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Abstract: This study investigates the historical variability in annual average precipitation in the
northwest region of Mexico, aiming to evaluate the cumulative impact of precipitation on soil
degradation and associated risks posed by rainfall. Despite being known as “The Agricultural Heart of
Mexico”, the region’s soil has experienced significant damage to its granulometric structure due to
unpredictable rainfall patterns attributed to climate change. Sixteen historical series of average annual
rainfall were analyzed as stationary stochastic processes for spectral analysis. The results revealed
exponential decay curves in each radial spectrum, indicating a linear relationship between frequency
and amplitude. These curves identified initial impulses correlated with moments of severity for
structural damages caused by rainfall-induced degradation. The degradation process, exacerbated by
water stress, accelerates, as evidenced by maps illustrating approximately 75% soil damage. In the
context of climate change and the uncertainty surrounding soil responses to extreme meteorological
events, understanding this phenomenon becomes crucial. Recognizing the dynamic nature of soil
responses to environmental stressors is essential for effective soil management. Emphasizing the need
to employ numerical processes tailored to new environmental considerations related to observed soil
damages is crucial for sustainable soil management practices in any region.

Keywords: precipitation; soil degradation; climate variability; spectrum and soil management; Mexico

1. Introduction

Contemporary challenges facing Mexican agriculture, particularly in the northwest
region, necessitate adaptation to meet evolving global market demands. The recent North
American Free Trade Agreement offers renewed prospects, calling for enhanced commercial
engagement and environmental management plan restructuring. However, the compound-
ing challenges of climate change exacerbate pressure on agricultural practices, particularly
soil degradation, presenting a complex task for adaptation amidst globalization [1,2].

Soil degradation in Mexico results from various granulometric combinations due to
the distribution variation in edaphic richness across its territory. This diversity contributes
to multiple factors affecting and transforming soil structure, leading to numerous method-
ologies and definitions to study its degradation [3]. However, existing results are solely
close approximations of the actual level of soil degradation.

The differences in soil degradation across the Mexican Republic are evident in the
literature [4]. One report indicates that 61.7% of the soil in the national territory is affected
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by erosions caused by water, wind, chemicals, physical factors, and soil withering, leading
to degradation [5] (pp. 45–47), [6] (p. 31). Meanwhile, another study, at a 1:250,000 scale,
provides a map and reports similar causes of soil degradation but attributes it to anomalous
management practices, particularly with agricultural cover areas, revealing a 55% total
degradation trend that could lead to erosion [7].

Agricultural production is heavily impacted by soil degradation and changes in land
use [8]. Soil degradation poses a significant challenge to agricultural productivity and
economic performance, especially in the northwest region of Mexico. Despite variations in
the degree of degradation observed in studies, adherence to current management practices
poses a substantial risk to soil granulometric structures. This threat is further compounded
by the ongoing role of agriculture in contributing to Global Greenhouse Gas emissions
(GHGs). Recent studies indicate that agriculture, worldwide, is responsible for a significant
portion of these emissions [8,9].

In terms of global agriculture’s responsibility for its anthropogenic activities associated
with food systems, encompassing both pre- and post-agricultural production, approxi-
mately 16.5 gigatons (Gt) of carbon dioxide (CO2) equivalent are estimated to be emitted
into the atmosphere annually. This constitutes around 30.55% of total emissions, roughly
equivalent to one-third of the total emitted, which amounts to 54 GtCO2e year−1 [9].

The continuous and rapid growth of the urban population will produce diminutions
in arable land [10–13]. Fundamental changes in food production becomes evident. Given
that agricultural activity will continue to play a significant role in GHGs emissions it
is crucial to seek a shift towards sustainable practices to meet the increasing demands
of a globalized world [14]. The absence of changes and functional methodologies to
prevent soil degradation, closely linked to the agricultural production phases on farms and
fields, will result in significant GHGs emissions, further exacerbated by the incidence of
rainfall. Therefore, rigorous and urgent strategies are required to reduce emissions through
improvements in crop production. This involves not only soil conservation-based practices
but also specific methodological approaches in farm and field environments to confer
environmental value to agricultural products in the face of GHGs [15,16]. These strategies
should not only reduce emissions but also enhance overall sustainability, ensuring the
well-being of populations globally [1,2].

The degradation of soil is intricately linked to the “perfect cycle of agricultural production”,
encompassing various emission phases from field activities to food processing and waste
management [17,18]. Balancing food demands, mitigating environmental impacts on soil,
and guaranteeing population well-being is complex yet crucial for creating a resilient and
sustainable agricultural system, especially in regions like the “Agricultural Heart of Mexico”
given the consistent year-round nature of its agricultural activities.

Therefore, the primary focus should be on identifying the severity of consequences
resulting from the impact of meteorological phenomena on soil, particularly those resulting
from accumulated historical rainfall over time (PT(i, t)j) and causing rapid damage. For
this purpose, a dataset spanning 51 years was utilized, consisting of 16 temporal signals
of average annual precipitation (P(i, t)j), collected from meteorological stations operated
by CONAGUA (1961–2011). A stochastic approach was employed to assess the severity
of consequences and risks associated with soil degradation. The analysis was conducted
in the frequency domain to observe variations in the power spectrum for each temporal
signal. Additionally, a degree of radial integration was utilized to estimate and visually
represent the radial spectral potential for each respective temporal signal.

The analysis considers the region’s ongoing historical exploitation, its high susceptibil-
ity to desertification processes, and the influence of North American monsoonal dynamics.
It begins with the premise that relying on rigorously controlled and verified data is essential
for developing effective agricultural management plans that address climate change, em-
phasizing the paramount importance of data quality. Ensuring data quality is accomplished
through the analysis of seasonal stochastic conditions, enabling the estimation of spectral
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potential and the regionalization of soil erosion risk, serving as a crucial indicator of the
soil granulometric state in relation to the cumulative risk posed by precipitation.

This work responds to the current need for a comprehensive management approach to
soil conservation in Mexico. New plans or adjustments are necessary to effectively control,
counteract, and combat soil erosion, particularly in light of the evolving conditions brought
about by climate change [16]. These plans must be functional, tailored to specific areas,
and based on long-term characterizations of soil behavior. The importance of addressing
soil degradation in agricultural areas cannot be overstated, especially given the increasing
demands on agricultural land and the challenges posed by climate change. Singular
attention must be paid to these issues to ensure the sustainability of agricultural practices
and the long-term viability of agricultural production in Mexico. Therefore, understanding
the consequences of soil degradation induced by meteorological factors is crucial for
developing effective soil management strategies.

2. Materials and Methods
2.1. Study Area

In the extensive coastal plain of Northwest Mexico lies the territory State of Sinaloa,
which has two interconnected agricultural valleys nestled within the hydrographic basins
of the “Río Fuerte” and “Río Sinaloa”. Renowned for their high productivity, these valleys
serve as vital arteries in a region where surface waters converge into the rivers of the
same name as their respective basins. Originating from the lofty peaks of the Sierra Madre
Occidental (SMO), these rivers traverse the valleys, and theirs flow variables during the
year fluctuate with respect to annual seasonally before culminating in the Sea of Cortés or
Gulf of California (Figure 1).

2.2. Historical Significance and Challenges

The Sinaloa River Basin, known as “The Agricultural Heart of Mexico”, boasts a long
history of agriculture dating back to pre-colonial times. Indigenous tribes like the “Cahitas”
and “Pimas bajos” cultivated various crops for sustenance and trade, establishing the region
as a hub of agricultural activity. During the mid-20th century, the region emerged as
a global leader in cotton exports, aligning with the principles of the “Green Revolution”
in the 1960s [19]. However, contemporary challenges, exacerbated by climate change,
now threaten the region’s agricultural sustainability. To tackle these issues effectively, it is
imperative to gain a comprehensive understanding of the risks posed by extreme weather
events, particularly rainfall-induced soil degradation [19,20].

Therefore, the objective of this investigation is comprehending the severity of conse-
quences produced by historical-annual-average-rainfall-induced soil structural internal
degradation in a pivotal Mexican economic area known for its high agricultural production
and commonly called the “Agricultural Heart of Mexico”. Emphasizing the urgency, it under-
scores the need for innovative and sustainable agricultural management practices tailored
to this vital agricultural soil [19].

2.3. Analysis of Rainfall-Induced Soil Degradation and Stationarity Condition

Focused on rainfall-induced soil degradation, this study meticulously evaluates the
consequences on agricultural soil caused by PT(ij)t, emphasizing degradation within the
internal granulometric structure within the initial 7 to 30 min of rainfall. Understanding
the dynamics of soil degradation during this critical period is vital due to the kinetic
energy carried by raindrops, which can lead to significant alterations in the soil matrix. To
comprehensively assess the impact of P(i, j)t on soil, the PT(ij)t and its specific effects on
soil properties were analysed. In order to ensure precision and accuracy in the analysis,
temporally stable information was employed in the numerical process. This involved
transforming the raw data obtained from weather stations into a signal composed of sines
and cosines over time, with variations in amplitude and frequency [21,22].
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Scheme 1 was meticulously designed step by step to illustrate the relationship between
the numerical tools used, thereby delineating and separating the hierarchy of each process
undertaken to process the dataset and obtain temporally stable signal information. The de-
cision to present Scheme 1 first is strategic. It serves as a comprehensive roadmap, guiding
readers through the methodology from start to finish. By presenting the graphical represen-
tation of ideas and numerical tools upfront, readers gain an immediate understanding of
the research approach and the sequence in which the numerical tools will be utilized. This
approach enhances clarity and facilitates comprehension, ensuring that readers can follow
the methodology seamlessly. In the subsequent sections of the manuscript, each numerical
tool comprising the methodology will be elaborated upon step by step. This sequential
approach allows for a detailed exploration of each tool’s role and significance within the
research framework. Furthermore, it enables readers to grasp the rationale behind the
selection and application of each numerical tool, thereby enhancing transparency and rigor
in the methodology section.

Figure 1. Geographical coordinates and map positions of weather  stations  in  the coastal 

plain and lofty mountainous areas of Northwest Mexico are provided, with a focus on the 

productive  soils  of  the  “”  and  “River Sinaloa”  hydrographic  basins,  renowned  as  the 

“Agricultural Heart of Mexico” zone. 

Figure 1. Geographical coordinates and map positions of weather stations in the coastal plain and
lofty mountainous areas of Northwest Mexico are provided, with a focus on the productive soils of
the “River Sinaloa” hydrographic basins, renowned as the “Agricultural Heart of Mexico” zone.
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2.4. Assessment of Dataset Continuity

To reduce dataset uncertainty, it was crucial to examine the errors in information
collection methods at meteorological stations, including sensor data collection, human
error, management, and processing, among others. These errors could introduce significant
variability into the data, sometimes showing similarities in time-measured information
and an exponential increase or decay in the AC function (ACF) over time. Therefore,
each dataset underwent analysis for irregularities or AC using non-conventional statistical
methods [23–25]. Considering that, initially, not all data series were stationary, it was essen-
tial to identify those meeting the continuity criteria before applying numerical processes to
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obtain the function of sine and cosine. This involved analyzing data from 16 meteorological
stations operated by CONAGUA to determine series meeting the continuity criteria.

2.5. Correlation Modelling and Randomness in the Dataset

Time-related measurements were investigated using a common multiple correlation
modelling RLM. Physically traceable, non-conventional statistical methods were applied to
identify potential AC and address dataset randomness. This approach aimed to enhance
result confidence and prevent discrepancies in statistical hypothesis tests for seasonal con-
ditions, thus avoiding erroneous stochastic model outcomes due to overlooked AC [26,27].
To analyze AC in the dataset and characterize the behavior of each signal, an individual
examination of each dataset was conducted. After individual analysis, physically traceable,
non-conventional statistical methods for determining AC were employed [27–29]. Graphical
analysis of all datasets was conducted to detect discontinuities or deviations [30], ensuring
that modelling simplifications adhered to established quality standards for describing
seasonal statistical processes.

2.6. Individual Statistical Diagnoses: Conventional and Non-Conventional Multivariate Methods
for AC Detection

The punctual statistical parameters used for individual diagnoses were the values’

minimum (P(i, t)jmin) and maximum (P(i, t)jmax), media (
=
P(i, t)j), and median (Pm(i, t)j).

The dispersion parameters comprised the absolute range (Rabs), standard deviation (σ), vari-
ance (σ2), determination coefficient (R2), correlation coefficient (R), and non-determination
coefficient ((k = 1 − R2). The parameter to describe asymmetry Swew_PT(i, t)j, the kur-
tosis statistic Kurt_PT(i, t)j, and the e positional statistical parameters Q25th and Q75th
percentiles were also used.

To detect AC, a combination of conventional and physically traceable, non-conventional
statistical methods was employed. The conventional method utilized was Multiple Linear
Regression (MLR), while the three non-conventional visual methods included Mantel’s
Correlation Scalogram (MCS), Geometric Correlation of Ellipses (GCE), and the Variance
Inflation Factor (t_stat_VIF). Specifically, in the analysis with t_stat_VIF, the AC evaluation
was based on the inflation factor, which is linked to the average variance [31,32]. The empha-
sis on using t_stat_VIF stemmed from its consistent and successful utilization across various
works. It was employed to derive confidence intervals for site velocities derived from the
Global Navigation Satellite System (GNSS), as well as from meteorology/climatology and
soil contamination studies with multivariate data [33–35].

2.7. MLR Analysis

The absence of correlation indicated by k or the correlation indicated by R2 obtained
via MLR analysis as a first approximation were considered as partial indicators, because
results focusing solely on one magnitude might overlook some degree of AC. This indirectly
suggested that there was no AC when the variables were correlated or not with another
St. This implied that if any degrees of AC were present in the dataset analyzed, they
could be embedded within the percentage of k or R2, making it challenging to detect.
Therefore, it was recognized that specification errors might arise when trying to enforce
the functionality of the model based solely on k or R2 for AC usage [36]. The results from
MLR for AC detection, due to disturbances and truncations in Minimum Ordinary Square
(MCO), risked errors in hypothesis testing and potentially led to incorrect AC acceptance or
rejection decisions. Hence, its results served as partial and preliminary indicators, as these
disturbances could obscure the representation of a stationary stochastic process and affect
AC determination [37]. Despite the ability to intuit AC through Fisher statistical probability
contrasts (prob_F_stat) with a significance level α = 0.05, the disturbances constrained AC
analysis. To address these challenges and achieve more accurate AC identification, visual
methods were employed [38]. These methods detected correlations and measured ACF by
comparing correlations within and between the original dataset or each St.
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2.8. Mantel’s Correlation Scalogram (MCS) Analysis

The MCS analysis, the second method utilized, visually examined shared information
within and between each St, enabling the configuration of a correlation regarding the
Ahome dataset based on the maximum percentage spatial distribution that R2 could acquire
(R2 = 1 = 100%). Its aim was to detect anomalies within the datasets, focusing on both
correlation and AC. The anomalies were visually distributed on a triangle’s base for AC and
below for correlation, effectively representing dataset characteristics. Simple correlation
was presented in Mean Squared Coherence (MCS) as a percentage distribution of R2 values,
offering nuanced insights into shared variance. The graphical representation was based
on a phased copy of the data series, expressed as a regression equation, illustrating the
consecutive similarity between nominal values each time they were compared, as well as
their original representation.

2.9. Geometric Correlation of Ellipses (GCE) Analysis

The GCE analysis employed a geometric approach to detect correlation and AC within
the datasets. By forming a triangle using geometric figures, mainly trending towards
ellipses or circles, this method offered insights into the dataset’s variance. A trend towards
ellipses indicated correlation within the triangle, while the presence of AC was defined by
geometric figures tending towards an ellipse at the base of the triangle. The qualitative
nature of the GCE method facilitated visual identification of AC by highlighting ellipses
based on the number of signals, thereby indicating its presence.

2.10. Variance Inflation Factor (t_stat_VIF) Analysis

The t_stat_VIF analysis functioned as a quantitative method to assess multicollinearity
within the datasets and its potential impact on the results obtained from MLR. By calculating
the Variance Inflation Factor, this analysis offered insights into the degree of self-correlation
present in each dataset. Values of t_stat_VIF > 10 indicated a significant self-correlation
problem, suggesting AC presence. Conversely, values of t_stat_VIF < 10 implied the absence
of self-correlation, thereby confirming the quality of the dataset for further analysis.

2.11. Elimination of AC and Seasonality Assessment: Augmented Dickey–Fuller Test (t_stat_DFA)
Analysis and Durbin–Watson Test (t_stat_DW)

After identifying datasets with AC, a meticulous elimination process was initiated to
remove randomness or noise, aiming to establish consistent seasonal stochastic processes
over time by minimizing potential pre-existing variations. This involved maintaining uni-
formity in the behaviors of measured nominal values, preparing the datasets for subsequent
analysis, and interpretation. Following the AC elimination process, comprehensive verifi-
cation was conducted to ensure that internal variance was not shared within the datasets.
This included additional analyses and adjustments, such as employing the Seasonal and
Trend Decomposition Using Loess (STL-Decomposition) method, to confirm the absence of
AC and validate the dataset’s quality for further analysis.

Once AC was eliminated, statistical criteria were employed to assess seasonality
within the datasets. Autoregressive analyses were conducted to ascertain the presence
or absence of stationarity in the datasets derived from each original signal (St). The
representation of the autoregressive characteristics within each dataset was expressed
through the following equation:

a1Pit−1 + a2Pit−2 + · · ·+ apPit−p + εt. (1)

Here, a1, a2, . . . . . . , ap represents the constant drift incorporated within P(i, j)t and εt
denoted the historical white noise within each representation of St.

When P(i, t)j = P(i, 0)j = 0, in the absence of autocorrelation, Equation (1) can be
reformulated as the following characteristic equation:

mp − mp−1a1 − mp−2a2 − · · · − ap = 0. (2)
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Here, mp, mp−1, mp−2, . . . , ap represents the autocorrelation inherent in each St and
at the initial moments of rainfall, represented by P(i, t)j = P(i, 0)j = 0, it demonstrates
a tendency toward unity. This result is equivalent to the presence of the unitary square (I(1))
of Equation (2). The behavior described by Equation (2), trending towards I(1), implies non-
stationarity in the stochastic process, and its statistical average parameters were defined
as follows:

P(i, t)j ̸= C and σ2 ∼ k (3)

where C and k are constants indicators representing the absence of an average value for
P(i, t)j and an undefined variance, respectively, for a non-stationary St.

The presence of I(1) in the characteristic equation and its connection with non-seasonality
or absence with the stationarity were examined to define the stationarity condition of each
St. The t_stat_DFA analysis served as a final confirmation of the presence or absence of I(1)
within each dataset, with a critical level contrast of 3.5%. To safeguard the integrity of the
R2 value obtained from the RLM tests and to mitigate the risk of spurious results within the
t_stat_DFA, precautions were taken to filter out any potential undetected AC. This involved
conducting exploratory analyses on first differences (PED) or second differences (SED) to
ascertain whether the datasets exhibited characteristics associated with non-stationarity.
To validate the t_stat_DFA results and ensure the absence of AC, a prior AC contrast was
conducted using the Durbin–Watson test (t_stat_DW).

2.12. Outlier Correction and Wave Representation for Spectral Analysis

Statistically identified outlies within the datasets were meticulously corrected to
maintain temporal and frequency domain consistency. The adjusted information underwent
spectral analysis following established criteria. The information must exhibit stationary
behavior to facilitate a proper understanding of the source and the properties that generate
/P(r, t)θ/ and /P(r)/. Therefore, using the stationary information, a deterministic wave
representation of each dataset was established, allowing for numerical adjustments using
Fourier series [39]. This ensured the reduction of uncertainty in the approximation of
nominal values and facilitated the transformation from the time domain to the frequency
domain. The Fast Fourier Transformation (FFT) was used to establish guarantees in the result
obtained in the directions r and θ to the spectrum of /P(r, t)θ/ of each St on a regular
mesh m × n = 15 × 10 with 150 finite elements. /P(r)/ was graphed in a one-dimensional
way to obtain a unique spectrum in each element of the mesh and visualize the set of low,
medium, and high frequencies. These charts, based on spatial frequency or wave number,
were considered as the natural logarithm of /P(r, t)θ/.

2.13. Interpolation and Consequence Severity Scale

Limited data posed challenges in fully characterizing the PT(i, t)j variation, prompt-
ing interpolation between neighboring stations. The Kriging method [40] was employed,
supported by evidence favoring geostatistical techniques for better estimates [41–43].

The limited data of PT(i, t)j posed challenges in fully characterizing its actual varia-
tion, leading to the need for an efficient configuration of the true spatial distribution of this
historical accumulation with robust data interpolation. To achieve this, differences in the
percentage of explained variability and root mean square error found in cross-validation of
five types of Kriging interpolation techniques (ordinary, universal, with external drift, with
individual variograms, and with combined variograms) were evaluated [40]. Ultimately,
the interpolation using combined variograms was selected, as it provided comparable
performance when applied to individual magnitudes of PT(i, t)j. This demonstrated, con-
sistent with other research, that Kriging interpolation with combined variograms could
be successfully applied for real-time operations in the study area [41–43]. This approach
proved crucial for understanding metrics like /P(r, t)θ/ and /P(r)/, revealing insights
into the behavior of rain intensity curves, including their exponential decay concern-
ing frequencies [44]. Results underwent rigorous evaluation against criteria specified
by [45] (pp. 59–65), ensuring adherence to stringent spatial distribution standards. No-
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tably, a 25 km radius was deemed suitable for flat coastal areas, while a 12 km radius was
considered appropriate for mountainous regions of SMO.

Additionally, a severity scale was devised to evaluate the consequences of identified soil
degradation risks, ranging from insignificant to catastrophic. This scale provided a framework
for understanding potential impacts and guiding appropriate management strategies:

Insignificant: Risks may lead to minimal consequences. Implementing integrated
conservation plans is recommended as a preventive measure.

Minor: consequences can be effectively managed through adaptive plans addressing
climate change, with a focus on existing risks in intensive agriculture.

Moderate: risks demand substantial time and effort for mitigation.
Important: risks carry significant short-term consequences, necessitating detailed

soil studies.
Catastrophic: risks present severe challenges for soils unsuitable for sustainable agriculture.

2.14. Data Compilation and Software Utilization

The compiled information was organized into tables using EXCEL 12.0 software. Var-
ious analytical methods, including statistical parameters; RLM estimator; the GCE method;
MCS; t_stat_VIF; STL-Decomposition adjustments; and significance testing t_stat_DW, t_stat_DFA,
and Prob(F-statistic) with respect to α = 0.05 were conducted using XVIEW 12.0 software. Addi-
tional analyses such as MSC and spectral analysis were performed using the PAST 5.0 program,
while interpolations and the verification of results were executed using SURFER 10.0. Finally,
the refinement of maps and figures was achieved using COREL DRAW 2018.

3. Results

The graphs in part A of Figure 2 show the behaviors of the nominal values of the
matrix m × n = 15 × 51, comprising 761 elements designed to analyze the 16 St of the
P(i, t)j original. Part B of Figure 2 displays the accumulated/annual P(i, t)j in the
16 meteorological stations. Concerning the total P(i, t) for the period 1961–2011 in each
season, a concentration of 38% was observed in the 1980s. In part B, it is also evident that,
within the study period, the stations of Yecorato and Mochicahui, respectively, exhibited
the highest and lowest accumulation of P(i, t)j, measuring 811.22 mm and 260.99 mm.

Parallel to the Sea of Cortez are the meteorological stations of the coastal plain, charac-
terized by spatial variability in P(i, t)j, with lower average values at P(i, t)j = 346.32 mm.
Conversely, stations located near the Sierra Madre Occidental (SMO) exhibit a higher aver-
age, with a cumulative value for P(i, t)j = 612.90 mm. The station with the lowest rainfall,
noted at P(i, t)j = 408.45 mm, is represented by data from the Ruiz Cortines station, while
the smallest magnitude, with data configured for the aforementioned Mochicahui station,
measures P(i, t)j = 260.99 mm.

Within SMO, the station with the greatest magnitude corresponds to Yecorato, while
the smallest, measuring 434.78 mm, is Las Estacas. Similarly, in the vicinity of SMO, the
three largest catchments in mm were recorded, with an average total of P(i, t)j = 811.22,
809.45, and 737.28, respectively, for the stations of Yecorato, Huites, and Choix. Conversely,
stations with smaller magnitudes, measuring P(i, t)j = 260.99, 311.68, and 371.421 mm, are
identified, respectively, at the stations of Mochicahui, Higuera de Zaragoza, and El Carrizo
in the coastal plain.

The graph in part A of Figure 2 represents the temporal variation in the original 16 St, con-
structed to conduct one-dimensional analysis on the behavior of P(i, t)j. This analysis revealed
irregularities; for instance, in 1986, an anomalous magnitude of P(i, t)j = 258.59 mm, the low-
est annual average within all 765 nominal values (m = 15, n = 51), was observed. The behavior
continued with high annual values characterized across the 1980s: 1980 (641.11 mm), 1982
(640.24 mm), 1983 (760.42 mm), and 1989 (639.20 mm). The 1990s showed an irregular trend,
with biannual minimum values of P(i, t)j as follows: 1994 (345.42 mm), 1996 (344.38 mm),
and 1998 (364.20 mm). In 2003, an isolated and sporadic magnitude of P(i, t)j = 671.30 mm
was observed.
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To classify the anomaly of 2003, considering the range R = [760.42, 288.50] correspond-
ing to the maximum and minimum accumulated annual variation of P(i, t)j in the area, it
was deemed a medium to high rainfall event. This year marked the highest rainfall in the
first decade of the twentieth century. If this outlier is disregarded, magnitudes fall within the
range R = [376.90, 431.16], revolving around the value P(i, t)j = 495.89 mm. The behavior
of the first decade of 20th century presents cyclical behaviors of maximums and minimums:
2001 (P(i, t)j = (373.90 mm), 2002 (P(i, t)j = 440.18 mm), 2004 (P(i, t)j = 389.14 mm),
2009 (P(i, t)j = 392.19 mm), and 2010 (P(i, t)j = 431.16 mm).

Table 1 presents the results of individual statistical diagnosis applied to the original
16 datasets. The indictor punctual parameters of central tendency present a range variation
for P(i, t)jmin from 10.01 to 506.90 mm and for P(i, t)jmax from 1417.60 to 551.50 mm; they

also occur for
=
P(i, t)j from 811.22 to 261.00 mm and for Pm(i, t)j from 8816.10 to 264.18 mm.

The statistical dispersion parameters show Rabs values from 1417.60 to 551.50, σ values
from 228.42 to 109.37, σ2 values from 52,174.74 to 11,962.57, a CV range from 51.53 to
16.62, R2 values from 0.11 to 2 × 10−3, and R values from 0.17 to 0.52. The variation in
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asymmetry and shoring statistical parameters, respectively, present the following magni-
tudes: Skew_PT(i, t)j from 1.63 to −0.16 and Kurt_PT(i, t)j from 5.53 to −0.90. Finally, the
positional statistical parameter for percentile 25% values ranges from 714.80 to 193.90 and
for percentile 75% values from 945.01 to 314.30.

Concerning Ahome meteorological station, there is individual variation of R = 0.45 in
shared information with the other 15 Sts, suggesting high correlation in the information,
with all Sts displaying undefined trends in positive and negative moments (Figure 2). This
high correlation suggests a potential AC within the St, which could impact the spectral
analysis of P(i, t)j via signals from seasonal statistical processes.

For spectral analysis, it was considered preferable to work with seasonal stochastic
processes due to their simpler and more stable statistical properties compared to non-
seasonal processes. Non-seasonal processes can be more complex, as they may accumulate
AC over time, compromising the results and introducing uncertainty and deviation from
reality if not considered during the verification of seasonality assumptions.

The evolution of nominal values over time in a multiple analysis of P(i, t)j for all mete-
orological stations exhibits a consistent behavior around the constant level P(i, t)j = 504.53,
with permanent changes dispersed in a joint variability, as indicated by the values
σ = 134.36 and σ2 = 18, 052.72. The result R2 = 0.21 with respect to Ahome meteoro-
logical station suggests that they share 21% of their information. The distribution of
nominal values more or less converges at the same point measure of P(i, t)j = 487.71.
Their asymmetry, defined by Skew_P(i, t)j = 0.453, indicates a slight positive concentration
of nominee values, which are slightly elongated to the right, while Kurt_PT(i, t)j = 2.17
indicates a curve characterized due to normal or curved behavior.

The individual diagnosis and multiple analysis statistics of the St indicate a high level
of shared information, both suggesting a potential AC within the St that may impact the
spectral analysis of PT(i, t)j due to signals from non-seasonal statistical processes.

Given that working with seasonal stochastic processes is more straightforward due to
their simpler and more stable statistical properties compared to non-seasonal processes,
which can be complex and varied, and considering the possible AC within the time series
that could invalidate results, leading to uncertainty and deviation from reality, it became
imperative to eradicate the level of AC in each St to verify the assumptions of seasonality
in the information.

The following are the results of four statistical techniques used to analyze AC con-
ditions. These results correspond to respective algorithms detecting AC within the Sts.
It is important to remember that the presence of AC would invalidate any seasonality
condition. The results of the first statistical tool to detect AC are presented in Table 2 and
they correspond to a low shared variance response of Ahome station compared to the rest
of the Sts, making this station the dependent variable. The R2 values range from 0 to 1,
suggesting 100% similarity of information. A 21% correlation with R2 was considered
possible with AC.

Contrasts [prob. (F_stat) vs. α], with values for prob. (F_statisitc) in the range [0.8, 0.33],
exceeded α < 0.05, indicating no significant differences between nominal values of P(i, t)j
in almost all 16 Sts. Prob. > 0.05 in the contrasts [prob. (prob. (F_stat) vs. α] was associ-
ated with stations presenting the greatest strength in the absence of correlation (greater
difference in shared information). The stations that exhibited the greatest strength in the ab-
sence of correlation (indicating greater difference in shared information) include Bocatoma
(prob. = 0.74), Choix (prob. = 0.60), El Fuerte (prob. = 0.84), Las Estacas (prob.= 0.71), Ocoroni
(prob. = 0.81), Presa Josefa Ortiz (prob. = 0.79), and Yecorato (prob. = 0.80).
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Table 1. Statistical analysis of 16 time series (1961–2011) for estimated central tendency, dispersion, asymmetry, and statistical bolstering in average annual
precipitation in northwestern Mexico’s mountainous zones and coastal plains.
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¯
P(i,t)j

P (i, t)jmin 87.10 68.20 10.00 26.60 180.00 152.00 209.60 338.20 276.80 506.90 27.40 418.50 264.50 127.30 69.50 164.00
P(i, t)jmax 905.80 1228.40 683.70 551.50 737.10 724.20 895.20 1122.00 993.20 1042.50 1417.60 1357.40 821.00 729.50 953.00 797.90
=
P (i, t)j 311.69 398.66 329.27 261.00 446.91 434.79 507.84 593.56 613.00 811.22 737.29 809.46 562.10 371.42 347.89 408.45

Pm(i, t)j 282.30 365.00 328.80 264.18 421.60 431.99 500.76 581.50 580.10 816.10 733.70 805.43 556.57 383.10 341.12 375.60
Rabs 905.80 1228.40 683.70 551.50 737.10 724.20 895.20 1122.00 993.20 1042.50 1417.60 1357.40 821.00 729.50 953.00 797.90

σ 138.83 205.44 144.59 112.78 147.77 109.99 127.54 153.47 153.21 134.84 228.42 213.40 109.37 120.08 159.95 147.22
σ2 19,273.46 42,205.03 20,906.51 12,719.91 21,835.74 12,097.66 16,265.98 23,553.16 23,472.22 18,181.87 52,174.74 45,537.87 11,962.57 14,418.70 25,585.30 21,673.28
CV 818.70 1296.60 683.70 578.10 917.10 876.20 1104.80 1460.20 1270.00 1549.40 1445.00 1775.90 1085.50 856.80 1022.50 961.90
R 0.09 1.00 0.04 0.04 0.03 0.001 0.01 0.01 0.01 0.002 0.01 0.0002 0.00 0.11 0.03 0.05
R2 0.45 0.52 0.44 0.43 0.33 0.25 0.25 0.26 0.25 0.17 0.31 0.26 0.19 0.32 0.46 0.36

Skew_( P(i, t)j) 1.63 1.61 0.34 0.06 0.23 0.24 0.65 1.16 0.34 −0.12 0.10 0.43 −0.16 0.34 0.96 0.85
Kurt_(P(i, t)j) 5.53 4.81 −0.24 0.51 −0.90 0.23 1.60 2.29 −0.26 −0.68 1.90 0.29 1.10 0.41 2.83 0.38

Q25th 227.50 248.30 198.00 193.90 332.00 344.70 413.30 493.90 493.80 714.80 590.50 633.50 502.60 255.80 223.60 304.40
Q75th 367.80 496.27 430.20 314.30 576.80 531.90 568.80 669.20 746.00 908.70 894.10 945.00 619.81 443.87 438.40 469.10

P(i, t)jmin and P(i, t)jmax = maximum and minimum limits in mm,
=
P (i, t)j = arithmetic mean, Pm(i, t)j = median, Rabs = absolute range, σ = standard deviation of the distribution,

σ2 = variance of the distribution, CV = coefficient of variation, R = coefficient of dispersion, R2 = coefficient of correlation, Skew_( P(i, t)j) = coefficient of asymmetry,
Kurt_(P(i, t)j) = coefficient of kurtosis, Q25th = percentile 25th, and Q75th = percentile Q75th.
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Table 2. Multiple Linear Regression (MLR) of 16 historical series concerning shared variance in
average annual precipitation with Ahome station on the coastal plains and mountain zones of
northwestern Mexico.

Multiple Linear Regression (RLM)/Dependent Variable: AHOME Method: Least Squares

Sample: 1961–2011 Included Observations: 51
Variable Coefficient Std. Error t-Statistic Prob.

C 281.08 283.59 0.99 0.33
Ahome 0.13 0.39 0.34 0.74

Bocatoma 0.13 0.24 0.53 0.60
Choix 0.46 0.38 1.23 0.23

El Carrizo −0.09 0.44 −0.20 0.84
El Fuerte 0.35 0.41 0.85 0.40

Higuera Zaragoza −0.13 0.24 −0.56 0.58
Huites −0.18 0.46 −0.38 0.71

Las Estacas −0.30 0.49 −0.62 0.54
Los Mochis 0.33 0.38 0.86 0.40
Mochicahui −0.01 0.30 −0.04 0.97

Presa Josefa Ortiz 0.12 0.47 0.26 0.79
Presa Miguel Hidalgo −0.35 0.42 −0.84 0.41

Ruiz Cortínez 0.23 0.36 0.65 0.52
Topolobampo 0.17 0.30 0.59 0.56

Yecorato −0.08 0.30 −0.26 0.80

R-squared 0.21 Mean dependent var. 398.65
Adjusted R-squared −0.12 S.D. dependent var. 205.43
S.E. of regression 217.73 Akaike info criterion 13.85
Sum squared resid. 1,659,201 Schwarz criterion 14.46
Log likelihood −337.31 Hannan–Quinn criteria 14.08

F-statistic 0.63 Durbin–Watson stat
(t_stat_DW) 1.71

Prob (F-statistic) 0.85

The counterpart of R2, namely k2 = 1 − R2 (coefficient of alienation or indeterminacy),
demonstrated incidences between the nominal comparatives and the total proportion of
σ2, attributing 79% of the information to no correlation. This suggests the possibility of
AC within any St. The RLM result of 21% of R2 hints at potential disturbances within
an St, hindering its representation as a stationary stochastic process. Consequently, the
hypothesis Ho was initially rejected, and the alternative H1 was accepted.

Direct detection of AC using contrasts ([prob. (F_statisitc) vs. α]) between the proba-
bilities of F_statisitc and the significance level α = 0.05 serves as a partial indicator of AC.
However, the methodology’s uncertainties regarding specification errors led to hesitation
in assuming the absence of AC. The RLM method alone did not offer sufficient guarantees
to conclusively argue against AC in the models analyzed.

Hence, three statistical tools were employed to visually identify areas where AC might
occur. The second method examined the spatial distribution of variation in similarity,
illustrating a 21% information concentration. It also identified AC by comparing signals
along a linear distribution, visually represented at the scaleogram’s base. While both the
RLM and MSC use R2 for analysis, the latter detects areas of AC, as depicted in Figure 3. The
red vertex of the triangle highlights the high similarity between the first and last values of
the matrix m × n. Similarly, the base of the triangle in the same color indicates comparison
pairs showing similarity.
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Although the RLM initially suggested an absence of AC (Table 1), the MSC reveals AC
within the information previously assumed to be free of AC. This new insight offers a more
comprehensive understanding, discouraging reliance solely on contrast tests for analyzing
seasonality assumptions in the St.

To identify the Sts potentially affected by the outlier AC effect and to ensure accurate
data representation with series of seasonal stochastic processes, the third method—GCE—was
employed and the results are depicted in Figure 4. Figure 4 indicates stations that did
not exhibit AC or correlation, meaning they did not share their σ2 with another St or with
themselves. Conversely, the figures in red within the triangle show stations displaying
AC when their information is compared. Additionally, stations with no correlation when
compared with each other are indicated within the triangle. Out of the 120 geometric
figures formed as a result of the contrasts, 28 tended to form an ellipse, indicating 23.33%
shared information. This result closely aligns with that of the RLM (R2 = 0.21).

The contrasts of the 92 ellipses that tended to form circles instead of exact ellipses
are exempt from correlation and AC. Specifically, the ellipses enclosed in a rectangle
and marked in red in Figure 4 indicated AC when compared with themselves through
this method. The tendency to form ellipses shows that the next eight datasets exhibit
AC: Choix, El Fuerte, Higuera Zaragoza, Huites, Los Mochis, Mochicahui, Ruiz Cortines,
and Topolobampo.
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Figure 4. Algorithm correlating ellipses. The red geometric shapes at the triangle’s base indicate
a tendency for ellipses associated with harmonic autocorrelation.

The GCE analysis revealed that 50% of the Sts did not exhibit AC, while the remaining
50% required adjustment to achieve stationarity.

The random effects detected in GCE analysis in the dataset were found to deviate from
the actual conditions observed in rainfall patterns. To address this, it was necessary to
process the dataset of these eight Sts using the STL-Decomposition method.

To verify if the AC was reduced, the eight Sts underwent adjustment, and were retested
using GCE and t-stat-VIF methods. Figure 5, part A, displays the graphical representation
of the adjusted eight Sts with STL-Decomposition, while part B confirms reduced AC, as
indicated by the change from ellipses tending to form circles. With this reduction in effect,
a new RLM was conducted. The new results of R2 = 0.12 and R2 adjusted = −0.26, reported
in Table 3, were considered acceptable, thereby increasing confidence in the reduction of
AC within the Sts. This reduction allowed for the application of the t_stat_DFA contrast to
verify the seasonality condition within the dataset.
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Table 3. Multiple Linear Regression was performed on 15 historical series from the Ocoroni station,
exhibiting high initial correlation (Probability = 0.972). Subsequently, 50% of the non-stationary series
were adjusted using STL_Decomposition to attain their respective stationary behavior.

Multiple Linear Regression (RLM)/Dependent Variable: AHOME Method: Least Squares

Sample: 1961–2011 Included Observations: 51
Variable Coefficient Std. Error t-Statistic Prob.

C 428.81 144.62 2.97 0.01
Ahome 0.00 0.10 0.00 1.00

Bocatoma −0.02 0.22 −0.07 0.95
Choix −0.01 0.14 −0.05 0.96

El Carrizo −0.14 0.21 −0.66 0.52
El Fuerte −0.09 0.24 −0.36 0.72

Higuera Zaragoza −0.14 0.24 −0.58 0.57
Huites −0.08 0.13 −0.61 0.54

Las Estacas 0.00 0.26 0.01 0.99
Los Mochis −0.12 0.29 −0.40 0.69
Mochicahui 0.19 0.22 0.83 0.41

Presa Josefa Ortiz 0.08 0.26 0.31 0.76
Presa Miguel Hidalgo 0.09 0.24 0.37 0.72

Ruiz Cortínez 0.21 0.21 1.00 0.32
Topolobampo 0.00 0.17 −0.02 0.98

Yecorato 0.20 0.16 1.23 0.23

R-squared 0.12 Mean dependent var. 562.10
Adjusted R-squared −0.26 S.D. dependent var. 109.37
S.E. of regression 122.67 Akaike info criterion 12.70
Sum squared resid. 526,68 Schwarz criterion 13.31
Log likelihood −308.05 Hannan–Quinn criteria 12.93

F-statistic 0.32 Durbin–Watson stat
(t_stat_DW) 1.89

Prob (F-statistic) 0.99

Note that the results in Tables 2 and 3 highlight differences between the results
obtained for the F_stat and Prob(F_stat) statistics in the original 16 datasets and the new
results after adjusting the eight Sts to achieve stationarity. These adjusted datasets were then
reintroduced to obtain the second RLM shown in Table 3. The first RLM in Table 1 presents
values of F_stat = 0.63, Prob(F_stat) = 0.82, and R2 = 0.21. In contrast, the second RLM in
Table 3 shows these magnitudes distributed as follows: F_stat = 0.34, Prob(F_stat) = 0.98,
and R2 = 0.11. It is evident that there was a reduction after adjusting for seasonality using
the STL-Decomposition technique.

The results of t_stat_FIV are displayed in Table 4, where the third column facilitates the
establishment of the contrast [t_stat_FIV vs. VIF < 10]. It is notable that all values in this col-
umn fall within the range R = [1.3, 5.71], indicating that the magnitudes of t_stat_FIV < 10.
Consequently, these findings suggest a complete absence of heteroskedasticity and correla-
tion, effectively dismissing the potential presence of AC in the representation of P(i, t)j.

Applying this new condition to the dataset prepares the foundation for applying
t_stat_DFA to ascertain the presence of seasonality in each St, employing a 5% level of
critical values set at −3.5 for comparison with t_stat_DFA. This method offers full confidence
in determining the presence or absence of seasonality, allowing us to either accept or reject
the hypothesis “H0 = P(i, t)j “has a unit root exogenous: constant and linear trend” and,
depending on its presence or absence, decide whether the datasets of P(i, t)j are stationary
or non-stationary.

The outliers have been identified and corrected. Consequently, the following section
will present the results verifying seasonality in the Sts using t_Stat_DFA to accept or
reject the Ho hypothesis regarding the presence or absence of I(1), associated, respectively,
with seasonality or non-seasonality in any St. The results of the t_Stat_DFA contrasts are
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displayed in Table 5. This diagnosis reflects the outcomes obtained after all 16 P(i, t)j series
passed graphical inspection and demonstrated the absence of AC.

Table 4. Results of t_stat_FIV in 16 datasets of historical series, using the significance level VIF < 10
associated with the maximum value to search for multicollinearity in respective nominal factors.

Variance Inflation Factors (t_stat_VIF)
1961–2011

Included Observations: 51
¯
P(i,t)j Coefficient Variance Uncentered VIF Centered VIF

C 20,915.97 70.89 NA *
Ahome 0.01 6.29 1.30

Bocatoma 0.05 37.89 3.67
Choix 0.02 37.15 3.10

El Carrizo 0.04 22.86 2.12
El Fuerte 0.06 73.86 4.46

Higuera Zaragoza 0.06 22.12 3.41
Huites 0.02 41.50 2.59

Las Estacas 0.07 46.83 2.76
Los Mochis 0.08 36.26 5.72
Mochicahui 0.05 13.56 2.09

Presa Josefa Ortiz 0.07 61.76 3.60
Presa Miguel Hidalgo 0.06 79.19 4.57

Ruiz Cortínez 0.05 28.99 3.28
Topolobampo 0.03 14.63 2.49

Yecorato 0.03 61.16 1.61
* Not apply, due to is one constant that not result of VIF calculation and is used for adjust the VIF results obtained
with the aim to detect possible multicollinearity among predictor variables in the regression model of P(i, t)j.

Table 5. The values obtained from t_stat-DW, ranging from 1.85 to 2.15, and the t_stat-DFA used
to assess seasonality in the 16 historical datasets. I(1) indicated non-seasonality, while its absence
indicated seasonality.

Augmented Dickey–Fuller Test Statistic
Test on Null Hypothesis: Variable Has a Unit Root

Exogenous: Constant, Linear Trend
Lag Length: 0 (Automatic—Based on SIC, maxlag = 10)

Sample: 1961–2011 Included Observations: 51

5% Test Critical Value = −3.5
Number Variable t_stat_DW * t_stat_DFA ** p (Value) ***

1 Ahome 2.02 −6.25 0.01
2 Bocatoma 1.99 −7 0.01
3 Choix 1.95 −6.06 0.01
4 El Carrizo 1.97 −6.27 0.01
5 El Fuerte 2 5.82 0.01
6 Higuera Zaragoza 1.96 −7.005 0.04
7 Huites 1.96 −7.07 0.00
8 Las Estacas 2.12 −5.02 0.00
9 Los Mochis 1.98 −5.93 0.00
10 Mochicahui 2.03 −4.4 0.00
11 Ocoroni 1.83 −6.02 0.00
12 Presa Josefa Ortiz 2.12 −4.94 0.00
13 Presa Miguel Hidalgo 1.97 −6.99 0.00
14 Ruiz Cortínez 1.95 −5.51 0.00
15 Topolobampo 2.01 −6.84 0.00
16 Yecorato 1.92 −6.29 0.02

* t_stat_DW = Durbin–Watson Test, ** t_stat_DFA = Augmented Dickey–Fuller Test, and *** p (value) = Value
Probability with respect to α = 0.05.
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Table 5 shows the results of t_Stat_DFA, obtained by applying this test in its simple
original manifestation and including those that were corrected via STL_Decomposition, and
the St themselves, presented free of any process and in their seasonal form—that is, all
tests were performed considering the first difference of P(i, t)j as a dependent variable.
The Sts showed different positive or negative trends with respect to time, that is, without
a tendency defined by a specific value around which each cloud of values was distributed.
It was considered reasonable in the face of this behavior to perform the I of t_Stat_DFA
without the existence of a slope. The analysis also considered the nature of positive values
of the measurement with values above zero (P(i, t)j > 0) in such a way that they did
not manifest interception with the axis of the direction xi. This behavior in the seasonal
form of the St allowed us to perform t_Stat_DFA analysis in levels without tendency and
without intercept and to omit the contrasts of Stat_DFA in first and second differentiation.
Within this test for contrasts, we aimed to determine the possible existence of an AC in
the information through the use of a Lag = 10 selected automatically in Eview 12.0 to
compensate for this condition.

Before proceeding to accept or reject the Ho hypothesis of seasonality using the contrast
of the results of t_stat_DFA and the critical significance level of 5% equivalent to −3.5, it
was first verified whether the value of t_stat_DW was included among the established
limits of the range R = [1.85, 2.15]. Consequently, ion limits were established. Then, with
all certainty, we affirmed that an AC was not present in the model. It also indicated that
the algorithms applied for the detection of non-seasonality together with the adjustment
criteria had the expected results.

The datasets of 16 Sts are results based on t_stat_DW, t_stat_DFA, and p_values and
they indicate the absence of AC within these models. Parallelly, the t_stat_DFA values,
with respect to the critical level of significance of −3.5, also confirm the rejection of the
Ho hypothesis for seasonality in all 16 St datasets, as all t_stat_DFA values fall within the
rejection zone (beyond the critical level of significance of −3.5). The results suggest that
the St datasets, along with their autoregressive representations, do not display tendencies
towards or equal to I(1), affirming their stochastic behavior with seasonal tendencies.

Additionally, the p_value variations ranging from 0.0001 to 0.004 further support the
verification of seasonality within the St datasets. These contrasts provided high confidence
levels in rejecting the Ho hypothesis, with the errors in rejecting Ho being lower than the
accepted error level of 5%.

With the absence of AC established in the models, the nominal values of the 16 Sts
exhibited consistent behaviors around specific values of P = C and σ2 = K. This assurance
of stochastic, stationary, constant, and stable behaviors within these datasets facilitated
the application of processes and algorithms, culminating in the determination of PT(i, t)j
from 1961 to 2011 within each meteorological station. The spatial variation mentioned,
shown in part A of Figure 6, represents the average sum of the 51 nominee values for each
dataset. The datasets were transformed to the frequency domain to derive /P(r, t)θ/ and
were further analyzed through radial integration to ascertain /P(r)/. The statistical results
obtained before transforming PT(i, t)j into frequency domains and applying similar tools
used for AC and seasonality verification on the 16 Sts are depicted in Table 5, indicating
the rejection of the Ho hypothesis of seasonality and affirming the presence of seasonality
in PT(i, t)j.

The final verification of the seasonality condition in PT(i, t)j ensured that only station-
ary processes were employed throughout the study period, offering certainty regarding the
spatial variability behavior and the gravity zoning effects caused by variable rain power
in the study area, especially during the crucial initial 30 min where the most significant
rainfall magnitudes occur, impacting the internal soil structure.
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Figure 6. Radial potential spectrum depicting 16 historical stationary series of average annual total
precipitation (mm), showcasing the magnitudes of initial impulses associated with moments of peak
rainfall risk within the “Río Fuerte” and “Río Sinaloa” hydrographic and agricultural basins. The red
line represents the random power (P(random)), and indicates the amount of noise present in the
signal for each spectrum. When the red is intense, it corresponds to a high level of noise in the radial
spectrum power.

The results of t-stat_DFA analysis for PT(i, t)j are shown in Table 6 and they reveal that
t_stat_DW = 1.99, which is within the range previously set as R = [1.85, 2.15], indicating the
absence of AC in the model. Similarly, t_stat_DFA = −5.69 compared with NC5% = −3.06
signifies the acceptance zone, suggesting an absence of I(1) in the characteristic equation
for both the original data and its first autoregressive representation. Consequently, PT(i, t)j
was determined to be a stationary stochastic process represented by PT(i, t)j =504.53 mm
and σ2 = 18, 052.72 mm in variance.
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Table 6. Statistic Durvin–Watson test (t_stat_DW) and Augmented Dickey–Fuller test (t_stat_DFA)
showing, respectively, the absence of autocorrelation and the presence of seasonality in the historical
series of total annual average precipitation in the coastal plain and mountain zone of northwestern
Sinaloa, Mexico.

Augmented Dickey–Fuller Unit Root Test on PRECIP
Null Hypothesis: PRECIP Has a Unit Root Exogenous: Constant, Linear Trend

Lag Length: 0 (Automatic—Based on SIC, maxlag = 10)

t-Statistic p (value)
Augmented Dickey—Fuller Test Statistic −5.69 0.01

Test critical values: 1% level −4.15
5% level −3.50
10% level −3.18

Dependent Variable: D(PRECIP)
Method: Least Squares
Sample (adjusted): 1962–2011
Included observations: 50 after adjustments

Variable Coefficient Std. Error t-Statistic Prob.
PRECIP(-1) −0.81 0.14 −5.69 0
C 390.14 73.16 5.33 0
@TREND(“1961”) −0.02 0.88 −0.02 0.98

R-squared 0.40 Mean dependent var. −0.10
Adjusted R-squared 0.38 S.D. dependent var. 115.25
S.E. of regression 90.52 Akaike info criterion 11.90
Sum squared resid 38,517 Schwarz criterion 12.02
Log likelihood −294.68 Hannan–Quinn criteria 11.95
F-statistic 16.21 Durbin–Watson stat 1.99
Prob(F-statistic) 0

Via post-transformation of domains /P(r, t)θ/ using FFT, the real shape of /P(r)/ in
the study area was understood, along with the intensity of the initial impulses representing
the spectral power of rain in the different regions.

The spatial variability of the magnitude of the first impulses, represented in part B of
Figure 6, illustrated a non-random pattern. Figure 6 portrays the graphical representation of
/P(r)/ along with the Neperian logarithms of /P(r, t)θ/ in relation to the spatial frequency
or wavenumber. The behavior of /P(r)/ curves primary displays an exponential fall, with
distinguishable linear relations between frequency ranges and their respective amplitudes.
The exponential decay towards linear trends intensifies with increasing wavenumbers and
potentially correlates with events of lower intensity originating from local sources.

Figure 6 presents a graphical representation of cycles per unit of distance, illustrating
/P(r)/ in terms of frequency and showcasing the magnitude of initial impulses, providing
insights into the spectral power of rain.

These visualizations facilitate the comprehension of average total rainfall intensity
at each meteorological station in relation to the logarithm of [/P(r)/]/4 π and highlight
distinct patterns of /P(r)/ and its exponential decay across different stations. Moreover, the
analysis of first impulses reveal unique magnitudes and frequency variations, with a notable
concentration at 0.06 cycles/mm. Each meteorological station exhibits distinct behaviors in
terms of rainfall intensity and frequency decay. Notably, the mesh of meteorological stations
displays atypical power density behavior, indicating sequential and gradual changes in
intensity related to local phenomena of lower intensity within its coverage area.

Figure 7, part A, illustrates the spatial variability of PT(i, t)j), revealing low accumu-
lated historical rainfall at the Las Estacas meteorological station. This water deficiency
poses a risk of water stress in this agriculturally significant area. However, for the same
zone, despite the low accumulation, the rain intensity during the initial minutes suggests in-
termediate values, indicating potentially less damage to soil compared to “The Agricultural
Heart of Mexico”, which experiences a more substantial absence of rainfall. Additionally,
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the El Carrizo meteorological station exhibits a gradual exponential decrease in rain fre-
quency, which may affect surrounding regions with higher rainfall, potentially diminishing
their influence.
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Figure 7. (A) Spatial variability of accumulated average annual total of precipitation (PT(i, t)j) in
mm: equipotential curves (620–800 mm). (B) Magnitude variations in initial impulses showing severe
moments of soil degradation due to rainfall.

In the northern and central zones, there is noticeable variation in rainfall intensity,
with maximum values ranging from 620 to 800 mm. Conversely, areas near the Sinaloa
river mouth and the Sea of Cortez exhibit minimal rainfall magnitudes, ranging from 240 to
360 mm. While these minimal magnitudes support agricultural activities, they can also lead
to water deficits and impact soil conditions due to high evapotranspiration rates compared
to local water from precipitation and groundwater flow.

This spatial variation in rainfall intensity and its initial impulses /P(r)/ across maps in
Figure 7 are attributed to variable microclimates affecting meteorological factors, generating
convective precipitation typical of warm latitudes. Variability in atmospheric pressure,
temperature, and humidity within these microclimates contributes to the diverse patterns
observed during the initial moments of rainfall, crucial for understanding how rain impacts
the granulometric structure of the soil.

Analysis underscores the varying consequences and severity of rain’s effects on soil
structure, particularly during the initial moments of rainfall, which pose a risk to soil
integrity. Different microclimates across the study area significantly impact the severity of
consequences resulting from rainfall power, particularly in the first 7 to 30 min, crucial for
assessing soil degradation risks.

The risk is more pronounced in mountainous areas and the central zone parallel to the
Sea of Cortez. It highlights the potential for accelerated degradation of agricultural soils
due to water deficit and structural changes caused by rainfall. These severe consequences
are not limited to “The Agricultural Heart of Mexico” and also extend along the coastal
regions, demanding urgent attention for soil restoration, considering the implications of
climate change and globalization demands.

Figure 8 illustrates the severity levels of consequences from the initial minutes of
/P(r)/. Over time, the highest severity levels extend across coastal areas, potentially
accelerating land degradation. Three categories of severity with variable impacts on soil
were identified:
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Figure 8. The classification of severity levels of consequences (dimensionless) on soil, resulting from
the effects of historical accumulated rainfall, situation that could accelerate soil degradation.

Moderate Consequences: these areas demand immediate conservation actions to miti-
gate the impacts, as the consequences will persist and require significant effort for restoration.

Important Consequences: This severity category requires detailed studies to under-
stand the current soil conditions. Immediate actions are needed to stabilize the soil structure
and regulate its properties, considering porosity, water retention capacity, and organic
matter development.

Catastrophic Effects: These areas have sustained severe damage and exploitation
without proper consideration. They are currently unsuitable for sustainable agriculture
and necessitate exhaustive recovery efforts for long-term restoration due to their difficult
recovery state.

The classification of severity helps identify regions that need urgent attention for con-
servation, areas requiring comprehensive studies for stabilization, and those that demand
long-term recovery strategies due to their current unsustainable state.

4. Discussion

The information gathered constitutes a comprehensive database and methodology
that employs a suite of contemporary statistical tools. These tools are applied to generate
crucial insights for the development of management plans aimed at risk mitigation based
on the severity of consequences resulting from rainfall, a pivotal factor influencing soil
structural degradation. This information also holds potential utility for future research
endeavors, territorial planning initiatives, and various governmental or private projects
focused on conserving agricultural soil in the region.

Presently, the region, comprised of the key valleys in northwestern Mexico, lacks
adequate recognition in the international agricultural market. The environmental value of
its goods and services is not duly acknowledged, leading to a disparity in fair representation.
This oversight is particularly concerning given the historical damage inflicted on the soil,
directly impacting productivity across the agricultural cycle from planting to distribution.
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To address these challenges, the region requires immediate optimization. Neglecting
the true cost of agricultural products within the value chain leads to market failure, which
negatively impacts overall costs and subsequently affects the economy and welfare of the
population in Mexico [46]. The adverse effects of climate change on various global agricul-
tural systems have been exacerbated by recent data released by the World Meteorological
Organization (WMO) in the document “State of the Global Climate 2023” on 19 March 2024.
According to this report, 2023 was the warmest year on record, with an average surface
temperature increase of approximately 1.45 ± 0.12 ◦C compared to pre-industrial levels
(1850–1900) [47]. Following this trend observed in 2023, the historical changes in annual
average global surface temperatures reach a total average increase of 1.5 ◦C, surpassing the
predicted 1.2 ◦C estimated for 2025. This further underscores the urgency of addressing
environmental issues in Mexico [48].

Changes in environmental components due to climate change in the region’s valleys,
as indicated by the historical P(i, t)j, may contribute to accelerated soil cultural degrada-
tion. The situation described could jeopardize “The Agricultural Heart of Mexico”, potentially
affecting crop physiological processes, growth, and overall production. To address these
challenges, the region requires immediate optimization of both surface and underground
water resources. Water deficits, aggravated by the arid and semi-arid climate and climatic
instabilities, pose a significant threat to sustainable agriculture [49]. The findings high-
light a water deficit persisting for decades, impacting soil structural arrangements and
emphasizing the need for continued research.

To ensure sustainable agriculture in the region, a shift towards water-efficient crops is
imperative. Studies focusing on crops with a balance in water management, emphasizing
productivity efficiency, are crucial for adapting to the limited water environment [48,49].
The detected changes in the soil structure demand a commitment to repairing the damage
caused and identifying the associated risks and consequences, categorizing them based
on severity.

Quantifying GHGs associated with food production is essential for addressing climate
change impacts and responses to climate change, according at its opportunities and chal-
lenges [50]. The valuation of environmental assets, including soil resources, must become
a priority in sustainable development, attributing fair environmental values based on soil
characteristics. Agricultural sustainability necessitates a restructuring of natural resource
management and parallel routes to international trade openness.

In this era of modern globalization, Mexican agriculture must strive for sustainability.
Achieving this goal involves restructuring natural resource management and adopting
parallel strategies for international trade openness. The impacts of human and natural
activities altering the particle size structure of the soil must be considered in management
plans for the correct and sustainable utilization of natural resources.

Assigning fair environmental values to agricultural assets, with indicators designed
based on land use, GHGs, risk, and current vulnerability, is crucial. This is particularly
relevant in the case of rainfall, a phenomenon sensitive to climate change. The information
generated in this study proves useful in developing indicators that provide a fair value to
agricultural assets, especially in “The Agricultural Heart of Mexico”.

For the case study, rain risk in the soil was utilized as a spectral metrology scheme to
analyze energy variations concerning the historical variations of each St, aiming to deter-
mine the severity levels of damages on the soil. It is important to note that interpretations
can be complex and may potentially lead to contradictory or confusing conclusions due
to the inherent presence of a minimum percentage of randomness in the data that has not
been entirely eliminated. Addressing these issues requires the correction of randomness in
the data series, specifically sporadic impulses or signals inserted irregularly. This study,
focusing on the seasonality of the series, facilitated the observation of real and cyclical
behaviors, enabling meaningful contrasts between signals. This approach is crucial for
understanding the severity of consequences resulting from rainfall and its impact on the
structural integrity of agricultural land crucial for the economy of Mexico.
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Regardless of the specific methodology employed, it is essential to correct and adjust
time series data for seasonality before analysis. Failure to do so can lead to misinterpre-
tations and false spatiotemporal behaviors. To address these challenges, before making
any important decision that depend on the signals with variations in time, three types
of harmonics have to present—original, corrected for calendar effects, and adjusted for
seasonality—to eliminate randomness. Also, a methodological note should accompany
each indicator to mitigate potential confusion among analysts.

Hence, is necessary to foster a statistical and econometric culture, especially in coun-
tries in development like Mexico. The lack of familiarity with econometrics in obtaining
political, social, and economic indicators hinders accurate projections, often leading to
responses influenced by regionalist traditions. Establishing a robust statistical culture is
crucial for effective decision-making and policy formulation in search of development.

This finding emphasizes the need for sustainable agriculture in the agricultural valleys
of Mexico. Assigning appropriate environmental values to agricultural assets is crucial
for achieving agricultural sustainability. This involves restructuring natural resource
management, quantifying damages, and acknowledging the environmental impact of
climate change. Harmonizing statistical and econometric practices is essential to ensure
accurate projections and avoid misinterpretations, contributing to the overall progress of
countries like Mexico.

5. Conclusions

The findings of the study emphasize the pivotal role of precipitation intensity, as
demonstrated using metrics such as /P(r, t)θ/ and /P(r)/, in shaping soil management
practices within the examined area. This underscores the urgent need for collaborative
efforts involving agricultural producers, local communities, academic researchers, and gov-
ernmental institutions at municipal and state levels to effectively address this phenomenon.
Identifying and tackling key factors that impede soil conservation in one of Mexico’s vital
food production regions is paramount. Specifically, strategies should be tailored to mitigate
the impacts of climate change on agricultural soils, with a particular emphasis on alleviating
water stress resulting from both excessive and deficient precipitation.

“Collaborative partnerships with governmental institutions are crucial for the de-
velopment and implementation of effective local environmental policies”; specifically,
collaborations with governmental bodies are pivotal for formulating and executing effec-
tive local environmental policies, where agriculture should not only be seen as a means of
food production but also as an integral part of inclusive climate justice initiatives [51]. Cli-
mate justice has emerged as an effective strategy to address the inequalities and injustices
stemming from climate change impacts on natural resources in various regions, not only in
Mexico but also worldwide.

In the broader context of global sustainable development and amidst the competitive
pressures of contemporary globalization, the enduring agricultural traditions within this
region boasting dual cropping seasons (spring–summer and summer–autumn), and recent
technological advancements, the “Agricultural Heart of Mexico” it has firmly established
itself as a frontrunner in global food production. This underscores the urgent imperative to
confront the challenges stemming from the degradation of agricultural land attributed to
a myriad of environmental, political, economic, and cultural factors that contribute to the
erosion of soil granulometric structure.

Addressing these challenges in regions where the repercussions of risks have proven
to be calamitous is essential to ensure the continuity of agricultural productivity and to
maintain an uninterrupted provision of nutritious food. Such efforts significantly contribute
to global endeavors aimed at mitigating food insecurity in a world with a continuously
expanding population. It is paramount to sustain this level of sustainability and competi-
tiveness, not only for this pivotal agricultural hub but also for numerous other agricultural
regions across Mexico.
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There is a pressing need to revamp agricultural business strategies, shifting the percep-
tion of agriculture from mere food production to a pivotal element within inclusive climate
justice initiatives. This paradigm shift ensures that farmers play a crucial role in bolstering
both national food security and global food supply chains. The emergence of climate justice
as an effective strategy to combat the inequalities and injustices stemming from climate
change impacts in diverse regions further underscores the urgency of these reforms.

Efforts should be focused on conserving agricultural soils and addressing issues
such as saline water intrusion, water stress, desertification, and erosion, particularly
water erosion resulting from the diverse potency of rainfall in the area, which poses
a significant threat to soil fertility and landscape integrity and impacts the economy and
welfare of society.

Given the changing precipitation patterns attributed to climate change, the informa-
tion gleaned from this study is invaluable for designing tailored soil management plans.
These plans should prioritize measures to mitigate the adverse impacts of water erosion,
considering the specific characteristics and associated risks of different soil types in the
region. Unit root tests, autoregressive equations, and multivariate methods were also
employed in the analysis, enhancing the robustness of the findings.

Since a significant portion of soils in the region comprise fine grains, it is advisable
to conduct laboratory soil analyses to obtain indicators that can indirectly assess water
retention based on soil internal granulometry. This process involves examining soil al-
terations at three Atterberg limits (contraction or consistency, plasticity, and liquid) to
establish correlations between these limits and the soil’s capacity for water adsorption [52].
Omitting these activities in the future could result in severe damage to the soil structure,
rendering it unsuitable for agricultural purposes and diminishing the economic benefits
derived from agricultural activities. Therefore, concerted efforts are needed to safeguard
Mexico’s agricultural resources and promote sustainable land management practices for
the benefit of present and future generations [53,54].

The observed soil degradation in the valleys underscores the critical need to imple-
ment effective management practices to preserve this essential resource, as discussed
in [55] (pp. 174–176), emphasizing that preserving soil biodiversity is necessary to main-
tain soil productivity. Additionally, this management is crucial to preserve the deeply
intertwined cultural heritage associated with these invaluable soils. These lands have a rich
agricultural history dating back to pre-Spanish conquest times, during which agriculture
played a fundamental role in meeting the nutritional needs of indigenous communities
in the region. Conserving these soils not only ensures sustainable agricultural practices
but also honors and sustains the cultural legacy for future generations from these first
Mesoamerican indigenous population.
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