, whereas individuals with severe variants may see clinically meaningful
differences with a smaller percentage of functional MECP2-expressing cells.

Beyond exploring impacts of XCI on disease severity, the age- and genotype-normalized
nCSS score provides a means to assess other factors that contribute to RTT severity. Because
the nCSS score allows for direct comparisons between individuals regardless of their age and
MECP2 variant, we are able to conduct well-powered studies without restriction to specific
ages and/or genotypes. This feature also allows for analysis of historical datasets where
sample collection may not have been age matched or controlled for genotype. Moreover,
the nCSS allows for interrogation of factors contributing to disease severity that may have a
relatively small impact on clinical presentation compared to the well-established MECP2
genotype–phenotype relationship. This approach could contribute to the identification of
other biological factors (genetic, metabolomic), environmental factors, or therapies (physical,
occupational, speech) that influence clinical severity, but may be masked by the strong
MECP2 genotype–phenotype relationship. Finally, our strategy of modeling longitudinal
data to obtain age- and genotype-normalized scores could see application to other measures
of clinical outcomes in RTT, including the Revised Motor Behavior Assessment (RMBA),
the Rett Syndrome Behavior Questionnaire (RSBQ), and the Rett Syndrome Caregiver
Assessment of Symptom Severity (RCASS) [44–46].
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