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Abstract: Carbon sinks provided by land ecosystems play a crucial role in achieving carbon neutrality.
However, the future potential of carbon sequestration remains highly uncertain. The impact of
pollutant emission reduction (PER) introduced by the proposed synergistic approach to air pollution
control and carbon neutrality on carbon sinks in China has not yet been fully evaluated. In this study,
we analyzed the effects of regional carbon-neutral PER policies, global climate change, and their
coupled effects on China’s terrestrial gross primary productivity (GPP) by conducting numerical
experiments using the weather research and forecasting model coupled with chemistry (WRF-Chem)
and the moderate resolution imaging spectroradiometer photosynthesis algorithm (MODIS-PSN). We
found that carbon-neutral PER policies could promote GPP growth in most regions of China in 2060,
particularly during April and October, resulting in a total increase of at least 21.84 TgC compared
to that in 2016, which offset the adverse effects of global climate change up to fourfold. The aerosol
radiative effects drive GPP growth under carbon-neutral PER policies, primarily through an increase
in daily minimum temperature during winter and an increase in shortwave radiation during other
seasons. Our research highlights that reducing pollutant emissions enhances future potential for
carbon sequestration, revealing positive feedback towards achieving the target of carbon neutrality.

Keywords: carbon-neutral pollutant emission reduction policies; gross primary productivity; aerosol
radiative effects

1. Introduction

Climate change is an urgent global concern and one of the paramount challenges
confronting the world today. The international community is actively engaged in efforts
to tackle climate change [1]. This necessitates achieving carbon neutrality, which refers
to attaining a balance between the net carbon dioxide (CO2) emissions and removal or
offsetting measures. Fundamentally, two primary approaches can be adopted to accom-
plish this objective: reducing carbon emissions and enhancing carbon sinks [2,3]. While
technological advancements and policy interventions contribute significantly to emission
reduction, harnessing the natural capacity of ecosystems to absorb and sequester carbon is
equally indispensable [4].

The gross primary productivity (GPP) of terrestrial ecosystems is the largest compo-
nent of the Earth’s carbon cycle [5,6], as it determines the initial material and energy that
land ecosystems obtain from external sources [7]. GPP serves as the primary pathway
for terrestrial carbon exchange between land and atmosphere, playing a crucial role in
regulating the Earth’s carbon balance [8]. Capturing atmospheric CO2 through vegetation
photosynthesis is a vital strategy for achieving carbon neutrality [9]. Therefore, accurate es-
timation of GPP is essential for assessing the potential of terrestrial ecosystems to sequester
carbon. Rising atmospheric CO2 concentrations impact GPP in both direct and indirect
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ways simultaneously. The direct way is mainly referred to as the CO2 fertilization effect,
suggesting that the increase in atmospheric CO2 concentration stimulates the photosyn-
thesis process [10,11]. However, the enhancement trend of carbon sink is slowing down
and is projected to be averted in the future [12,13]. The indirect way represents the impact
through modulating the environmental conditions, such as meteorological parameters
and soil mineralization. For instance, variations in meteorological factors could result in a
decrease in carbon sequestration potential. Future warming-induced extreme droughts may
lead to losses in net primary productivity (NPP) [14]. Conversely, increased precipitation
in wet regions could reduce temperatures and radiation, thereby suppressing vegetation
growth. Additionally, an expanding atmospheric water vapor pressure deficit (VPD) might
diminish vegetation productivity [15]. The combined impact of these factors makes the
estimation of future carbon sink potential challenging.

The Chinese government has proposed achieving national carbon neutrality by 2060.
Effective measures to reduce carbon emissions have been implemented and are planned for
future implementation. Research indicates that air pollutants and greenhouse gas emissions
share common roots, sources, and processes. Therefore, there is widespread attention from
governments and scholars towards a synergetic approach to air pollution control and carbon
neutrality [16,17]. Integrated scenarios for reducing anthropogenic air pollutant emissions
have been proposed, such as the dynamic projection model for emissions in China (DPEC)
dataset [18]. These carbon-neutral pollutant emission reduction (PER) measures impact
the concentration of air pollutants [19], which further affect meteorological elements and
influence vegetation growth through their radiative effects. However, the specific impact
of this effect on vegetation carbon uptake remains unexplored.

In case of the ambiguous GPP variation trends caused by global climate change
and CO2 concentration rising [12–14,20], the feedback of PER measures on GPP becomes
imperative for achieving the carbon neutrality goal, especially in rapidly developing
and severely polluted regions such as China. This study aims to evaluate the impact of
PER on GPP in China under the context of carbon neutrality. We coupled the weather
research and forecasting model with chemistry (WRF-Chem) and the moderate resolution
imaging spectroradiometer photosynthesis algorithm (MODIS-PSN) to simulate future
GPP variation results from global climate change, PER measures, and their coupled effects.
The results can reveal to what extent the proposed synergistic approach to air pollution
control and carbon neutrality affects the vegetation carbon uptake through PER measures.
The implications are valuable for policymaking while achieving carbon neutrality targets
in China.

2. Materials and Methods
2.1. Meteorological and Chemistry Simulation

The meteorological parameters over China were simulated by the WRF-Chem model
version 4.0 [21], which was jointly developed by the National Oceanic and Atmospheric
Administration (NOAA) and the Earth System Research Laboratory (ESRL). The simulation
domain covers mainland China, which is centered at (35◦ N, 103◦ E) and expands 165 and
150 grids with a grid spacing of 36 km along the zonal and meridional direction. The meteo-
rological parameters were simulated by the model at 35 levels below 50 hPa. The simulation
incorporated various physical parameterization schemes (Table 1), including the Yonsei
University (YSU) planetary boundary layer scheme [22], the Noah land surface model [23],
the Grell-3D cumulus convection scheme [24], the Morrison double-moment microphysics
scheme [25], and the RRTMG shortwave and longwave radiation schemes [26]. To drive
the WRF-Chem model, dynamic initial and boundary conditions were obtained from
HighResMIP’s (high-resolution model intercomparison project) climate projection (MPI-
ESM1-2-HR) data of the CMIP6 (phase 6 of the coupled model intercomparison project),
which had a grid resolution of 0.93◦ × 0.93◦ and were interpolated at 6 h intervals [27].
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Table 1. Settings and parameterization schemes of WRF-Chem simulation.

Model Settings Values

Horizontal resolution 36 km
Vertical resolution 35 eta levels up to 50 hpa

Domain size 165 × 150 grids
Meteorological boundary MPI-ESM1-2-HR (0.94◦ × 0.94◦, 6 h)

Chemical boundary MOZART (0.9◦ × 1.25◦, 6 h)

Physical Option Parameterization Scheme

Microphysics Morrison two-moment
Shortwave radiation RRTMG
Longwave radiation RRTMG

Surface layer MM5 Monin-Obukhov
Land-surface Noah

Boundary layer YSU
Cumulus Grell 3D

Chemical Option Parameterization Scheme

Gas phase chemistry CBMZ
Photolysis Fast-J

Biogenic emissions MEGAN

Anthropogenic emissions
MEICv1.3 (0.25◦ × 0.25◦),

MICS-ASIA III (0.25◦ × 0.25◦),
DPEC (0.25◦ × 0.25◦)

Table 1 demonstrates the model input data and parameterization settings in this study.
The CBMZ [28] and MOSAIC [29] mechanisms were employed for simulating gaseous
and particulate chemistry. The initial and boundary conditions of atmospheric chemical
compositions were derived from climatological chemical data obtained from the model
for O3 and related chemical tracers (MOZART) [30,31]. The anthropogenic emissions
were derived from the multi-resolution emission inventory for China (MEIC) dataset
version 1.3 [32,33] over mainland China and the model inter-comparison study for Asia
(MICS-ASIA III) dataset [34] outside of China. The anthropogenic emissions in 2060 over
China were derived from the carbon-neutral scenarios of the DPEC dataset [18]. Biogenic
emissions were obtained from version 3 of the model of emission of gases and aerosols
from nature (MEGAN) [35].

The simulated meteorological parameters (2 m temperature and 2 m relative humid-
ity) and air pollutant concentrations (PM2.5 and O3) in January, April, July, and Octo-
ber of 2016 were compared with the observations from 439 meteorological stations and
1425 state-controlled ambient air quality monitoring stations across China, respectively
(see Tables S1 and S2). The meteorological simulation exhibited good model performance
as evidenced by small average deviations between simulation results and observation data,
such as mean fractional bias (MFB) ranging from −30% to 30%, mean fractional error (MFE)
below 50%, as well as negligible normalized mean bias (NMB) and normalized mean error
(NME). Regarding the air pollutant concentrations, both O3 and PM2.5 concentrations ex-
hibited MFBs within the range of −60% to 60%, while MFEs remained below 75%. Notably,
O3 simulation demonstrated superior performance in July with MFBs ranging from −30%
to 30% along with MFEs below 50%. All NMB values were positive for both O3 and PM2.5
concentrations over China, indicating a slight overestimation by the model. Consequently,
the model successfully replicated variations in meteorological parameters as well as air
quality [36].

2.2. Terrestrial GPP Calculation

Currently, the primary methods for calculating total primary productivity encompass
statistical models, parametric models, and process models. Among these, process models
based on light energy utilization are extensively employed. The global GPP product
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derived from the moderate resolution imaging spectroradiometer (MODIS) [37] is arguably
the most widely used worldwide GPP product [38], which is based on a light energy
utilization model—the MODIS photosynthesis (PSN) algorithm developed by Running
et al. [37]. Model parameter values are provided in the biome specified parameter look-up
Table (BPLUT), which is designed to establish a physiological framework for regulating
simulated carbon sequestration [39]. In this study, the meteorological parameters simulated
by the WRF-Chem model served as inputs for the MODIS-PSN model to estimate GPP.

The daily terrestrial GPP in each simulation grid was calculated using the MODIS-PSN
algorithm, which integrates absorbed photosynthetically active radiation (PAR) and the
light energy utilization rate [37,40]. The absorbed PAR was estimated by multiplying
the incident PAR from the model output with the absorbing fraction determined by the
underlying plant canopy. The light energy utilization rate was obtained by querying the
biological property lookup table based on vegetation cover type and adjusted for daily
minimum temperature (Tmin) and the average difference between water vapor pressure at
saturation and actual vapor pressure (VPD). The widely used IGBP classification system for
land cover categorization was employed to estimate GPP in this study [41]. Comparisons
with MYD17A2H product [42] revealed that this method successfully reproduced spatial
patterns of GPP, exhibiting high correlation coefficients (R = 0.59–0.78, p < 0.001) and
relatively low bias (nationwide RMSE < 78.56 gC/m2) (see Table S6).

2.3. Scenario Setting

Four sets of numerical experiments were carried out to examine the impact of the
synergistic approach to air pollution control and carbon neutrality and global climate
change on terrestrial GPP in China. As summarized in Table 2, the baseline (BL) for GPP
in 2016 was simulated using meteorological fields and anthropogenic emissions from that
year. The first control experiment (CN) assessed the impact of the synergistic approach
to air pollution control and carbon neutrality by simulating meteorological fields from
2016 and projected anthropogenic emissions from 2060. The second control experiment
(CC) evaluated the impact of global climate change by simulating projected meteorological
fields from 2060 and anthropogenic emissions from 2016. The coupled effects of these
two factors (CE) were simulated by considering projected meteorological fields and an-
thropogenic emissions from 2060. Four different shared socioeconomic pathways (SSPs)
and representative concentration pathways (RCPs) [43] were considered for projecting
future meteorological conditions, including SSP126 (SSP1 + RCP2.6, a green develop-
ment pathway), SSP245 (SSP2 + RCP4.5, an intermediate development pathway), SSP370
(SSP3 + RCP7.0, a pathway between SSP245 and SSP585), and SSP585 (SSP5 + RCP8.5, a
high development pathway).

Table 2. Scenario settings in the simulation of GPP.

Scenario Configuration Meteorological Fields Anthropogenic Emissions

BL 2016 2016
CN 2016 2060
CC 2060 2016
CE 2060 2060

2.4. Sensitivity Analysis

The Sobol sensitivity analysis method was employed to assess the relative importance
of meteorological parameters, including Tmin, VPD, and near-surface shortwave radiation
(Srad), in influencing variations of GPP. This approach represents a global sensitivity
analysis technique based on variance decomposition that aims to quantify the contribution
of each parameter’s unconditional variance to the model output. Moreover, it has the
capability to consider both individual parameter effects and their coupling influences [44].
In this study, 2000 samples were included in the Sobol sensitivity analysis for each grid.
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These samples were randomly extracted from the GPP values falling in the range of monthly
mean ± standard deviation.

3. Results
3.1. The Projected Terrestrial GPP Variations

In terms of the total GPP during four representative months (January, April, July, and
October), global climate change leads to declines in GPP of −39.69 TgC, −44.69 TgC, and
−17.16 TgC under SSP126, SSP370, and SSP585 scenarios, respectively. However, a slight
increase in GPP of 2.56 TgC is observed under the SSP585 scenario. The effect of global
climate change exhibits distinct variations among different seasons and SSP scenarios
as depicted in Figure 1 and Table S3. In January, GPP showed decreasing trends under
most SSP scenarios, except for the SSP585 scenario under which a slight increase of 2.00%
is observed. In April, increasing trends in GPP are observed under SSP245 and SSP585
scenarios, with increases of up to 6.35%. Conversely, decreasing trends occur under SSP126
and SSP370 scenarios by −0.60% and −2.96%, respectively. Decreasing trends in GPP
are evident across all scenarios in July. Although the maximum relative reduction rate
is only −4.62% under the SSP585 scenario, it represented the largest absolute reduction
amount among the four months due to July having the highest baseline GPP value. In
comparison, October showed increasing trends in GPP under most SSP scenarios by up to
8.00%, except for a decrease of 9.54% observed under the SSP245 scenario. Additionally,
reductions caused by global climate change exceed −50.00 TgC as maximum amounts,
which are relatively larger than increases that range around 40.00 TgC.

Atmosphere 2024, 15, x FOR PEER REVIEW 6 of 15 
 

 

in 2060 and offset the decline caused by global climate change up to fourfold. This positive 
feedback of PER on GPP highlights the effectiveness of the synergistic approach to air 
pollution control and carbon neutrality towards achieving China’s carbon neutral target.  

 

 
Figure 1. Changes in GPP under different scenarios. CN, CC, and CE represent the impact of PER 
only, global climate impacts only, and coupled effects of these two factors, respectively. Total rep-
resents the cumulative impact across four months. The blue, green, and black error bars represent 
the standard deviations of changes in GPP caused by CC, CN, and CE, respectively. 

3.2. Spatial Distribution Characteristics of the Projected Terrestrial GPP Variations 
The spatial distribution of GPP across China in 2060 is significantly influenced by 

global climate change, as illustrated in Figure 2. In January, the regions experiencing a 
decrease in GPP are predominantly located in eastern China under the SSP126 scenario 
and gradually diminish with worsening climate conditions. The proportion of regions 
with declining GPP drops from 86% under the SSP126 scenario to 53% under the SSP585 
scenario. Conversely, areas exhibiting an increase in GPP are primarily found in Yunnan 
Province and also appear along the southeastern coastal area under the SSP245 scenario. 
In April, contrasting spatial patterns emerged with decreasing GPP observed in Yunnan 
Province and increasing GPP observed elsewhere. In July, regions experiencing a decline 
in GPP are concentrated over the North China Plain (NCP), while significant increases 
occur over the Tibetan Plateau and southern China. The trend of GPP variation shifts from 
growth to decline for northeastern China between the SSP126 and SSP585 scenarios. In 
October, most regions of China witnessed an increase in GPP, accounting for approxi-
mately 70% of the study area; however, this does not hold true for southern China under 
both SSP245 and SSP585 scenarios. The reduction of GPP in southern China during Octo-
ber is consistent with the results projected by a machine learning method [45] and might 
be caused by the rising VPD in this region as shown in Figures S1 and discussed in Section 
3.3  because extremely high VPD inhibits photosynthesis through closing plants’ stomata 
[46]. 
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global climate impacts only, and coupled effects of these two factors, respectively. Total represents the
cumulative impact across four months. The blue, green, and black error bars represent the standard
deviations of changes in GPP caused by CC, CN, and CE, respectively.

On the contrary, the PER results in a substantial increase in GPP of 68.63 TgC by 2060,
accounting for 2.88% of the baseline and effectively offsetting the decline in GPP caused
by climate change up to fourfold depending on SSP scenarios. The impact of PER on GPP
exhibits slight seasonal variation, with larger increases observed in July (20.96 TgC) and
October (19.65 TgC) compared to April (14.21 TgC) and January (13.81 TgC). Considering
the larger baseline GPP in July and April as shown in Table S3, the relative variations
of GPP present more obvious seasonal differences. PER leads to a significant growth in
GPP by 9.40% in January in terms of relative variations, followed by 3.90% in October,
while relatively smaller increments are observed in April (2.44%) and July (1.81%). The
magnitude of GPP increases induced by PER is considerable when compared to the impacts
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of global climate change alone. For example, during the four representative months,
the GPP enhancements resulting from PER can offset the reductions caused by global
climate change at rates of 1.73, 1.54, and 4.00 times under SSP126, SSP245, and SSP370
scenarios, respectively.

Resulting from the offset caused by PER, the GPP increases under most SSP scenarios
considering the coupled effects of PER and global climate change. The maximum reduction
in GPP is 43.53 TgC, occurring under the SSP126 scenario in January, accounting for 29.62%
of the baseline GPP. Conversely, the maximum increase in GPP is significantly larger at
66.99 TgC and occurs under the SSP370 scenario in October, accounting for 13.31% of the
baseline GPP. Notably, negative variations in GPP persist across all SSP scenarios due to
positive contributions from PER in July.

In summary, global climate change will lead to a reduction in GPP under most SSP
scenarios by 2060 compared to that in 2016; however, PER can significantly enhance GPP in
2060 and offset the decline caused by global climate change up to fourfold. This positive
feedback of PER on GPP highlights the effectiveness of the synergistic approach to air
pollution control and carbon neutrality towards achieving China’s carbon neutral target.

3.2. Spatial Distribution Characteristics of the Projected Terrestrial GPP Variations

The spatial distribution of GPP across China in 2060 is significantly influenced by
global climate change, as illustrated in Figure 2. In January, the regions experiencing a
decrease in GPP are predominantly located in eastern China under the SSP126 scenario
and gradually diminish with worsening climate conditions. The proportion of regions
with declining GPP drops from 86% under the SSP126 scenario to 53% under the SSP585
scenario. Conversely, areas exhibiting an increase in GPP are primarily found in Yunnan
Province and also appear along the southeastern coastal area under the SSP245 scenario.
In April, contrasting spatial patterns emerged with decreasing GPP observed in Yunnan
Province and increasing GPP observed elsewhere. In July, regions experiencing a decline
in GPP are concentrated over the North China Plain (NCP), while significant increases
occur over the Tibetan Plateau and southern China. The trend of GPP variation shifts from
growth to decline for northeastern China between the SSP126 and SSP585 scenarios. In
October, most regions of China witnessed an increase in GPP, accounting for approximately
70% of the study area; however, this does not hold true for southern China under both
SSP245 and SSP585 scenarios. The reduction of GPP in southern China during October
is consistent with the results projected by a machine learning method [45] and might be
caused by the rising VPD in this region as shown in Figure S1 and discussed in Section 3.3
because extremely high VPD inhibits photosynthesis through closing plants’ stomata [46].

Figure 3 depicts the spatial distribution of GPP changes resulting from PER in China.
Notably, PER enhances GPP across most regions of China, with increasing areas accounting
for at least 77% of the study area, particularly in January and October with the proportion
exceeds 90%. The Sichuan Basin (SCB) in southwestern China exhibits a relatively high
increase in GPP throughout all seasons under the influence of PER. Additionally, higher
GPP-increasing regions cover southern China in January and October, the NCP and north-
eastern China in July, regions between the Yangtze River and the Yellow River in April,
and the Yunnan–Guizhou Plateau (YGP) in October. The main decreasing regions appear
over Yunnan Province in April and southern China as well as eastern Inner Mongolia
during July.

In terms of the coupling effect of PER and global climate change (see Table S4 and
Figure S1), Yunnan Province emerges as the primary region for GPP increase in January,
accounting for 72% of the total GPP increment. However, it becomes the primary region for
GPP reduction in April, with a decrease of 58.35 TgC. GPP growth is concentrated in the
Hunan, Jiangxi, Heilongjiang, Henan provinces, and Inner Mongolia during this month.
In July, the Tibet and Qinghai provinces contribute to over half of the total increase. Most
provinces exhibit GPP growth under all SSP scenarios in October, with the highest increases
observed in the SCB, Heilongjiang Province, and Inner Mongolia.
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3.3. Dominant Meteorological Factors Driving the Projected Terrestrial GPP Variations

The main meteorological factors governing the variations in GPP influenced by global
climate change were determined through sensitivity analyses, as depicted in Figure 4. In
January, Tmin and Srad dominate 66% (43%) and 34% (57%) of the study area under the
SSP126 (SSP585) scenario, respectively. The regions dominated by Srad are predominantly
located in southerly areas, such as the Yunnan, Guangxi, and Guangdong provinces. No-
tably, a transition from Tmin-dominated to Srad-dominated influence occurs primarily
within the SCB, Hubei, and Hunan provinces with the exacerbation of climate change. In
April, approximately two-thirds of the study area exhibited variations in GPP driven by
Srad, while one-fifth was influenced by Tmin across all SSP scenarios. Regions character-
ized by Tmin dominance were mainly situated in westerly areas with higher altitudes. It
is worth mentioning that GPP variations in Yunnan Province are primarily influenced by
VPD [47]. This finding can be attributed to increased VPD reducing stomatal conductance
and impeding vegetation growth under the influence of climate change [46]. Moving
on to July, around 80% of the study area was governed by Srad dominance, while VPD
exerted control over approximately 20%. Notably, the NCP emerged as a prominent region
dominated by VPD effects aligning with previous studies, highlighting significant corre-
lations between ecosystem productivity and air moisture levels within this region [48,49].
Overall spatial patterns observed during April persisted in October; however, proportions
of regions exhibiting Srad or VPD dominance decreased or increased correspondingly.
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The PER induces variations in pollutant concentrations, such as PM2.5 and O3, which
subsequently alter the meteorological parameters influencing GPP, including Srad, Tmin,
and VPD [50]. As presented in Table 3, due to a significant decrease in anthropogenic emis-
sions, PM2.5 concentrations exhibit substantial reductions across all seasons, particularly in
January (−49.22 µg/m3) and October (−18.31 µg/m3). These changes are mainly concen-
trated in heavily polluted regions [19], such as the NCP and SCB (see Figure S3). Declines
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are also observed in O3 concentrations but to a lesser extent ranging between −9.36 ppbv
and −2.04 ppbv. The radiative effects of aerosol particles influence shortwave radiation
reaching the surface [51,52] and modulate air temperature and VPD [53,54]. Increases of
Srad ranging from 0.27 MJ/m2 to 1.18 MJ/m2 are observed among different seasons. Tmin
exhibits more pronounced increases in January and October (0.15 ◦C and 0.19 ◦C) compared
to April and July (only 0.06 ◦C and 0.03 ◦C). Correspondingly, more noticeable increases of
VPD occur both in January and October either (22.77 Pa and 28.19 Pa), with an additional
increase observed in July (16.80 Pa).

Table 3. Changes in meteorological factors and pollutant concentrations due to PER in China. An
asterisk represents significant differences at a 95% confidence interval.

Variable January April July October

Tmin (◦C) 0.15 ± 0.22 0.06 ± 0.25 0.03 ± 0.23 0.19 ± 0.29
Srad (MJ/m2) 1.18 * ± 0.49 0.27 * ± 0.34 0.45 * ± 0.52 0.61 * ± 0.40

VPD (Pa) 22.77 * ± 14.77 0.02 ± 13.50 16.80 ± 30.10 28.19 * ± 24.03
PM2.5 (µg/m3) −49.92 * ± 25.52 −9.61 * ± 8.71 −7.55 * ± 8.82 −18.31 * ± 13.19

O3 (ppbv) −2.04 * ± 6.35 −3.02 * ± 5.10 −9.36 * ± 5.72 −3.10 * ± 6.48

Sensitivity analyses reveal that Srad is the primary driver governing variations in
GPP throughout the year, with the exception of January when Tmin takes precedence. In
Figure 5, it can be observed that areas dominated by Tmin account for 54% of the study area,
primarily concentrated in Yunnan Province and central China in January. Conversely, Srad
dominates approximately 45% of the study area, mainly encompassing the Yunnan border,
SCB, and southern China. The dominance of Srad expands to cover 65%, 79%, and 54%
of the study area in April, July, and October, respectively. On the other hand, proportions
of areas dominated by Tmin are found to be around 19% and 25% in April and October,
respectively, but negligible in July. VPD-dominated regions occupy approximately 16% of
the study area during April and 21% during both July and October, but are virtually absent
in January and July. Spatially, Tmin-dominated areas concentrate over central China and
Yunnan Province in January, and extend to northeastern China, eastern Inner Mongolia,
and the western Sichuan province in April and October. VPD-dominated regions focus
primarily on southern China in April and October, and on central China in July.
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4. Discussion

Our findings indicate that global climate change impacts GPP negatively, which aligns
with the results from the study by Mu et al. [55], and the implementation of carbon-neutral
PER policies enhances vegetation carbon uptake in China (see Figure 1). Some studies
have provided evidence for the positive impact of PER on GPP by examining the effects
of aerosol and O3 reduction on vegetation growth. For instance, Xu et al. found that
reducing aerosol concentrations by 2030 benefits ecosystems [56]. Wang et al. indicated
that lowering O3 levels under the carbon neutrality goal will mitigate crop yield reductions
caused by global climate change [57]. Furthermore, it is observed that aerosol radiative
effects play a crucial role in promoting increased GPP under carbon-neutral PER policies.
These effects are predominantly influenced by temperature variations during winter and
shortwave radiation changes throughout other seasons. Specifically, the changes in Tmin
and Srad during January mitigate the adverse effects of low temperatures on vegetation [58],
while the increase in Srad enhances the availability of PAR for plants. From a nationwide
perspective, most regions within China have experienced an increase in GPP due to carbon-
neutral PER policies (see Figure 3). Spatially, this enhancement is primarily concentrated
in southwestern China and eastern China regions, where GPP is significantly affected by
aerosols [59].

Several defects increase the uncertainties of GPP in this study. Firstly, the omission of
considering the increase in atmospheric CO2 concentration, despite its significant effects
on the terrestrial carbon cycle [60–62], may lead to an underestimation of the decline in
GPP caused by global climate change in 2060. The fertilization effect of elevated CO2 levels
on photosynthesis and vegetation growth is well recognized; however, it is important to
note that this effect diminishes over time and may even shift towards a negative impact
on GPP in the near future [12,13]. Therefore, the absence of the effect of CO2 rise may
underestimate the decline of GPP caused by global climate change in 2060, emphasizing
the imperative role of offsetting from PER. Secondly, due to uncertainties associated with
projected meteorological parameters, the reliability of estimated future GPP is limited. This
study relies exclusively on data from the MPI-ESM1-2-HR model as a climate background
field due to its favorable overall performance across evaluations of CMIP6 models [63].
However, there are evident discrepancies among different CMIP6 model data which can
significantly affect simulation outputs for GPP. To assess this issue, meteorological data
from 2016 of the other three CMIP6 models (see Table S5) are used for calculating China’s
GPP and compared against benchmark data (the MYD17A2H dataset). As shown in
Table S6, results driven by the MPI-ESM1-2-HR model outperform those obtained using
the other three CMIP6 models. Finally, current models used for estimating GPP exhibit
substantial uncertainties [64,65]. The simplified models like MODIS-PSN can capture
variations caused by meteorological parameters accurately enough; they failed to consider
future changes in surface physical conditions or geochemical and physiological factors.
Notably, PER-induced declines in O3 concentrations might promote future increases in
GPP [57], which have not been accounted for yet.

5. Conclusions

In this study, we conducted an estimation of the impacts of global climate change and
pollutant emission reduction on GPP across China in 2060, with a focus on achieving carbon
neutrality objectives. The findings reveal that carbon-neutral PER policies promote GPP
growth in most regions of China in 2060, particularly during April and October, resulting
in a total increase of at least 21.84 TgC compared to that in 2016, which offset the adverse
effects of global climate change up to fourfold. Considering the coupled effects of carbon-
neutral PER policies and global climate change, our analysis indicates that alterations in
GPP patterns are primarily driven by global climate change but can be modulated through
PER interventions. This suggests that the positive effects of carbon-neutral PER on China’s
terrestrial GPP can help alleviate the adverse impacts of climate change and mitigate
the weakened CO2 fertilization effect. This underscores the significance of adopting the
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synergistic approach to air pollution control and carbon neutrality, thereby enhancing
confidence in coordinated endeavors aimed at reducing pollutants and carbon emissions.
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