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Abstract: The nonstationary characteristics caused by significant variation in hydrometeorological
series in the context of climate change inevitably have a certain impact on the selection of an optimal
gauging network. This study proposes an entropy-based, multi-objective, rain gauge network
optimization method to facilitate the design of a 43 stations-based network in Huaihe River Basin
(HRB), China. The first goal of this study is to improve the accuracy of gauge-related information
estimation through the selection and comparison of discretization methods. The second goal of this
study is to quantify the impact of trend-caused nonstationarity on optimal network design using
the sliding window method. This study compares the divergence of three kinds of discretization
methods, including the floor function-based approach, Scott’s equal bin width histogram (EWH-Sc)
approach, and Sturges’s equal bin width histogram (EWH-St) approach. The matching degree of
the variance and marginal entropy of the observed series is computed to select the most suitable of
the above three discretization methods. The trend-caused nonstationarity in 75% of all stations in
the HRB could definitely influence the final results of the optimal rain-gauge network design using
the sliding window method. Therefore, in future studies of rain-gauge network optimization, it is
necessary to carry out uncertainty research according to local conditions in view of climate change
and human activities.

Keywords: rain gauge network; nonstationarity; multi-objective problems; climate change

1. Introduction

The key elements, including rainfall, runoff, sediment, water quality, and the water
environment, of the hydrological cycle and water resource management activities require
the support of hydrological observation activities. The smooth and efficient operation of
water resource planning and management requires the scientific and reasonable spatial
distribution of hydrometeorological gauge networks [1,2]. The intensification of human
activities in the context of climate change has altered the current situation of hydrolog-
ical cycles in watersheds. Such alterations affect key hydrological and meteorological
factors and subtly change the evolution process of hydrometeorological cycles within the
watershed system [3]. The systematic planning and deployment of hydrometeorological
gauge networks is clearly large-scale work that involves long-term interests. Although
their short-term benefits are insignificant, they are significantly beneficial in solving water
supply conflicts, optimizing reservoir scheduling, optimizing water resource allocation,
and smoothly implementing agricultural irrigation mechanisms [4].

Optimization of a gauge-based network often starts with statistical regression analysis
to carry out real-time positioning, gauge-based research. The generalized least squares
(GLS) approach is a typical regression analysis method that maximizes regional information
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within a limited budget and timeframe. In terms of spatial differences in station distribu-
tion, geostatistical methods also have significant effects in optimizing hydrological gauge
networks [5]. The universality of the kriging-based geostatistical method is mainly reflected
in the following two levels [6,7]: (1) the first level is based on the variation function for
spatial interpolation analysis, and (2) the second level lies in the reasonable allocation of
weight coefficients. Shafiei et al. [8] also proposed that efficient station network design
depends on accurate rainfall prediction rates at the minimum interpolation level. Due to
its built-in, good uncertainty matrix, the copula-based spatial interpolation method not
only contains model attributes and positioning information, but it also comprehensively
considers information related to observation samples [9].

Information entropy theory has been widely applied in the field of hydrometeorology
since the 1970s [10]. The core idea of rain gauge network optimization using information
entropy is to reduce the amount of information transfer between stations as much as pos-
sible. Multiple entropy-based indicators, including trans-information, joint entropy, and
total correlation, have been utilized in the development and design of hydrometeorological
gauge networks. The directional information transfer (DIT) index has been proposed for
the design of rainfall and runoff networks [11]. The total correlation index introduced by
Alfonso et al. [12] extends the measurement of trans-information to multivariate situations
and promotes multi-objective optimization of rain gauge network design. The joint entropy
and total correlation indexes quantify the information content and redundancy, respec-
tively. The weight factors of the above two objective functions can be obtained from the
Pareto solution through a greedy algorithm. Considering the sensitivity of entropy-based
information metrics to discretization methods, the selection of discretization methods is
always the key to restricting the optimal station network scheme in the process of station
network optimization. Based on the information entropy-utility standard, Fuentes et al. [13]
constructed a gauge network spatial evaluation model under the non-stationary framework
and evaluated pertinent environmental and air pollution samples. Li et al. [14] combined
entropy- and copula-based methods to derive the optimal rain gauge network in Taihu
Lake Basin. In order to augment ungauged areas with new stations, they developed a
high-value-of-monitoring index to systematically design the gauge network.

In the design and management of hydrometric gauge networks, climate change and
human activities are potential factors causing nonstationarity in hydrological processes.
The trend-caused nonstationarity cannot be ignored, especially for rainfall events that
are highly heterogeneous, localized, and influenced by geographical, topographical, and
climatic factors [15–20]. In the context of the scarcity of observed data, this study intends to
discuss differences in station network optimization results under different time scales and
periods, so as to further explore the impact of temporal variability on the optimization of
hydrometric networks.

The goals of this study are stated from two angles: (1) comprehensively compare
the impacts of three information entropy discretization estimation methods on gauge
optimization results, and select the optimal discretization method; (2) apply the information
entropy-based, multi-objective optimization algorithm and sliding window method to
analyze the optimization of a hydrometric network in the Huaihe River Basin, China.
Furthermore, the impacts of temporal variability in rainfall series on the optimal results are
discussed in this study.

2. Study Area and Dataset
2.1. Study Area

The Huaihe River Basin (HRB) is located in the eastern part of China (Figure 1). It
starts from the Tongbai and Funiu Mountains to the west, faces the Yellow Sea to the east,
and is bordered by the Dabie Mountains, Jianghuai Hills, Tongyang Canal, and Rutai Canal
to the south and the Yangtze River Basin to the north. The HRB is located in the climate
transition zone between the north and south of China. The north of the HRB belongs to the
warm, temperate, semi-humid monsoon climate zone, while the south of the HRB belongs
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to the subtropical, humid monsoon climate zone. The basin has a transitional climate type
from warm temperate to subtropical from north to south, with frequent cold and warm air
masses and significant changes in precipitation. The distribution of the annual precipitation
is uneven, with the rainy season concentrated from May to September in the upper reaches
of the HRB and the Huainan mountainous areas, while it is concentrated from June to
September in other regions.
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With the acceleration of urbanization in the HRB and dual impact of climate change,
the frequent activities of the rainstorm weather system cause floods and waterlogging
disasters, which are becoming the main bottleneck of national economic development. The
present hydrometeorological gauge network composed of 43 stations needs to be analyzed
and updated to help provide real-time forecasting and data support for extreme rainstorm
and flood risk management.

2.2. Data Processing

In this study, daily precipitation data during 1968–2018 in the HRB was used for rain
gauge network design. Considering the impacts of data structure autocorrelation on the
assumption of independent and identically distributed, we proposed a data fusion strategy
to alleviate sequence autocorrelation as follows:
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(i) Firstly, regional rainy days were selected as at least one station having precipitation
records (> 0 mm). In contrast, regional non-rainy days were defined as all stations in
the basin having no precipitation records.

(ii) Secondly, adjacent regional rainy days would be separated by non-rainy days. Thus,
effective interval days (nEI) were defined, which was used to accumulate precipitation
records from adjacent rainy days.

(iii) Thirdly, autocorrelation tests were implemented to ensure the processed series obeyed
the “independent and identically distributed” assumption.

The nEI value should be appropriate to help eliminate the autocorrelation and make
sure entropy is calculated. An example with nEI = 3 is shown in Figure 2. After processing,
the series length was shortened from 18,628 to 605.
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3. Methods
3.1. Entropy-Based Indexes for Station Network Optimization

Entropy can be a remarkable metric to quantify the potential uncertainty of hydrome-
teorological variables, such as precipitation or streamflow, which can represent the informa-
tion transferred by a gauging network [21]. In other words, if we assume that rainfall events
are a random process, information entropy can be applied to quantify the uncertainty of
rainfall information based on the rainfall time series.

Let [X1, X2, . . . , Xd] represent a set of d-dimensional random variable samples (a gaug-
ing network consisting of d corresponding stations in this study). Here,X1, X2, . . . , Xd
represent the processed precipitation series extracted from these d stations. Its joint prob-
ability density function is p(x1, x2, . . . , xd). pX1(x1), pX2(x2), . . . , and pXd

(xd) denote the
corresponding probability density function (PDF) of each variable, respectively. The three
kinds of commonly used entropy-based indexes are marginal entropy, joint entropy, and
total correlation. Marginal entropy (H(Xi)) represents the total information contained in
a single variable, while joint entropy (H(X1, X2, . . . , Xd)) describes the total information
contained in multiple variables. The total correlation (TC(X1, X2, . . . , Xd)) represents the
amount of redundant information between multiple variables. They can be specifically
defined as:

(1) Marginal entropy (ME):

H(Xi) = −∑xi
p(xi)log2 p(xi) (1)

(2) Joint entropy (JE):

H(X1, X2, . . . , Xd) = −∑
x1

· · ·∑
xd

p(x1, x2, . . . , xd)log2(p(x1, x2, . . . , xd)) (2)

(3) Total correlation (TC):

TC(X1, X2, . . . , Xd) =
d

∑
i=1

H(Xi)− H(X1, X2, . . . , Xd) (3)

As shown in the above equations, the JE value is adopted in network optimization
as a measure of total network information while the TC value is adopted as a metric of
information redundancy.

Inspired by the multi-objective optimization approach proposed by Alfonso et al. [12],
this study adopted the criterion of maximizing the joint entropy and minimizing the total
correlation (maxJE-minTC), which can be exhibited as follows:{

maxF1 = max
{

H
(
XS1 , XS2 , . . . , XSm

)}
minF2 = min

{
TC
(
XS1 , XS2 , . . . , XSm

)} (4)

Here, XS1 , XS2 , . . . , and XSm represent the precipitation series from the selected m
stations out of the original d stations ( m ≤ d). Based on these two objective functions,
the best gauge combination for the target network can be determined by maximizing the
total network information and minimizing the network redundancy. These two objective
functions are commonly used in optimizing hydrological gauging networks, and the
criterion used in this study followed this approach.

Here, we utilized the example of the 43 stations in this study (Figure 3). Initially,
the original network comprised 43 stations, which were assigned numbers S1 to S43. We
obtained the best gauge combination from the following steps:
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(1) For example, choosing 2 sites from 43 sites would result in 903 (C2
43 = 43!

41!×2! = 903)
possible combinations. In the same way, choosing 6 sites from 43 sites would result
in 6,096,454 (C6

43 = 43!
37!×6! = 6,096,454) possible combinations. Therefore, it was

not necessary to exhaustively search all possible combinations of the given number
of gauges. Instead, we commenced by generating a multitude of potential gauge
combinations, specifically 90,000 in this study.

(2) The joint entropy and total correlation for each combination of gauges can be cal-
culated using the processed precipitation data. However, it is important to note
that these two information indexes, namely joint entropy and total correlation, need
to be computed using an appropriate discretization method, which is investigated
in Section 3.2.

(3) Based on these two objective functions, (max
{

H
(
XS1 , XS2 , . . . , XSm

)}
and

min
{

TC
(
XS1 , XS2 , . . . , XSm

)}
), a certain number of Pareto solutions (NPare) can be

derived as approximations to the optimal function. This is because it is impossible to
satisfy both objective functions simultaneously.

(4) The frequency of station selection is calculated by examining the occurrence of the
label (in this case, Sm represents the label for a specific station) in the Pareto solutions.
Since different stations have different frequencies of label occurrence, the selected
frequency can be determined using the following calculation:

FRESm =
NSm

NPare
(5)

where NSm denotes the number of occurrences of each corresponding station in the Pareto
solutions. FRESm is the selection frequency of a station.

3.2. Three Kinds of Quantization Methods for Entropy Calculation

The above entropy-based metrics are calculated in the discrete form rather than the
continuous form. In this study, three quantization approaches with fixed or dynamic bin
widths were proposed to calculate the discrete entropy: the floor function-based approach,
Scott’s equal bin width histogram (EWH-Sc) approach, and Sturges’s equal bin width
histogram (EWH-St) approach. Data discretization refers to dividing continuous data into
discrete intervals. In this study, the daily processed precipitation series of each station
were continuous data and needed to be divided into several discrete intervals using the
aforementioned approaches. The widths of the intervals were determined based on the
discretization approach. The joint entropy and total correlation in Equation (4), which
are two objective functions, must be calculated based on discrete distribution instead of
continuous distribution. The daily precipitation series should be discretized accordingly.

The floor function-based approach can be regarded as a rounding method to transform
the original data through a constant, a, which can be defined as:

xq = a
⌊

2x + a
2a

⌋
(6)

where x is the observed sample series; xq is discretized data; b·c is the rounding down
function; and a is the key preset parameter for the floor function-based approach. In this
study, we set a as 50, 100, 150, and 1000 for further analysis. The floor function-based
approach can convert the precipitation variable to the nearest lowest integer multiples of
constant a through a mathematical floor function.

EWH-Sc was proposed by Scott [22] to optimize bin width by minimizing the dif-
ference between true and histogram-estimated density values. The optimal bin width
(aEWH−Sc) can be computed as follows:

aEWH−Sc = 3.49σX N−
1
3 (7)

where σX is the sample standard deviation. N is the sample length.
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Sturges’s equal bin width histogram (EWH-St) approach [23] can be implemented
as follows:

aEWH−St =
Rx

1 + log2 N
(8)

where Rx denotes the difference between the maximum and minimum values of sample X.

4. Results
4.1. Analysis of Processed Data in the HRB

Due to the periodic nature of hydrometeorological series, they unavoidably have an
impact on the autocorrelation of hydrometeorological series, thereby violating the assump-
tion of independent and identically distributed (i.i.d) hydrometeorological sequences. This
assumption is crucial as it provides the basis for the randomness and independence of
hydrometeorological variables. In order to address this issue, this study employed a data
fusion method that involved time interval partitioning (please refer to Section 2.2 for a
detailed explanation of the implementation process) in order to ensure that the processed
data’s autocorrelation met the assumption of being independent and identically distributed.
We utilized autocorrelation function-based tests (ACF) to assess the extent to which the
processed data satisfied the i.i.d assumption. Due to space limitations, we only used data
from 16 stations, labeled S1–S16, to illustrate the contrast between the ACF values of the
original data and the processed precipitation series. As shown in Figure S1a, almost all
of the ACF values, represented by a black vertical line for processed data extracted from
all selected 16 stations, were between the two blue dashed lines, suggesting that the pro-
cessed data with nEI being 3 could adhere to the i.i.d assumption. In contrast, the original
daily precipitation failed the ACF test, as the ACF values exceeded the blue dashed lines
(Figure S1b). It can be observed that the accumulation processing of the series not only
weakened the autocorrelation of the sequence itself, but it also increased the correlation
between station pairs (the correlation coefficient was close to 1.0 in Figure S2a, while the
correlation coefficient in Figure S2b was significantly smaller than that in Figure S2a).
Furthermore, the statistical characteristics (Table 1), including the maximum and standard
deviation of the processed data, were expected to be larger than those of the original data.
This was because the processed data were generated by accumulating precipitation records
from adjacent rainy days in Section 2.2. Specifically, the maximum value obtained from
the processed data increased by almost 8–9 times compared to the original data, while
the standard deviation value derived from the processed data increased by approximately
18–19 times compared to the original data.

Table 1. The detailed characteristics of the grouped precipitation data derived from the 16 selected stations.

Station No.
Original Data Processed Data

Maximum (mm) SD a (mm) Maximum SD

S1 188.8 6.9 945.7 132.9
S2 191.3 8.4 868.6 151.2
S3 288.6 8.9 1183.7 173.3
S4 189.4 7.4 818.4 131.1
S5 217.8 7.7 913.7 134.4
S6 276.2 10.9 1279.3 210.3
S7 216.7 9.7 1086.3 182.8
S8 257.7 8.6 1073.9 144.5
S9 177.2 7.9 896.9 145.4
S10 206.9 10.5 1313.7 104.4
S11 232.6 9.3 1193.9 172.4
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Table 1. Cont.

Station No.
Original Data Processed Data

Maximum (mm) SD a (mm) Maximum SD

S12 285.3 9.1 1013.3 161.3
S13 226.1 9.8 1186.8 181.1
S14 225.4 8.8 1109.7 156.2
S15 363.6 8.6 1062.9 149.6
S16 263.2 9.9 1456.0 198.3

Note: a SD represented standard deviation.

4.2. Selection of Data Discretization Method

Since data discretization methods have a significant impact on the results of station
network optimization, it was necessary to analyze the differences between three discretiza-
tion methods when calculating information quantitative indicators. To account for the large
number of gauge combinations, we calculated the joint information entropy (JE) and total
correlation (TC) for 30 potential gauge combinations. The calculation results are presented
in Figure 4. It is evident from Figure 4 that the estimated joint information entropy and
total correlation obtained using the Scott discretization method were greater than those
calculated using the other two discretization methods. Furthermore, upon examining
Figure 4, it was observed that when applying the floor function-based approach to compare
the information entropy calculations for different values of parameter a, the trends of JE
and TC were approximately similar. Specifically, as the value of a increased, the values
of JE and TC decreased. Therefore, when the value of a was larger, both the JE and TC
values were smaller. This indicated that different values of a have a certain impact on the
calculation results of information entropy. However, based on the current analysis, it was
unclear which value was the optimal result, and further analysis was needed. Despite this
bias in the calculation results, the JE and TC curves exhibited similar trends. Specifically,
the response of the three discretization methods was more consistent when the gauge
combination corresponded to a larger JE value.

The difference in entropy-based indexes estimated by three discretization methods
would lead to divergence in the optimization results. In this study, a total of 90,000 gauge
combinations were randomly generated. Pareto solutions were then selected based on
the optimization criterion of maximizing the JE (joint entropy) and minimizing the TC
(total correlation) from these combinations. However, due to space constraints, only the
Pareto solution results obtained from network optimization using the floor function-based
discretization approach with a being 150 are presented in Figure 5. The Pareto solution
results obtained using the other discretization methods are presented in Figure S3. Scatter
points satisfying the maxJE-minTC criterion were found to be distributed close to the Pareto
curve, regardless of the discretization method used. However, there were differences in
the number and information entropy index of the Pareto solution sets obtained using the
different discretization methods. As illustrated in Figures 5 and S3, it can be observed
that the majority of scattered points representing the Pareto solution set were located
on the lower right boundary, which represented all potential combinations of candidate
points. This represented a trade-off between the two objective functions: maximizing
the joint entropy and minimizing the total correlation of the optimal rain gauge network.
As indicated in Table 2, out of the potential 90,000 combinations, 27 gauge combinations
derived using the floor function-based discretization method with a = 50 were identified as
Pareto solution sets.
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Table 2. The number of pareto sets for all discretization methods.

Discretization Approaches Number

Floor function-based with a = 50 27
Floor function-based with a = 100 29
Floor function-based with a = 150 48
Floor function-based with a = 1000 100

EWH-Sc 17
EWH-St 37

A total of 29 and 48 gauge combinations yielded the Pareto solution sets for the
discretization method using the floor function-based approach with parameter a values of
100 and 150, respectively, out of the potential 90,000 combinations. When the parameter a
value of the floor function-based approach reached 1000, there were 100 different gauge
combinations in the Pareto sets. This suggested that the number of potential Pareto
solution sets was proportional to parameter a of the floor function-based approach. For
the other two discretization methods, the number of Pareto sets was 17 for EWH-Sc and
37 for EWH-St.

Due to the large number of Pareto solution sets, we quantified the importance of each
site’s selection frequency in the Pareto solution set and displayed the optimization results
in Figure 6. It can be seen from the figure that although different discretization methods
influenced the final optimization results in general, the optimal networks obtained by all of
the discretization approaches followed similar spatial distribution patterns: the frequency
of incoming selection of stations at the basin boundary was high (such as stations S8, S43,
S3, S17, and S6), which was crucial to the station network system; however, the frequency
of site selection within the watershed was relatively low (such as sites S40, S12, S27,
S29, and S26).
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For the sake of different optimization results obtained using different discretization
methods, this study calculated the sample standard deviation (SD) between the marginal
entropy (ME) of 43 stations in the basin using different discretization methods. Here,
we mainly analyzed the matching degree between the standard deviation series and
marginal entropy series. It can be seen from Figure 7 that the matching degree between
the marginal entropy series and the standard deviation calculated based on the Scott and
Sturges discretization methods was significantly lower than that using the floor function-
based method. For the floor function-based method, when parameter a = 100, the matching
degree of the marginal entropy calculation results and the serial standard deviation was
the best. This study intended to adopt the discretization method when parameter a of the
floor function-based approach was 100 as the optimal discretization method for calculating
the information entropy index.
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4.3. The Impact of Time Variability in Precipitation on the Optimization Results of Gauge
Networks in the Huaihe River Basin

The average annual precipitation in the Huaihe River Basin (HRB) was 875 mm during
1968–2018, with 911 mm in the Huaihe River system and 788 mm in the Yishu River system.
The precipitation was unevenly distributed in the region, being greater in the southern
part than in the northern part, and in the mountainous area than in the plain, and in the
coastal area than inland. The average annual precipitation in the southern Dabie Mountains
ranged from 1400 to 1500 mm, while in the northern Yellow River coast, it ranged from
only 600 to 700 mm. The interannual variation of precipitation was significant, with an
average annual precipitation of 1185 mm in the entire basin in 1970 and only 578 mm in
1996. The distribution of precipitation within the year was uneven, with the rainy season
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concentrated from May to September in the upper reaches of the Huaihe River and Huainan
mountainous areas [24–27], while it was concentrated from June to September in other
regions. The precipitation during the flood season (June–September) accounted for 50–75%
of the annual precipitation. Regional flood, drought, urban waterlogging, and storm surge
disasters have frequently taken place in the HRB in the last 60 years owing to its unique
climate and surface conditions. The temporal variability in the regional precipitation in the
HRB has been reported in the literature [28–32].

As a result of anthropogenic greenhouse gas emissions, the climate is changing and
the composition of Earth’s atmosphere is being altered, which has not only increased the
complexity of hydrometeorological simulations but also necessitates the incorporation of
trend-caused nonstationarity in modeling hydrometeorological variables [33–35]. In this
study, trend-caused nonstationarity was first incorporated into the optimal design of the
rain gauge network.

In order to determine whether the fluctuating nature of precipitation would impact the
optimization outcomes of the network, Figure 8 displays the results of the Mann–Kendall
trend tests conducted on all 43 stations. It is evident from Figure 8 that, in general, nearly
75% of the 43 chosen stations displayed nonstationary trends at a significance level of 5%.
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significance level of 5%.

In order to accurately quantify the impact of trend-caused nonstationarity on the
results of station network optimization, this section employed the sliding window method
to conduct the secondary analysis of the gauge network in the HRB. Specifically, a window
width of 30 years (referred to as a sliding window, SW) was selected, and the precipitation
subsequences in the HRB were chosen for re-analysis using multi-objective station network
optimization. This optimization was carried out with the discretization means of the floor
function-based approach, with a set to 100. From the results presented in Figure 9, it is
evident that time-varying trends in the sequence will have a significant impact on optimiza-
tion outcomes in the Huaihe River Basin. Specifically, stations S8 and S17 exhibited a higher
frequency of selection, as indicated by the dark blue color in Figure 9 (approximately 0.95
for both stations). This suggested the greater importance of these two stations in the entire
network. Generally speaking, a higher Z statistic was associated with a more pronounced
time-varying characteristic for the selected frequency corresponding to each station in
Figure 9 (i.e., greater color contrast).
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Therefore, in future station network optimization analyses, it is necessary to carry out
uncertainty research according to local conditions in view of climate change and human
activities.

5. Discussion

The information entropy-based method for optimizing rain gauge networks is com-
monly used in the field of hydrometeorological station network optimization. However,
uncertainties arise during the calculation process due to the high sensitivity of discretiza-
tion methods. Additionally, the influence of spatiotemporal variability on the design
optimization of hydrometeorological station networks has been widely recognized. When
optimizing the design of such networks, it is crucial to consider the nonstationary nature of
climate change, human activities, and hydrological processes. This is particularly important
for rainfall events, which exhibit high heterogeneity, localization, and strong influences
from geographical, topographical, and climatic factors. Different time periods may have
varying impacts on the design outcomes for station networks, implying that the optimal
layout may only be suitable for specific observation periods. Although previous researchers
have conducted considerable work on station network optimization [3,12,17], dynamic
analysis of hydrological and meteorological station network optimization in response to
climate change is limited in terms of the nonstationarity of hydrometeorological time series.
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In this study, we proposed an entropy-based approach for optimal precipitation
monitoring network design in the Huaihe River Basin (HRB), China, considering trend-
caused nonstationarity. The approach was applied to a rain gauge network containing
43 stations located in the HRB. Precipitation records of 51 years on a daily time scale were
used for analysis. The main contribution of this study to the research of rain gauge network
design lies in selecting the appropriate discretizing approach for calculating entropy-based
indexes and quantifying the impact of trend-caused nonstationarity on the final results
of the optimal network using the sliding window method. The final network scheme
using a floor function-based approach with a = 100 obeyed the multi-objective optimization
criterion, which proved the robustness of the proposed approach.

In order to verify the necessity of the data fusion method, comparisons of the matching
degree between the standard deviation and marginal entropy from the processed and
original precipitation series are shown in Figure 10. As shown in Figure 10, the matching
degree between the standard deviation and marginal entropy from the processed data
was relatively higher than that from the original precipitation series, which showed the
advantage of data conversion in helping to quantify the information content more precisely.
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6. Conclusions

An entropy-based framework incorporating trend-caused nonstationarity into hy-
drometeorological network design is developed in this study. According to its application
in the Huaihe River Basin, the conclusions of this study can be drawn as follows:

(1) Careful selection of discretization technology is the basis for station network optimiza-
tion. This study compared the network optimization results derived from three kinds
of discretization methods, including the floor function-based approach, Scott’s equal
bin width histogram (EWH-Sc) approach, and Sturges’s equal bin width histogram
(EWH-St) approach (Figure 5). The floor function-based approach with a = 100 was
selected as the most suitable discretization method for this study by optimizing the
matching degree of the variance and edge entropy sequence of the measured values
at each station.

(2) The criterion of maximizing the joint entropy and minimizing the total correlation
(maxJE-minTC) was able to generate potential Pareto solution sets for the optimal net-
work. The frequency of selecting sites in the Pareto solution set proposed in this study
provides a new approach for characterizing the results of station network optimization.

(3) Due to the trend-caused nonstationarity in almost 75% of all stations in the HRB, taking
the impact of temporal variability in the precipitation series on the final rain gauge
network optimization results into consideration is of great significance. The analysis
results indicated that the degree of nonstationarity in the processed precipitation
series is directly proportional to the frequency of station selection.



Water 2023, 15, 3115 16 of 17

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/w15173115/s1.

Author Contributions: J.L.: Conceptualization, Methodology, Writing and editing manuscript, Su-
pervision. Y.L.: Formal analysis and Reviewing. Y.W.: Writing—original draft. P.X.: Model fitting and
Supervision. All authors have read and agreed to the published version of the manuscript.

Funding: This study was supported by the National Natural Science Foundation of China
(No. U22A20555, 41501053, and 42301026).

Data Availability Statement: Site-based meteorological data used in this article are derived from the
National Meteorological Information Center, China Meteorological Administration. (http://data.
cma.cn (accessed on 27 August 2023)).

Acknowledgments: Site-based meteorological data used in this article are derived from the National
Meteorological Information Center, China Meteorological Administration. (http://data.cma.cn
(accessed on 1 January 2020)).

Conflicts of Interest: The authors declare that they have no conflict of interest.

References
1. Mishra, A.K.; Coulibaly, P. Developments in hydrometric network design: A review. Rev. Geophys. 2009, 47, 2415–2440. [CrossRef]
2. Chaconhurtado, J.C.; Alfonso, L.; Solomatine, D.P. Rainfall and streamflow sensor network design: A review of applications,

classification, and a proposed framework. Hydrol. Earth Syst. Sci. 2017, 21, 3071–3091. [CrossRef]
3. Xu, P.; Wang, D.; Singh, V.P.; Wang, Y.; Wu, J.; Wang, L.; Zou, X.; Chen, X.; Liu, J.; Zou, Y.; et al. A kriging and entropy-based

approach to raingauge network design. Environ. Res. 2018, 161, 61–75. [CrossRef] [PubMed]
4. Joseph, R.; Mujumdar, P.P.; Bhowmik, R.D. Reconstruction of urban rainfall measurements estimate the spatiotemporal variability

of extreme rainfall. Water 2022, 14, 3900. [CrossRef]
5. Muhamad Ali, M.Z.; Othman, F. Raingauge network optimization in a tropical urban area by coupling cross-validation with the

geostatistical technique. Hydrol. Sci. J. 2018, 63, 474–491.
6. Adhikary, S.K.; Yilmaz, A.G.; Muttil, N. Optimal design of rain gauge network in the Middle Yarra River catchment, Australia.

Hydrol. Process. 2015, 29, 2582–2599. [CrossRef]
7. Aalto, J.; Pirinen, P.; Jylhä, K. New gridded daily climatology of Finland: Permutation-based uncertainty estimates and temporal

trends in climate. J. Geophys. Res. Atmos. 2016, 121, 3807–3823. [CrossRef]
8. Shafiei, M.; Ghahraman, B.; Saghafian, B.; Pande, S.; Gharari, S.; Davary, K. Assessment of rain-gauge networks using a

probabilistic GIS based approach. Hydrol. Res. 2014, 45, 551–562. [CrossRef]
9. Bárdossy, A.; Pegram, G.G.S. Copula based multisite model for daily precipitation simulation. Hydrol. Earth Syst. Sci. 2009, 13,

2299–2314. [CrossRef]
10. Singh, V.P. The use of entropy in hydrology and water resources. Hydrol. Process. 1997, 11, 587–626. [CrossRef]
11. Su, H.T.; You, G.J.Y. Developing an entropy-based model of spatial information estimation and its application in the design of

precipitation gauge networks. J. Hydrol. 2014, 519, 3316–3327. [CrossRef]
12. Alfonso, L.; Lobbrecht, A.; Price, R. Information theory-based approach for location of monitoring water level gauges in polders.

Water Resour. Res. 2010, 46, W03528. [CrossRef]
13. Fuentes, M.; Chaudhuri, A.; Holland, D.M. Bayesian entropy for spatial sampling design of environmental data. Environ. Ecol.

Stat. 2007, 14, 323–340. [CrossRef]
14. Li, H.; Wang, D.; Singh, V.P.; Wang, Y.; Wu, J.; Wu, J. Developing an entropy and copula-based approach for precipitation

monitoring network expansion. J. Hydrol. 2021, 598, 126366. [CrossRef]
15. Gu, X.H.; Zhang, Q.; Singh, V.P.; Shi, P.J. Nonstationarity in timing of extreme precipitation across China and impact of tropical

cyclones. Glob. Planet. Chang. 2017, 149, 153–165. [CrossRef]
16. Wang, J.; Liang, Z.M.; Wang, D.; Liu, T.; Yang, J. Impact of climate change on hydrologic extremes in the upper basin of the Yellow

River Basin of China. Adv. Meteorol. 2016, 2016, 1404290. [CrossRef]
17. Ganguli, P.; Coulibaly, P. Does nonstationarity in rainfall requires nonstationary intensity-duration-frequency curves? Hydrol.

Earth Syst. Sci. 2017, 21, 6461–6483. [CrossRef]
18. Agilan, V.; Umamahesh, N.V. What are the best covariates for developing nonstationary rainfall intensity-duration-frequency

relationship? Adv. Water Resour. 2017, 101, 11–22. [CrossRef]
19. Call, B.C.; Belmont, P.; Schmidt, J.C.; Wilcock, P.R. Changes in floodplain inundation under nonstationary hydrology for an

adjustable, alluvial river channel. Water Resour. Res. 2017, 53, 3811–3834. [CrossRef]
20. Ghanbari, M.; Arabi, M.; Obeysekera, J.; Sweet, W. A coherent statistical model for coastal flood frequency analysis under

nonstationary sea level conditions. Earth’s Future 2019, 7, 162–177. [CrossRef]
21. Xu, P.; Wang, D.; Singh, V.P.; Wang, Y.; Wu, J.; Wang, L. A two-phase copula entropy-based multiobjective optimization approach

to hydrometeorological gauge network design. J. Hydrol. 2017, 555, 228–241. [CrossRef]

https://www.mdpi.com/article/10.3390/w15173115/s1
http://data.cma.cn
http://data.cma.cn
http://data.cma.cn
https://doi.org/10.1029/2007RG000243
https://doi.org/10.5194/hess-21-3071-2017
https://doi.org/10.1016/j.envres.2017.10.038
https://www.ncbi.nlm.nih.gov/pubmed/29101830
https://doi.org/10.3390/w14233900
https://doi.org/10.1002/hyp.10389
https://doi.org/10.1002/2015JD024651
https://doi.org/10.2166/nh.2013.042
https://doi.org/10.5194/hess-13-2299-2009
https://doi.org/10.1002/(SICI)1099-1085(199705)11:6%3C587::AID-HYP479%3E3.0.CO;2-P
https://doi.org/10.1016/j.jhydrol.2014.10.022
https://doi.org/10.1029/2009WR008101
https://doi.org/10.1007/s10651-007-0017-0
https://doi.org/10.1016/j.jhydrol.2021.126366
https://doi.org/10.1016/j.gloplacha.2016.12.019
https://doi.org/10.1155/2016/1404290
https://doi.org/10.5194/hess-21-6461-2017
https://doi.org/10.1016/j.advwatres.2016.12.016
https://doi.org/10.1002/2016WR020277
https://doi.org/10.1029/2018EF001089
https://doi.org/10.1016/j.jhydrol.2017.09.046


Water 2023, 15, 3115 17 of 17

22. Scott, D.W. On optimal and data-based histograms. Biometrika 1979, 66, 605–610. [CrossRef]
23. Sturges, H.A. The choice of a class interval. J. Am. Stat. Assoc. 1926, 21, 65–66. [CrossRef]
24. Cao, Q.; Qi, Y. The variability of vertical structure of precipitation in Huaihe River Basin of China: Implications from long-term

spaceborne observations with TRMM precipitation radar. Water Resour. Res. 2014, 50, 3690–3705. [CrossRef]
25. Chen, G.; Sha, W.; Iwasaki, T. Diurnal variation of precipitation over southeastern China: Spatial distribution and its seasonality.

J. Geophys. Res. Atmos. 2009, 114, D13103. [CrossRef]
26. Luo, Y.; Wang, H.; Zhang, R.; Qian, W.; Luo, Z. Comparison of rainfall characteristics and convective properties of monsoon

precipitation systems over South China and the Yangtze and Huai River Basin. J. Clim. 2013, 26, 110–132. [CrossRef]
27. He, H.; Zhang, F. Diurnal variations of warm-season precipitation over Northern China. Mon. Weather Rev. 2010, 138, 1017–1025.

[CrossRef]
28. Zhou, T.; Yu, R.; Chen, H.; Dai, A.; Pan, U. Summer precipitation frequency, intensity, and diurnal cycle over China: A comparison

of satellite data with rain gauge observations. J. Clim. 2008, 21, 3997–4010. [CrossRef]
29. Chen, M.; Wang, Y.; Gao, F.; Xiao, X. Diurnal variations in convective storm activity over contiguous North China during the

warm season based on radar mosaic climatology. J. Geophys. Res. Atmos. 2012, 117, D20115. [CrossRef]
30. Liu, C. Rainfall contributions from precipitation systems with different sizes, convective intensities, and durations over the

Tropics and Subtropics. J. Hydrometeorol. 2011, 12, 394–412. [CrossRef]
31. Xu, W. Precipitation and convective characteristics of summer deep convection over East Asia observed by TRMM. Mon. Weather

Rev. 2013, 141, 1577–1592. [CrossRef]
32. Guo, Z.; Fang, J.; Sun, X.; Yang, Y.; Tang, J. Sensitivity of summer precipitation simulation to microphysics parameterization over

eastern China: Convection-permitting regional climate simulation. J. Geophys. Res. Atmos. 2019, 124, 9183–9204. [CrossRef]
33. Milly, P.; Betancourt, J.; Falkenmark, M.; Hirsch, R.; Kundzewicz, Z.; Lettenmaier, D.; Stouffer, R. Climate change—Stationarity is

dead: Whither water management? Science 2008, 319, 573–574. [CrossRef] [PubMed]
34. Xu, P.; Wang, D.; Singh, V.P.; Lu, H.; Wang, Y.; Wu, J.; Wang, L.; Liu, J.; Zhang, J. Multivariate hazard assessment for nonstationary

seasonal flood extremes considering climate change. J. Geophys. Res. Atmos. 2020, 125, e2020JD032780. [CrossRef]
35. Xu, P.; Wang, D.; Singh, V.P.; Lu, H.; Wang, Y.; Wu, J.; Wang, L.; Liu, J.; Zhang, J. Copula-based seasonal rainfall simulation

considering nonstationarity. J. Hydrol. 2020, 590, 125439. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1093/biomet/66.3.605
https://doi.org/10.1080/01621459.1926.10502161
https://doi.org/10.1002/2013WR014555
https://doi.org/10.1029/2008JD011103
https://doi.org/10.1175/JCLI-D-12-00100.1
https://doi.org/10.1175/2010MWR3356.1
https://doi.org/10.1175/2008JCLI2028.1
https://doi.org/10.1029/2012JD018158
https://doi.org/10.1175/2010JHM1320.1
https://doi.org/10.1175/MWR-D-12-00177.1
https://doi.org/10.1029/2019JD030295
https://doi.org/10.1126/science.1151915
https://www.ncbi.nlm.nih.gov/pubmed/18239110
https://doi.org/10.1029/2020JD032780
https://doi.org/10.1016/j.jhydrol.2020.125439

	Introduction 
	Study Area and Dataset 
	Study Area 
	Data Processing 

	Methods 
	Entropy-Based Indexes for Station Network Optimization 
	Three Kinds of Quantization Methods for Entropy Calculation 

	Results 
	Analysis of Processed Data in the HRB 
	Selection of Data Discretization Method 
	The Impact of Time Variability in Precipitation on the Optimization Results of Gauge Networks in the Huaihe River Basin 

	Discussion 
	Conclusions 
	References

