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Abstract: Globally, floods are a prevalent type of natural disaster. Simulating floods is a critical
component in the successful implementation of flood management and mitigation strategies within a
river basin or catchment area. Selecting appropriate calibration data to establish a reliable hydrological
model is of great importance for flood simulation. Usually, hydrologists select the number of flood
events used for calibration depending on the catchment size. Currently, there is no numerical index
to help hydrologists quantitatively select flood events for calibrating the hydrological models. The
question is, what is the necessary and sufficient amount (e.g., 10 events) of calibration flood events that
must be selected? This study analyses the spectral characteristics of flood data in Sequences before
model calibration. The absolute best set of calibration data is selected using an entropy-like function
called the information cost function (ICF), which is calculated from the discrete wavelet transform
(DWT) decomposition results. Given that the validation flood events have already been identified,
we presume that the greater the similarity between the calibration dataset and the validation dataset,
the higher the performance of the hydrological model should be after calibration. The calibration
datasets for the Tunxi catchment in southeast China were derived from 21 hourly flood events, and
the calibration datasets were generated by arranging 14 flood events in sequences from 3 to 14 (i.e., a
Sequence of 3 with 12 sets (set 1 = flood events 1, 2, 3; set 2 = flood events 2, 3, 4, . . . , and so on)),
resulting in a total of 12 sequences and 78 sets. With a predetermined validation set of 7 flood events
and the hydrological model chosen as the Hydrologic Engineering Center (HEC–HMS) model, the
absolute best calibration flood set was selected. The best set from the Sequence of 10 (set 4 = S10′) was
found to be the absolute best calibration set of flood events. The potential of the percentile energy
entropy was also analyzed for the best calibration sets, but the ICF was the most consistent index
to reveal the ranking based on similarity with model performance. The proposed ICF index in this
study is helpful for hydrologists to use data efficiently with more hydrological data obtained in the
new era of big data. This study also demonstrates the possibility of improving the effectiveness of
utilizing calibration data, particularly in catchments with limited data.

Keywords: discrete wavelet transform; HEC–HMS model; Tunxi catchment; percentile energy

1. Introduction

Globally, floods are a prevalent type of natural disaster [1,2]. Due to their severe
effects on both people and infrastructure, floods are often regarded as devastating natural
disasters [3–5]. Floods pose a tremendous risk to human life and significantly damage
agricultural production, buildings, and infrastructure. Flooding can have a significant
effect on socioeconomic activities, human health, and death rates, in addition to having a
devastating impact on physical infrastructure [6]. Simulating floods is a critical component
in the successful implementation of flood management and mitigation strategies within
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a river basin or catchment area. Furthermore, flood simulation can serve as a potential
flood early warning system, allowing for the protection of lives and property [7]. Selecting
appropriate historical data to calibrate and establish a reliable hydrological model is of
great importance for flood simulation, as it directly affects the accuracy and reliability of the
simulation results [8,9]. With the advent of the big data age, hydrological data are collected
with higher frequency and resolution by modern telecommunication systems. In addition
to resolving manual and automatic optimization-related calibration challenges which have
been the focus of research efforts over the past two decades, researchers have recently
placed an increasing emphasis on the significance of selecting appropriate flood data for
calibration purposes. This emphasis on carefully selecting flood data is meant to make
calibration procedures reliable and efficient. Generally, hydrologists try to use as many
flood events as possible to select the calibration set of data that can “represent” the different
phenomena observed within the study catchment. While it may appear advantageous
to utilize more flood events, the information quality of the data is more important in
determining how well the model performs after calibration. It should be noted that beyond
a certain level, the accuracy of the parameter estimates will only slightly increase with
the addition of more data [10]. Calibration flood events significantly have an impact on
the determination of the model parameters, particularly those relating to surface runoff
generation and concentration, and can lead to inaccurate estimates of the model parameters
and increased uncertainty [11].

Numerous researchers have concentrated on determining the optimal amount of flood
calibration data and have shown that the number of flood events used for calibration does
not give a better model performance. Depending on the models employed in their research,
different numbers of events are recommended for calibration [12–19]. In the 1960s, Dooge
(1969) [13] proposed a method for calibrating hydrological models based on the analysis of
flood frequency data. Dooge suggested that the appropriate number of flood events for
the calibration should depend on the catchment size and the frequency of extreme events.
Later, important contributions were made by Bruen and Dooge (1992) [14], proposing a
regularization method with additional information by a split sample test of data from
30 catchments. The method was only useful when only a few flood events were available
for analysis. Vieux, Cui, and Gaur (2004) [15] initially used 8 events for calibration, and
the number of events was later augmented to 18 events in their study. An interesting
discovery regarding the stability of calibrated parameters from the initial storm series
of 8 to 18 events was made. They came to the conclusion that parameter values barely
changed as more events were included to increase the number of storms. Reynolds et al.
(2020) [18] investigated whether a few flood-event hydrographs in a tropical basin would
be sufficient to calibrate a bucket-type rainfall-runoff model. They found that when one
event was used for calibration, as opposed to using no discharge data, flood predictions
were already more accurate. The results also revealed that using two to four events for
calibration had a significant positive impact on both the accuracy of the flood predictions
and the reduction in uncertainty, whereas using additional events produced only modest
performance improvements. Gupta and Sorooshian (1985a, 1985b) [20,21] also conducted
a theoretical investigation which demonstrated that data in sequences exhibiting higher
“hydrologic variability” have a greater possibility to yield accurate parameter estimates, and
this is expected to lead to an improvement in the performance of the model after calibration.

However, rather than examining the inherent qualities of the calibration data them-
selves, the conclusions of these studies were all dependent on the features of their case
studies and the hydrological models used. There is increasing attention paid to selecting
the most appropriate calibration flood data that are both representative and of adequate
quantity in order to minimize the challenges associated with calibration and produce a
reliable hydrological model. This challenge will worsen as modern telemetry systems
collect more and more observed data. Currently, there are limited simple yet efficient
techniques for choosing the best calibration dataset based only on the data. The question is,
is it possible to select the appropriate amount of calibration flood events before the actual
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calibration process? Moreover, the performance of the model remains unknown until the
calibration process has been completed. Are there any existing criteria for selecting the
correct calibration flood events? Let us assume that the flood events which will be used
to validate the model have already been determined. By establishing a set of criteria that
can be used to evaluate the similarity between several calibration flood datasets and the
validation dataset, the process can be made simple. It can be assumed that the accuracy
of the calibrated model is directly proportional to the degree of similarity between the
calibration flood dataset and the validation set. In other words, the expected improvement
in the performance of the hydrological model after calibration increases with the similarity
of the calibration flood dataset to the validation set.

The primary objective of this study is to employ wavelet analysis and the informa-
tion cost function (ICF) index to determine the best set of calibration flood events that
exhibit the highest level of similarity to the validation dataset. Furthermore, this study
aims to evaluate whether the hydrological model performance is consistent with the rank-
ing of similarity indicated by the ICF index after calibration, as well as to explore the
potential of another entropy index to determine the relationship between the similarity
and performance of the model. Various hydrology and water resource-related disciplines
have recently shown an increased interest in using wavelet analysis. Particularly in terms
of periodicity, numerous research studies have demonstrated that wavelet analysis is a
useful tool for characterizing and analyzing climatic and hydrological data [22–31], and,
also, the frequency domain variable structures of various climatic or hydrological vari-
ables can be examined and synthesized using wavelet analysis, which is also an effective
method for exploring relationships between them [32–41]. Recent research has shown that
wavelet analysis is an effective technique for identifying irregularly distributed multiscale
characteristics in hydrometeorological data, and, also, the ability to establish quantitative
correlations between various observation series using wavelet-based expressions has been
demonstrated [42–51]. The wavelet transform technique can also be used to improve the
accuracy of machine learning models’ prediction ability of groundwater level and qanat
water flow [52,53].

The discrete wavelet transform (DWT) method and a constructed entropy-like metric
called the information cost function (ICF) were employed in this study. The ICF metric value,
calculated from wavelet analysis results, was used to evaluate the spectral characteristics of
the calibration and validation flood datasets and to determine their degree of similarity. The
observed flow data are employed in this process. The Hydrologic Engineering Center (HEC)
hydrological model performance verified the similarity ranking after model calibration.
From the 21 flood events, 7 flood events were selected for validation, and 14 events were
used for calibration. The 14 flood events were arranged in sequences containing from
3 to 14 flood events (i.e., a sequence of 3 flood events resulting in 12 calibration datasets
(set 1 = flood events 1, 2, 3; set 2 = flood events 2, 3, 4, . . . , and so on). This resulted in
a total of 12 sequences and 78 datasets. The primary objective of the DWT analysis was
to identify the best calibration set from each Sequence, as well as the absolute best set
from all the identified best sets. Furthermore, this study aimed to investigate whether
the degree of similarity indicated by the wavelet analysis and ICF index aligned with the
results obtained from the calibrated model’s performance after utilizing the best datasets
from the sequences. The potential of the percentile energy entropy was also analyzed for
the best calibration sets. The flow chart of this study is shown in Figure 1.
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Figure 1. Flowchart of the study.

2. Study Area and Events

In this study, the Tunxi (TX) catchment, an inland catchment near the southeast of
China’s Anhui province, is used as the study area. The Tunxi catchment is mesoscale,
and the catchment area is around 2754 km2. The mean elevation of this catchment is
about 380 m a.s.l., with the lowest point at 116 m and the highest at 1398 m. The Tunxi
catchment has a subtropical monsoon climate with a mean annual temperature of 17 ◦C.
This catchment is a typical humid region with an annual rainfall of 1600 mm, with 50% of
the precipitation occurring from April to June, which is the period most prone to flooding.
The vegetation in the study area is in good condition, with predominant species including
evergreen coniferous forest, deciduous broad-leaved forest, and mixed forest. The soil type
in the area is primarily characterized as clay loam. The watershed is divided into 9 sub-
basins, with each sub-basin having its respective hydrological station: Yanqian, Chengcun,
Shangxikou, Wucheng, Yixian, Runcun, Tunxi, Xiuning, and Shimen. Tunxi is the outlet
station of the watershed. The division, locations of drainages, and stations of the study
catchment are shown in Figure 2.



Water 2023, 15, 2035 5 of 21Water 2023, 15, x FOR PEER REVIEW 5 of 21 
 

 

 
Figure 2. Location and division of the Tunxi catchment with the hydrological stations in each sub-
basin. 

Based on the 6-year hourly observational data from 2008 to 2013 in the Tunxi 
catchment, 21 flood events were selected for model calibration and validation in this 
study. Of these, 14 flood events that occurred during the first four (4) years, from 2008 to 
2011, were used for model calibration, and 7 flood events during the last two (2) years, 
from 2012 to 2013, were used for model validation. With the 7 flood events selected for 
validation, the remaining 14 flood events were arranged in calibration sequences con-
taining 3 to 14 events. That is, a Sequence of 3 with 12 sets (set 1 contains flood events 1, 2, 
3; set 2 contains flood events 2, 3, 4; …, and so on), a Sequence of 4 with 11 sets, a Se-
quence of 5 with 10 sets, a Sequence of 6 with 9 sets, a Sequence of 7 with 8 sets, a Se-
quence of 8 with 7 sets, a Sequence of 9 with 6 sets, a Sequence of 10 with 5 sets, a Se-
quence of 11 with 4 sets, a Sequence of 12 with 3 sets, a Sequence of 13 with 2 sets, and a 
Sequence of 14 with 1 set, resulting in a total of 12 sequences and 78 sets, as shown in 
Table 1. 
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Based on the 6-year hourly observational data from 2008 to 2013 in the Tunxi catchment,
21 flood events were selected for model calibration and validation in this study. Of these,
14 flood events that occurred during the first four (4) years, from 2008 to 2011, were used for
model calibration, and 7 flood events during the last two (2) years, from 2012 to 2013, were
used for model validation. With the 7 flood events selected for validation, the remaining
14 flood events were arranged in calibration sequences containing 3 to 14 events. That is, a
Sequence of 3 with 12 sets (set 1 contains flood events 1, 2, 3; set 2 contains flood events 2,
3, 4; . . . , and so on), a Sequence of 4 with 11 sets, a Sequence of 5 with 10 sets, a Sequence
of 6 with 9 sets, a Sequence of 7 with 8 sets, a Sequence of 8 with 7 sets, a Sequence of 9
with 6 sets, a Sequence of 10 with 5 sets, a Sequence of 11 with 4 sets, a Sequence of 12 with
3 sets, a Sequence of 13 with 2 sets, and a Sequence of 14 with 1 set, resulting in a total of
12 sequences and 78 sets, as shown in Table 1.
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Table 1. Calibration event arrangement.

Calibration Events

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Set 1

Set 2
Set 3

Set 4
Set 5

Set 6
Set 7

Set 8
Set 9

Set 10
Set 11

Sequence of 3

Set 12
Sequence of 4 a moving window of 4 . . .
Sequence of 5 a moving window of 5 . . .
Sequence of 6 a moving window of 6 . . .
Sequence of 7 a moving window of 7 . . .
Sequence of 8 a moving window of 8 . . .
Sequence of 9 a moving window of 9 . . .
Sequence of 10 a moving window of 10 . . .
Sequence of 11 a moving window of 11 . . .
Sequence of 12 a moving window of 12 . . .
Sequence of 13 a moving window of 13 . . .
Sequence of 14 Set 1

It is important to note that, while selecting validation flood events is crucial to evalu-
ating the calibrated model, this study focuses on examining the influence of the number
and Sequence of the calibration events on the calibration outcomes. Therefore, the set of
validation events remained fixed throughout the investigation. The performance of the
calibrated model using the best sets of calibration sequences was evaluated based on the
results of the validation set of data, which served as the criteria for evaluation. The flood
events in Tunxi catchment used for calibration and validation are shown in Table 2.

Table 2. Flood events in the Tunxi catchment used for model calibration and validation.

Event Start Date Start Time End Date End Time Peak Flow
(m3/s)

Calibration 1 27 May 2008 3:00:00 PM 5 June 2008 12:00:00 AM 1340.0
2 7 June 2008 8:00:00 PM 13 June 2008 4:00:00 AM 5290.0
3 13 June 2008 5:00:00 AM 17 June 2008 12:00:00 AM 1900.0
4 17 June 2008 1:00:00 AM 22 June 2008 12:00:00 AM 1860.0
5 29 July 2008 8:00:00 AM 8 August 2008 12:00:00 AM 1200.0
6 19 April 2009 8:00:00 AM 29 April 2009 12:00:00 AM 585.0
7 26 July 2009 12:00:00 PM 5 August 2009 12:00:00 PM 1300.0
8 10 April 2010 8:00:00 PM 25 April 2010 12:00:00 AM 1123.3
9 16 May 2010 8:00:00 AM 27 May 2010 8:00:00 AM 1970.0
10 6 July 2010 8:00:00 AM 13 June 2010 8:00:00 PM 1870.0
11 13 July 2010 11:00:00 PM 28 June 2010 8:00:00 AM 1700.0
12 10 May 2011 10:00:00 PM 19 May 2011 3:00:00 AM 475.8
13 9 June 2011 4:00:00 PM 14 June 2011 4:00:00 AM 3400.0
14 14 June 2011 6:00:00 AM 25 June 2011 5:00:00 PM 5230.0
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Table 2. Cont.

Event Start Date Start Time End Date End Time Peak Flow
(m3/s)

Validation 15 27 February
2012 12:00:00 PM 15 March 2012 6:00:00 AM 1040.0

16 21 April 2012 10:00:00 PM 28 April 2012 12:00:00 PM 3170.0
17 22 June 2012 2:00:00 AM 8 July 2012 8:00:00 PM 1200.0
18 6 August 2012 7:00:00 PM 14 August 2012 3:00:00 AM 2641.7
19 28 April 2013 12:00:00 AM 4 May 2013 11:00:00 PM 2228.3
20 5 June 2013 1:00:00 PM 14 June 2013 5:00:00 AM 3610.0
21 24 June 2013 7:00:00 AM 4 July 2013 7:00:00 AM 4214.6

3. Methodology
3.1. Wavelet Analysis and the Information Cost Function (ICF)

Wavelet analysis is a mathematical technique used to simultaneously analyze signals
or data in both the time and frequency domains [54,55]. It decomposes a signal into small
wavelets, which are well-localized waveforms scaled and translated across the time and
frequency domains. Compared to other signal analysis techniques such as Fourier analysis,
wavelet analysis offers several advantages, such as the ability to accurately deconstruct
and reconstruct finite, nonstationary signals and accurately represent functions with sharp
peaks and discontinuities [56]. Also, it can capture transient events or sudden changes in a
signal more accurately, whereas Fourier analysis can only provide information about the
overall frequency content of a signal.

Continuous Wavelet Transform (CWT) and Discrete Wavelet Transform (DWT) are the
two main types of wavelet transforms. The main difference between Continuous Wavelet
Transform (CWT) and Discrete Wavelet Transform (DWT) is in the way they utilize wavelets.
CWT applies wavelets of varying scales and locations, resulting in continuous variations in
scale parameters and the translation of the wavelets. Unlike CWT, which uses a continuous
set of wavelets, DWT employs a finite set of wavelets that are sampled discretely. The
most commonly used form of DWT has scales and locations arranged in a dyad structure,
meaning that the scales and locations are powers of two. More detailed information on the
methodology of the CWT and DWT wavelet transforms is found in Meyer (1993) [57]. DWT
is simpler and easier to use than CWT. The algorithm provided by Mallat is an efficient
approach for implementing the Discrete Wavelet Transform (DWT) [58]. The original signal
f is decomposed into a sequence of approximations and details by the algorithm using
several successive filtering steps shown below:

S0
n = f [n], n ∈ N (1)

Sj
k = ∑L−1

n=0 h[n]Sj−1
n+2k, j = 1, 2, . . . J (2)

Cj
k = ∑L−1

n=0 g[n]Sj−1
n+2k, j = 1, 2, . . . J, (3)

where f [n] is the original signal; N denotes the sum of the data points in the signal f ; Sj
k

and Cj
k denote the approximation and detail coefficients, respectively; the low-pass filter

H and the high-pass filter G impulse responses are denoted as h[n] and g[n], respectively;
J denotes the largest scale that can be achieved by the Mallat decomposition algorithm,
where J ≤ [log2(N − L) + 1]; and L denotes the number of impulse responses in h[n] and
g[n] not equal to zero [59]. The initial step of the Mallat decomposition algorithm involves
decomposing the original signal f into an approximation and its corresponding detail. This
is achieved when the signal is convolved with the decomposition low-pass filter H to obtain
the approximation coefficients Sj

k and the high-pass filter G to obtain the detail coefficients



Water 2023, 15, 2035 8 of 21

Cj
k. This procedure is repeated iteratively by breaking down each successive approximation,

resulting in the original signal decomposing into numerous lower-resolution components.
The details represent the low-scale, high-frequency components of the signal, while the
approximations represent the high-scale, low-frequency components. The number of
approximation and detail coefficients at each level depends on the length of the original
signal f and the lengths of the h[n] and g[n] impulse responses.

Wavelets and the information cost function are related in that wavelets can be used to
analyze the frequency components of a signal, which can, in turn, be used to estimate the
information content or complexity of the signal. After decomposing the signal into wavelet
coefficients Cj

k and Sj
k , the total Ej = ∑

k
Cj2

k (or Ej = ∑
k

Sj2
k ) provides the approximate (or

detailed) energy at level j of the signal f. If Etot = ∑
j

Ej represents the total energy, then, at

level j, the resulting percentile energy is as follows:

Pj =
Ej

Etot
(4)

Each level j is linked with a frequency band, ∆F, which is determined as below:

2−j−1Fs ≤ ∆F ≤ 2−jFs , (5)

where Fs represents the frequency of the samples, and j = 1,2, . . . , J.
The energy probability distribution for each level j is provided by the Sequence Pj.

The Shannon entropy of this distribution is a measure of the order within the system, and
this is the information cost function [60]:

ICF = −∑
j

Pj InPj, (6)

where the sum is considered to be zero for any level j with Pj = 0. This entropy-like function,
ICF, which is easy to calculate, provides a straightforward way to estimate the level of
disorder in a system [61]. This study utilized the ICF as a metric for evaluating the similarity
between the calibration and validation datasets in the frequency domain.

3.2. The HEC–HMS Model

The hydrological model used in this study is the HEC–HMS (Hydrologic Engineering
Center’s Hydrologic Modeling System) model (Version 4.7.1), which was developed by
the United States Army Corps of Engineers and is designed to simulate many hydrolog-
ical processes of dendritic watershed systems, such as investigating urban flooding, the
frequency of flooding, the planning of flood warning systems, the capacity of reservoir
spillways, stream restoration, etc. [62].

The structure of the HEC–HMS model generally includes the following components:

• Watershed delineation: The first step in creating an HEC–HMS model is to delineate
the boundaries of the watershed;

• Meteorological data: HEC–HMS requires rainfall data as input. These data can be
obtained from various sources, including weather stations, radar, and satellite data;

• Hydrologic data: HEC–HMS also requires hydrologic data such as streamflow data
and soil properties;

• Model parameters: The HEC–HMS model requires input parameters such as infiltra-
tion parameters, routing coefficients, and curve numbers. These parameters can be
obtained from literature or calibrated using observed data;

• Hydrologic models: HEC–HMS offers a variety of hydrologic models to simulate
the rainfall-runoff process, including the SCS (Soil Conservation Service) Curve
Number method, the Green–Ampt infiltration method, and the Muskingum–Cunge
routing method;
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• Simulation and analysis: After input data and model parameters are provided, the
HEC–HMS model simulates the rainfall-runoff process and provides output data such
as hydrographs and flood volumes.

Overall, the HEC–HMS model provides a comprehensive tool for studying the hy-
drologic response of a watershed to rainfall events and for planning and managing water
resources [62]. The studied watershed was delineated into nine sub-basins, as shown
in Figure 3. Channel Reach represents a segment of the stream or river with similar or
varying hydrologic conditions between two streamgages. The transformation of excess
precipitation into direct surface runoff was modeled using the SCS (Soil Conservation
Service) unit hydrograph method. More detailed information on the SCS method can be
found in Ara and Zakwan 2018 [63]. For model infiltration loss, the initial and constant
method was used. For model baseflow, the exponential recession model was employed.
The Muskingum routing model was used for river routing. More detailed information
on the Muskingum routing model can be found in Niazkar and Zakwan (2022) [64]. In
normal cases, a subjective adjustment of parameters is employed to calibrate the model
by the trial-and-error method. Even though the model can be calibrated manually, the
HEC–HMS also provides an automatic built-in optimization procedure that can be used
to verify the appropriateness and feasibility of the parameter values and their ranges for
their intended use in the model. The objective function in this study is the Nash–Sutcliffe
efficiency coefficient (NSE) [65].
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4. Results
4.1. Flow Similarity Identified by ICF

The Information Cost Function (ICF) values were calculated to investigate the relation-
ship between the spectrum similarity of the calibration flood datasets and the validation set.
This study calculated the ICF value by applying the Discrete Wavelet Transform (DWT) to
detailed frequency domain subdivisions. Specifically, the calibration flood datasets and the
validation set were decomposed into 6 levels of detail (d1–d6) and approximation (a1–a6),
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using the simple Daubechies wavelet for decomposition with an order of 10 (db10). More
detailed information on the Daubechies wavelets is found in Daubechies (1990) [54]. The
ICF value of each calibration set, which contained different numbers of flood events in
each Sequence, was calculated to identify the best calibration sets, with the assumption
that a closer ICF value of the calibration flood dataset to the validation set ICF value will
produce an improved hydrological model performance after calibration. The calibration
flood datasets of each of the 12 Sequences (Sequences of 3 to 14) are plotted against the
ICF values in Figure 4. It can be seen that the best datasets in each subfigure (a–l) are
set 6, set 4, set 7, set 4, set 7, set 4, set 5, set 4, set 3, set 2, set 1, and set 1, respectively,
for the calibration sequences containing 3 to 14 flood events. Since there were 14 flood
events for calibration, the Sequence of 14 has only 1 dataset. In the following analyses, we
used the best calibration set from each Sequence to represent the Sequences with different
numbers of flood events; that is, S3′ referred to the best calibration set from Sequence of 3,
S4′ meant the best set from Sequence of 4, and so on, up to S14′ meant the best set from
Sequence of 14.
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According to the assumption, the closest ICF value of the calibration flood datasets to
the validation set ICF value results in the most-improved hydrological model performance
after calibration. We investigated the absolute best calibration set from all the best sets from
each Sequence. The ICF values of all the best calibration datasets are plotted against the
validation ICF in Figure 5. For all 12 best calibration sets from the different sequences, the
ICF value of S10’ was the closest to the validation ICF, followed by S4′, S5′, S6′, S3′, S8′, S7′,
S9′, S11′, S12′, S13′, and S14′.
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4.2. Model Performances of the Best Calibration Datasets

Calibration runs were conducted for the 12 best calibration datasets from each Se-
quence with various numbers of flood events. For each set, manual calibration was per-
formed with the help of the optimization trail runs to help obtain the best fit between the
observed and simulated flood events. All the parameters calibrated using the 12 calibration
sets were then applied to the validation dataset, which contained 7 flood events to evaluate
their performance. In addition to the Nash–Sutcliffe Efficiency (NSE), various statistical
measures were used to evaluate the performance of the model based on the validation
results. These measures included the percent relative error of peak flow and runoff volume,
the root-mean-square error, the mean bias error, and the correlation coefficient. However,
due to the consistent results obtained from all the evaluation metrics, the NSE was selected
as the only indicator for analyzing the model’s performance and, hence, is the only measure
presented in this paper. The calibration and validation results of the model using the best
calibration dataset from each Sequence are presented in a boxplot in Figure 6 that compares
the Nash–Sutcliffe Efficiency (NSE) Coefficient Statistics. The height represents the range
of NSEs, the top cap represents the maximum NSE value, the bottom cap represents the
minimum NSE value, the green and purple boxes represent the 25th to 75th percentile, and
the line between the boxes represents the median NSE value.
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In general, it can be observed, from the comparison of the model performances of the
best calibration datasets from the sequences shown in Figure 6a,b, that the validation results
exhibited slightly lower performance than the calibration results. Mostly, well-calibrated
models have better NSE values than validation. The S10′ calibration set performed best,
with the highest maximum NSE value and a better range of NSE values in both calibration
and validation, followed by the S4′, S5′, S6′, S3′, S8′, S7′, S9′, S11′, S12′, S13′, and S14′

datasets. The S7′ and S9′ datasets in both calibration and validation did not have higher
maximum NSE values compared to the S11′, S12′, S13′, and S14′ datasets, but their NSE
ranges were better. In both calibration and verification stages of the sequences, some flood
events were underestimated, as not all the flood events had NSE values ≥ 0.70, especially
for floods with high peaks. This may be due to the runoff generation mechanism, since the
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model assumes complete saturation of the unsaturated soil layer before the overland flow
generation and can only account for the portion near the peak. This assumption might not
be accurate for the steep ground topography of the study basin, especially when heavy
rainstorms happen. The topographic features influence the runoff generation mechanism
and the convergence process of the basin runoff [66].

To further verify the model performance, empirical cumulative distribution functions
(CDFs) were constructed for the NSE statistic results to represent the performance of the
model in both calibration and validation stages, as shown in Figure 7. Let us suppose that a
calibration flood dataset from the sequences is randomly selected. In that case, the CDF of
each dataset represents the probability of obtaining an NSE value that is less than or equal
to a specific value. In Figure 7a,b, it can be seen that CDFs became increasingly steep and
narrow as the Sequence progressed through S10′, S4′, S5′, S6′, S3′, S8′, S7′, S9′, S11′, S12′,
S13′, and S14′. An increasing steepness in the CDFs indicates that the model performance
was less sensitive to the selection of Sequences with varying amounts of flood events [67],
which means that the S14′ set could yield more stable model performances than the other
sequences, in descending order according to the CDF list order above (S14′ to S10′). The
CDF also indicates how fast the Sequence can reach the best NSE. The CDF also verified that
the S7′ and S9′ sets did not have higher maximum NSE values compared to the S11′, S12′,
S13′, and S14′ sets, but their NSE ranges were better. Similar results can be found in Table 3,
showing the NSE statistics results of the best calibration datasets. The validation results of
the S11′, S12′, S13′, and S14′ datasets had higher maximum NSE values, even though the
S7′ and S9′ datasets produced an improved model performance after calibration.
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Table 3. Nash–Sutcliffe Efficiency Coefficient Statistics (NSE) of the validation results when compar-
ing the average model performances produced by the best calibration datasets.

Validation Nash–Sutcliffe Efficiency Coefficient Statistics

Best Calibration Set Average Value Maximum Value
(Max)

Minimum Value
(Min)

S3′ 0.69 0.85 0.33

S4′ 0.75 0.90 0.61

S5′ 0.73 0.89 0.44

S6′ 0.70 0.88 0.49

S7′ 0.64 0.74 0.33

S8′ 0.66 0.80 0.32

S9′ 0.64 0.73 0.33

S10′ 0.79 0.91 0.67

S11′ 0.54 0.80 0.22

S12′ 0.51 0.80 0.21

S13′ 0.49 0.79 0.22

S14′ 0.47 0.79 0.20

4.3. Consistency of the ICF Selection with the Model Performance

The index of Information Cost Function (ICF) was evaluated and investigated in
choosing the best set of calibration flood events in different sequences for flood simulation.
Since the ICF is an entropy-like function, it is based on the decomposition result of DWT.
The ICF value of each Sequence was calculated to determine the degree of similarity
between the calibration and validation sets. The validation ICF was chosen as the threshold
to select the best calibration set from each Sequence. Based on the ICF values, the best set
from the Sequence of 10 (set 4 = S10′) was found to be the absolute best one, followed by
the best from Sequence of 4 (set 4 = S4′), the best from Sequence of 5 (set 7 = S5′), the best
from Sequence of 6 (set 4 = S6′), the best from Sequence of 3 (set 6 = S3′), the best from
Sequence of 8 (set 4 = S8′), the best from Sequence of 7 (set 7 = S7′), the best from Sequence
of 9 (set 5 = S9′), the best from Sequence of 11 (set 3 = S11′), the best from Sequence of
12 (set 2 = S12′), the best from Sequence of 13 (set 1 = S13′), and the best from Sequence
of 14 (set 1 = S14′). The HEC–HMS model was calibrated and validated with the best
calibration datasets to verify these analyses. Figure 8 shows the ICF values of the best
calibration dataset from each Sequence versus the average model performances of the
validation results.

The calibration results of the HEC–HMS model demonstrate the importance of select-
ing calibration flood events with the most appropriate amount of calibration data. The
S10′ calibration dataset with the closest ICF value to the validation dataset resulted in the
highest model performance. The S14′ calibration dataset with the most distant ICF value
resulted in the poorest model performance. These are good findings, which imply that, by
simply checking the ICF values of sets of data, we can decide which one to use to calibrate
the model.
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4.4. The Potential of Other Entropy-Based Indices

The percentile energy can also be a valuable metric to evaluate the spectral similarity
between the calibration flood datasets and validation sets. The percentile energy mea-
sure provides information on energy distribution across different levels of the wavelet
decomposition. It indicates the proportion of energy distributed at each decomposition
level in the corresponding frequency domains (Equation (5)). After the Discrete Wavelet
Transform (DWT) decomposition, the details, which contain high-frequency information,
are considered to be more important than approximations because they capture the relish
and more intricate characteristics of a signal. On the other hand, approximations contain
low-frequency information that fundamentally indicates a signal identity. This study only
presents results of the percentile energy of the details, since the approximation is a more
abstract representation of the original signal as the wavelet decomposition progresses.
In Figure 9, the average model performances are plotted against the percentile energy
of the details for each of the decomposing levels of the best calibration flood datasets of
the sequences.

It can be seen that the ranking of the best calibration sets based on the similarity
of the percentile energy was not consistent with the order of the model performance
on the decomposition levels of details (d1–d6), except for the S10′ and the S14′ datasets
in decomposition levels 5 and 6 (Figure 9e–f). The S10′ dataset with the best model
performance was closest to the percentile energy of details of the validation set and the S14′

dataset with the poorest model performance was most distant from the percentile energy
of details of the validation set in levels 5 and 6, respectively.
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5. Discussion

The HEC–HMS model performance verifies the Information Cost Function (ICF)
analysis, and these results reveal that the quality of the information in the calibration
flood data, instead of the quantity, is more important in determining how well the model
performs after calibration. As the ICF of each calibration dataset is calculated from the
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Discrete Wavelet Transform (DWT) and compared with the validation sets’ ICF to identify
the similarities, the relationship between the model performances and ICF analyses justifies
that a simple index such as ICF can help ease and improve calibration work. The potential
of the percentile energy entropy index was also analyzed for the best calibration sets. The
percentile energy results are not consistent, as the ICF index for all the best calibration
sets in showing that model performance improved as similarity increased, especially in
most decomposition levels which represented particular frequency domain ranges. Based
on the results, the ICF index proves to be the most appropriate indicator for evaluating
the similarity between the calibration flood datasets and the validation set. According to
this perspective, the information in the “good” S10′ dataset is of higher quality than the
information in the other best Sequences with different numbers of flood events. One can
deduce that, if the calibration set contains higher “quality of information”, then there is a
certain level of similarity between the calibration flood dataset and the validation set, given
that the validation results of the calibrated models using seven flood events were chosen as
the evaluation criteria.

More work is needed to establish the wavelet transform as an effective tool for hy-
drograph analysis. Allowing hydrologists to evaluate the “similarity” or the information
of all the potential calibration flood datasets in specific sequences would greatly reduce
the amount of calibration work needed to find the most suitable dataset. Except in cir-
cumstances where there is a poor performance with extremely high peak flood events,
it is difficult to directly assess the quality of the information in the calibration data or to
visually compare the similarity between the calibration flood datasets and the validation
set. Therefore, it is essential to use an appropriate index to evaluate the similarity between
the calibration flood datasets and the validation set. In research carried out by Liu and
Han (2010) [68], they applied “the flow-duration curve,” “the Fourier transform,” and
“the wavelet analysis and ICF” indices to analyze the similarities of the validation and the
calibration sets and concluded that wavelet analysis with ICF was the most appropriate
index. It should be noted that the ICF presented in this paper was calculated based on the
detail coefficients, as the ICF from the approximations did not show much difference.

It should be mentioned here that other Daubechies wavelets (db2, db8, etc.) of a
different order were also chosen for the decomposition. There was little difference in
similarities found between the calibration flood dataset and validation set. Also, the
wavelet and ICF index were implemented for the observed rainfall data and the observed
flow in this research, but the observed rainfall data results were inconsistence because there
was no rain during some periods of the flood events. Nevertheless, it should be noted that
this might only be for the Tunxi catchment, so it might be interesting to investigate whether
rainfall data could be useful for other study areas and case studies with varying calibration
sequence designs.

6. Conclusions

Selecting calibration flood events is an essential task for hydrologists in the simulation
of flood events using hydrological models. Although numerous studies have been con-
ducted on flood simulation, there is a lack of information on how to select a suitable set of
historical floods within a given study area for calibrating hydrologic models. The usual rule
of choosing the number of flood events used for calibration depending on the catchment
size is inadequate for catchments with different climatic or hydrological characteristics.
Over time, hydrologists have gradually recognized that the quality of the information in
the calibration flood dataset, instead of the quantity, is the most crucial factor influencing
the performance of a hydrological model after calibration. The importance of selecting
a sufficient amount of calibration data with a correct Sequence is increasing as telemetry
systems continue to gather observed data with high resolution. This study has proposed a
practical approach to selecting calibration data when using hydrological models for flood
simulation. As the validation flood events have already been determined, it can be assumed
that the accuracy of the calibrated model is directly proportional to the degree of similarity
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between the calibration flood dataset and the validation set. The wavelet analysis and
Information Cost Function (ICF) index were applied to describe the similarities between
the calibration and validation sets of data. For the analysis of selecting the absolute best set
of calibration flood data, it is impressive to note that the best dataset from the Sequence of
10 (set 4 = S10′) in this study performed better than the other best sets from the calibration
data Sequence with more and fewer flood events. This result corroborates the notion that
the quality of the information in the calibration data is more important than the quantity.
The potential of the percentile energy entropy was also analyzed for the best calibration
sets, but the ICF was the most consistent index to reveal the ranking based on similarity
with model performance. This study also demonstrated the possibility of improving the
effectiveness of utilizing calibration data, particularly in catchments with limited data.

The findings presented in this paper are context-specific and depend on the specifics
of the case study, including the catchment, the calibration sequence design, and the hy-
drological model employed. One potential limitation of this study is the predetermined
set of validation flood events used. An important consideration in assessing how well a
calibrated model performs is the choice of validation flood events. The practical selection
of the validation flood events involves a combination of factors, including the magnitude
and frequency of flood events, the availability and quality of streamflow data, and the
representativeness of flood events across a range of hydrologic conditions in the study
area. These factors can be appropriately evaluated and decided upon before selecting the
calibration flood event set of data in standard cases. Therefore, we hope this study will
encourage further research to investigate the index’s effectiveness in diverse catchment
conditions and with various flood events and hydrological models, particularly spatially
distributed models with more complex input requirements.
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