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Abstract: Marimo is a type of microalgal-bacterial granular sludge (MBGS) that exists in natural water
bodies. For the first time, this paper explored the feasibility of marimo in real wastewater effluent
polishing, focusing on nutrient removal as compared with MBGS. The results showed that the color
of marimo gradually darkened during a 21-day experiment, and the chlorophyll content increased
significantly. Although marimo and MBGS showed fairly similar removal performance in terms of
NO3~-N and TN, marimo exhibited better phosphate removal as compared to MBGS. Marimo and
MBGS contained different algae but the same bacterial phylum of Proteobacteria, including denitrifiers.
In addition, marimo had a higher relative abundance of nitrite reductase than MBGS, suggesting that
the denitrification process might also happen in addition to assimilation. This study is expected to
initiate the application of marimo for wastewater effluent polishing and reclamation, shedding light
on nature-based wastewater self-purification technology in the era of carbon neutrality.

Keywords: marimo; microalgal-bacterial granular sludge; algae-bacteria symbiosis; wastewater
reclamation; metagenomics; nitrite reductase

1. Introduction

Recently, the world has been facing various water crises, of which the shortage of
water resources and water pollution are the most prominent [1,2]. On the one hand, the
global demand for water resources is constantly expanding, and a growing number of cities
are facing water scarcity issues. According to statistics, the population of cities facing water
scarcity worldwide will reach 2.065 billion by 2050 [3-5]. On the other hand, wastewater
from cities, agriculture, medicine, and industries is rich in nitrogen and phosphorus, which
are the main factors leading to the eutrophication of water bodies [6,7]. The huge discharge
volume of effluent from wastewater treatment plants and unreasonable discharge standards
are also intensifying the water crisis due to water pollution. Therefore, reclaimed water has
been developed as a new water resource. In 2019, China’s unconventional water resources
reached 9 billion cubic meters, of which over 80% came from reclaimed water [8]. Reclaimed
water can simply be derived from the advanced treatment of effluent from wastewater
treatment plants, which can not only save water resources but also alleviate pollution of
the water environment.

However, there are some difficulties in developing environment-sustainable wastew-
ater reuse technology. Advanced wastewater treatment technology often has complex
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processes, which makes its management more cumbersome, and maintenance becomes
more expensive [9,10]. In addition, the issues of energy consumption and the accompanying
greenhouse gas emissions during the treatment process cannot be ignored [11-13]. Some
common biological methods for treating wastewater will generate greenhouse gases, which
is a major challenge faced by current wastewater treatment technology [14]. Therefore, it is
crucial to seek for a simple and economically sustainable method for effluent polishing.

The main purpose of advanced wastewater treatment is to remove nitrogen and phos-
phorus [15]. As an aggregate formed by microalgae and bacteria, the symbiotic relationship
between them provides a guarantee for wastewater treatment [16,17]. Microalgal-bacterial
granular sludge (MBGS) has been developed for municipal wastewater treatment with
greater environmental and economic sustainability as compared to conventional activated
sludge [18,19]. However, it has not been reported for effluent polishing. Aegagropila linnaei,
along with its bacteria in the phycosphere, is a kind of natural MBGS that exists in natural
water bodies, and it is also commonly called “marimo” [20]. Marimo can achieve self-
sustaining growth by absorbing external nutrients, thereby achieving the goal of purifying
water quality [20]. Additionally, it possesses a special type of zoospore, whose presence
helps it maintain an aggregated form while absorbing nutrients [21]. Meanwhile, microal-
gae usually produce lipids, which can potentially serve as biofuels [22,23]. Considering
marimo can grow in lake water with low nutrient concentrations, it can be deduced that
it may also adapt well to wastewater effluent. It seems that marimo has the advantages
of low energy consumption and environmental sustainability when applied to advanced
wastewater treatment. However, until now, this kind of nature-based technology has not
been reported. Therefore, the development of this low-cost and natural-based technology
is particularly crucial.

Consequently, this paper investigated the granular characteristics, removal perfor-
mance, and changes in the microbial structure and function of marimo and MBGS for
effluent polishing of wastewater treatment plants. This study is expected to provide a
theoretical basis for the application of natural and artificial microalgal-bacterial granular
sludge in effluent polishing and wastewater reclamation. In addition, this study intends
to shed light on nature-based wastewater self-purification technology under the era of
carbon neutrality.

2. Materials and Methods
2.1. Wastewater Effluent

The wastewater effluent used in this experiment came from the effluent of the Chongx-
ian Wastewater Treatment Plant, Hangzhou, Zhejiang. The effluent mainly contained
7.3 mg/L total nitrogen (TN) mainly as nitrate nitrogen (NO3;~-N), 0.04 mg/L total phos-
phorus (TP), and 12.0 mg/L chemical oxygen demand (COD). The pH of the effluent was
approximately 7.2.

2.2. Experimental Setup

The marimo and MBGS used in this experiment were derived from the internet and
our previous experiment [24], respectively. The granule sizes of marimo and MBGS were
about 7.1 and 7.0 mm, respectively. The 5-min sludge volume index (SVIs) values of marimo
and MBGS were about 20.9 and 41.8 mL/g, respectively, and the initial volatile suspended
solids (VSS) of marimo and MBGS were about 3.9 and 2.5 g/L, respectively. The hydraulic
retention time (HRT) was set as 4 h. The experimental device was a continuous flow system
shown in Figure 1, with an effective volume of 340 mL and a water depth of 5 cm for the
runway pool. The influent flowed into the lower inlet of the device and discharged from
the 5 cm high outlet. The experiment was conducted under a fixed artificial light source for
12 h/12 h of light/dark cycles, with an indoor temperature of 20 °C and a light intensity of
180 umol/m?/s. The effluent samples were collected from one light cycle and one dark
cycle per day and passed through a 0.45 pm filter for further analysis. At the beginning
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and end of the experiment, granule samples were collected for physicochemical analysis
and metagenomics sequencing.
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Figure 1. Experiment setup for marimo (a,b) and MBGS (c,d) for wastewater effluent polishing.

2.3. Analytical Methods

The NO;™-N, TN, TP, COD, and SVI5 were determined by standard methods [25]. The
content of chlorophyll (Chl) was determined by acetone extraction [26]. The pH values
were measured using the STARTER3100 pH meter (Ohaus, Parsippany, NJ, USA), and the
dissolved oxygen (DO) concentration was measured using the YSI5100 DO meter (Yellow
Springs, Ohio, USA). The light intensity and temperature were measured using a light
quantum meter (TES-1339P, Taibei, Taiwan) and a thermometer (MITIR TP-677, Wenzhou,
China), respectively. Microalgae were examined using optical microscopy (RX50, SOPTOP,
Zhejiang, China). The total genome DNA was extracted by using a FastDNA Spin Kit
for Soil (MP Biomedicals, Santa Ana, CA, USA) for metagenomic sequencing, and the
metabolic pathways were analyzed using the KEGG. The original sequence data can be
obtained in NCBI with login no.PRINA967691.

2.4. Statistical Analysis

Data were statistically analyzed using SPSS software (IBM SPSS Statistics 27), and the
results were tested for statistical differences using one-way analysis of variance (ANOVA).
The difference analysis results are statistically significant at p < 0.01.
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3. Results and Discussion
3.1. Granular Characteristics and Changes in Chl Content

The granules of marimo and MBGS were recorded at the beginning and end of the
experiment, respectively. As shown in Figure 2, compared to MBGS, the granule color
of marimo significantly darkened as the experiment progressed, transitioning from light
green to dark green, which was ascribed to the significant increase in its Chl content
(Figure 3b). As can be observed in Figure 2c, marimo had a basic structural unit consisting
of filamentous cells wrapped in a sheath, resembling a straw bag or teardrop [21]. The main
microorganisms were eukaryotic algae of Chlorophyta. In MBGS, there were multitudes of
Cyanobacteria and a small amount of green algae (Figure 2d). As shown in Figure 3a, the
granule sizes of marimo and MBGS increased by 0.5 mm and 0.8 mm, respectively. This
suggested that marimo had a more compact structure than MBGS during the cultivation
process [20]. In addition, the SVI5 of marimo decreased by 10.3% (Figure 3b), indicating an
improvement in its settling performance. In the experiment, it was intuitively observed that
MBGS continuously floated up during the experiment, and until the end of the experiment,
most granules of MBGS were in a floating state, while the granules of marimo always
remained precipitated at the bottom of the reactor. The main factor causing MBGS to float
was the generation of dissolved oxygen [27], with the growth of SVI5, while marimo’s
excellent settling performance could be ascribed to its compact structure. Its excellent
settling performance will be an advantage of the application of marimo in wastewater
treatment, especially in continuous flow system [28].

Marimo MBGS

Figure 2. The morphology and micro images of marimo (a,c) and MBGS (b,d) at the beginning and
end of the experiment.

Usually, the removal performance of microalgae is closely related to the intensity
of its photosynthesis. As shown in Figure 3b, due to the presence of a large amount of
Cyanobacteria in MBGS, which only contained chlorophyll-a (Chl-a) [29], the content of Chl-a
in MBGS was much higher than that in marimo during the initial stage of the experiment.
On the contrary, the main algae in marimo were eukaryotic algae of Chlorophyta, which
resulted in a higher chlorophyll-b (Chl-b) content than MBGS in the early stage of the
experiment. At the end of the experiment, both of Chl-a and Chl-b contents in marimo and
MBGS increased (Figure 3b), suggesting the increase in photosynthesis efficiency.
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Figure 3. The granule size (a), SVI5 value and Chl content (b) of marimo and MBGS at the beginning
and end of the experiment.

3.2. Reactor Performance

An intuitive comparison of the removal rates between marimo and MBGS was con-
ducted. As shown in Figure 4a,b, there were significant differences in the removal rates
of NO37-N and TN between marimo and MBGS during the day (ANOVA, p < 0.01). In
addition, it could be seen that the concentration changes in NO3~-N and TN were quite
similar. The concentrations of NO3™-IN and TN in the treated wastewater had decreased by
an average of less than 2 mg/L (Figure 5a,b). The nitrogen component of the effluent of the
wastewater plant was mainly NO3;~-N, and the removal of NO3 ~-N usually depends on micro-
bial denitrification as well as assimilation [30,31]. Usually, the optimal C/N ratio for aerobic
denitrification is around 7.5; it is not conducive to NO3 ~-N removal in an environment with a
low C/N ratio [32,33]. In this study, the C/N ratio in the wastewater used in the experiment
was around 0.62. In addition, the high DO environment might also hinder the reduction of
nitrate nitrogen. Usually, DO values below 0.7 £ 0.1 mg/L is necessary for denitrification [34,35],
but aerobic denitrification can also happen at DO concentrations of around 4 mg/L [36]. As
shown in Table 1, the average DO concentration in this study was around 5.4 mg/L. Therefore,
based on the above analyses and taken the biofilm property of bio-granules into account, it is
speculated that both marimo and MBGS could remove nitrite from wastewater mainly through
microbial assimilation but denitrification might also happen, which was also verified by the
subsequent microbial and metagenomics analyses.

Contrary to the results of NO; ~-N and TN, Figure 4c indicated that there was no significant
difference in the removal rates of TP between marimo and MBGS (ANOVA, p > 0.05); the average
removal rates of TP during the day were 16.1% and 16.5%, which were 18.1% and 16.2% at night,
respectively. The influent concentration of TP was as low as around 0.04 mg/L because the raw
wastewater in this experiment came from the wastewater treatment plant treated by chemicals.
However, after advanced treatment by marimo, the concentration of TP became even lower
than before. In addition, it could also be seen that the performance of marimo in advanced
wastewater treatment of phosphorus was comparable to MBGS during the day and even slightly
better than MBGS at night. Under the condition of light/dark cycles, MBGS was found to
remove phosphorus mainly through cell assimilation and polyphosphate accumulation [37].
Considering that the HRT in this study was only 4 h, it can be assumed that by extending the



Water 2023, 15, 2605

60f 11

HRT, the phosphorus removal efficiency could be further improved when treating effluent with
a higher phosphorus concentration.

Table 1. Dissolved oxygen concentrations in influent and effluent of marimo and MBGS systems
during the day and night.

Dissolved Oxygen Concentration (mg/L)

T Light Dark
ime
Influent Effluent Influent Effluent
Marimo MBGS Marimo MBGS Marimo MBGS Marimo MBGS
1 6.74 6.74 13.00 15.40 9.51 10.71 6.54 4.46
2 6.49 5.45 16.40 16.75 11.53 11.71 5.80 4.04
3 5.95 5.07 15.47 16.54 10.79 11.33 4.40 3.47
4 5.53 5.06 18.20 20.00 12.20 13.10 443 4.52
5 5.22 527 18.58 19.07 11.81 12.05 4.99 3.69
6 5.43 4.78 9.50 17.97 7.31 11.54 6.12 4.26
7 5.73 4.80 14.40 14.57 9.81 9.90 3.17 5.12
8 4.31 528 16.07 17.50 10.84 11.55 4.56 5.06
9 5.32 5.57 15.33 13.82 10.43 9.68 4.72 3.75
10 522 4.74 14.37 10.11 9.50 7.37 3.05 1.46
11 4.32 3.52 14.57 16.64 9.98 11.02 3.25 3.27
12 4.35 4.36 15.12 20.59 10.45 13.19 5.20 5.74
13 5.32 5.59 15.01 17.12 10.15 11.20 4.59 6.24
14 4.97 5.79 14.23 17.34 10.46 12.02 5.05 6.12
15 5.24 5.78 14.78 16.73 10.20 11.18 422 8.73
16 4.95 7.21 16.70 16.84 11.20 11.27 6.73 9.78
17 6.22 7.74 15.30 16.69 10.48 11.18 491 9.10
18 5.28 7.38 19.85 16.46 12.60 10.90 4.85 7.54
19 5.01 6.36 18.79 14.55 11.94 9.82 5.15 9.14
20 5.39 7.38 18.74 13.04 11.89 9.04 6.97 7.26
21 6.30 6.45 17.96 16.36 11.90 11.10 4.58 9.59
Moreover, the average concentrations of NO3 ™ -N in the effluent of marimo and MBGS
were 6.19 and 5.54 mg/L, respectively (Figure 5a), and the average concentrations of TN in
effluent were 6.29 and 5.66 mg/L, respectively (Figure 5b). Excessive nitrogen emissions
often bring some negative environmental impacts, such as nitrate and ammonia emissions
causing pollution to water bodies, while nitrogen oxides can cause air pollution [38]. The
NO37-N and TN concentrations in this experiment were reduced to some extent. As shown
in Figure 5c, the average concentrations of TP in the effluent of marimo and MBGS were
both around 0.02 mg/L. Phosphorus is considered to be a limiting element for preventing
eutrophication [6]. In this study, the extremely low concentration of phosphorus allows the
treated wastewater to be returned to natural water to maintain its healthy state. Due to
the influent COD concentration being less than 15 mg/L in this experiment, only the COD
data from the first ten days were measured, indicating that COD were also reduced by 25%
to 40% by marimo and MBGS during the light/dark cycles, respectively.
(a) Day Night (b) Day Night (c) Day Night
20 20 40
—_ ok k%
g z z
g 154 T E 15 T S 304
4 o0 I = ——
50 E E KD . N —
E 10 _:] ‘ Z 104 s204 |
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s ST Ej s b T - E‘q £ =l T
S % & ; — ~ }
: ol M S == I M I
0 — 0 == ——

Marimo MBGS

Marimo MBGS

Marime MBGS Marimo MBGS Marimo MBGS Marimo MBGS

Figure 4. Differences in removal rates of NO3~-N (a), TN (b), and TP (c) between marimo and MBGS
during the day and night. ** symbols for p < 0.01.
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Figure 5. NO3 ™ -N (a), TN (b), and TP (c) influent and effluent concentrations (left axis) and removal
rates (right axis) by marimo and MBGS.

3.3. Microbial Community and Gene Functional Analysis

As shown in Figure 6a, at the phylum level, marimo mainly consisted of Proteobacteria
at the initial stage of the experiment, followed by Chlorophyta. At the end of the experiment,
the relative abundance of Proteobacteria became higher, with Proteobacteria and Chlorophyta
accounting for more than 75% of the total. The increase in Proteobacteria might be due
to that the low nutrient conditions were more suitable for their growth [39]. A small
amount of Bacteroidota was also detected. Proteobacteria and Bacteroidota can play the role of
denitrification in wastewater treatment [40]. In addition, the presence of Proteobacteria can
play an important role in removing anti-inflammatory and antimicrobial substances [41].
Therefore, it was speculated that Proteobacteria acted as one of the main contributors in the
wastewater treatment process [42]. The dominant phylum transformed from Proteobacteria
into Cyanobacteria for MBGS, which was consistent with the previous study [43]. Ata
finer scale, a-proteobacteria and y-proteobacteria occupied the main position in MBGS, and
by the end of the experiment, the dominant class had passed from y-proteobacteria to «-
proteobacteria. Interestingly, it could be observed that, at the end of the experiment, marimo
and MBGS were quite similar in microbial composition, both containing higher relative
abundances of Burkholdericeae, Acetobacteraceae, Rhodobacteraceae, and Xanthomonadaceae.
Compared with the initial data, there was a significant increase in the relative abundance
of Rhodobacteriaceae in marimo, which was a kind of denitrification bacteria with the
nirS gene [44]. In contrast, MBGS had little change in Rhodobacteriaceae, which might
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suggest that the denitrification potential of marimo slightly increased in the later stage
of the experiment.
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Figure 6. Changes in microbial communities (a) and key metabolic pathways of nitrate and phosphate
(b) of marimo and MBGS.

According to Figure 6b, it was speculated that marimo might also have a mechanism
of nitrogen removal through denitrification in addition to assimilation. It could be observed
that the abundance of Pithopora in marimo was significantly reduced, while Roseomonas
and Hydrogenophaga showed a downward trend. In addition, marimo and MBGS both
detected the presence of Thauera, which was also a famous denitrification bacterium, and
it might be the main contributor to nitrogen removal via Ny in MBGS [45]. Recently,
it was also found that some Thauera belong to denitrifying phosphorus-accumulating
organisms [46]. Polyphosphate accumulation is usually considered to be the main avenue
of biological phosphorus removal [37]. In this experiment, it is speculated that phosphorus-
accumulating organisms in marimo might adopt available oxygen as the electron acceptor
to decompose polyhydroxyalkanoates and used the energy generated by this reaction to
absorb phosphate.

Changes in key metabolic pathways of nitrate and phosphate were further analyzed
for marimo and MBGS based on the metagenomics. As shown in Figure 6b, the genes of
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nitrite reductase (EC 1.7.7.1) contained in marimo had higher relative abundance, while
MBGS had higher relative abundance of nitrate reductase (EC 1.7.7.2). In the denitrification
pathway, the relative abundances of nitric oxide reductase (EC 1.7.2.5) and nitrous oxide
reductase (EC 1.7.2.4) in marimo remained stable, while at the end of the experiment, the
relative abundances of both enzymes in MBGS increased. Based on the above results, it can
be reasonably speculated that, at the end of the experiment, both of marimo and MBGS
could remove nitrogen mainly through assimilation, but the denitrification might also
happen due to the present of complete enzymes responsible for denitrification (Figure 6b).
In the key metabolic pathway of phosphate, according to Figure 6b, the relative abundances
of polyphosphotransferase (2.7.4.1) and diphosphate hydrolase (3.6.1.1) in marimo were
higher than those in MBGS, which might explained for why the phosphorus removal
performance of marimo was slightly better than MBGS in the later stage of the experiment.

4. Conclusions

The advanced wastewater treatment performances of marimo on NO3;~-N, TN, and
TP were first evaluated and compared with MBGS in this study. The results showed that
the pollutant removal performance of marimo was close to that of MBGS. Especially in
the removal of phosphate, marimo had an even more excellent performance than MBGS.
Overall, marimo experienced a slight increase in granule size and a significant increase
in Chl content. During the day, marimo had the capacity to remove NO3;™-N, TN, and
TP during real wastewater effluent polishing at an HRT of 4 h. Due to the HRT being 4 h
in this study, it can be assumed that extending HRT might further promote the pollutant
removal. This paper speculated that marimo could remove nitrogen through microbial
assimilation, and denitrification might also happen during wastewater effluent polishing.
The high abundances of polyphosphotransferase and diphosphate hydrolase in marimo
might be the possible reason for its excellent phosphorus removal efficiency. In addition,
marimo can simply be acquired from nature and had a certain oxygen production capacity
when it was applied for effluent polishing, making it economically and environmentally
sustainable for advanced wastewater treatment and reclamation.
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