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Abstract: The evaluation of the effects of artificial precipitation enhancement remains one of the
most important and challenging issues in the fields of meteorology. Rainfall is the most important
evaluation metric for artificial precipitation enhancement, which is mainly achieved through physics-
based models that simulate physical phenomena and data-driven statistical models. The series of
effect evaluation methods requires the selection of a comparison area for effect comparison, and
idealized assumptions and simplifications have been made for the actual cloud precipitation process,
leading to unreliable quantitative evaluation results of artificial precipitation effects. This paper
proposes a deep learning-based method (UNET-GRU) to quantitatively evaluate the effect of artificial
rainfall. By comparing the residual values obtained from inverting the natural evolution grid rainfall
of the same area under the same artificial rainfall conditions with the actual rainfall amount after
artificial rainfall operations, the effect of artificial rainfall can be quantitatively evaluated, effectively
solving the problem of quantitative evaluation of artificial precipitation effects. Wuhan and Shiyan in
China are selected to represent typical plains and mountainous areas, respectively, and the method
is evaluated using 6-min resolution radar weather data from 2017 to 2020. During the experiment,
we utilized the UNET-GRU algorithm and developed separate algorithms for comparison against
common persistent baselines (i.e., the next-time data of the training data). The prediction of mean
squared error (MSE) for these three algorithms was significantly lower than that of the baseline data.
Moreover, the indicators for these algorithms were excellent, further demonstrating their efficacy.
In addition, the residual results of the estimated 7-h grid rainfall were compared with the actual
recorded rainfall to evaluate the effectiveness of artificial precipitation. The results showed that the
estimated rainfall was consistent with the recorded precipitation for that year, indicating that deep
learning methods can be successfully used to evaluate the impact of artificial precipitation. The
results demonstrate that this method improves the accuracy of effect evaluation and enhances the
generalization ability of the evaluation scheme.

Keywords: evaluation of artificial precipitation enhancement (EoAPE); UNET-GRU; rainfall estimation

1. Introduction

Currently, artificial precipitation enhancement is an important approach for alleviating
drought conditions and increasing water storage in many countries and regions. However,
the evaluation method for the catalytic effect of cloud seeding has been questioned on
occasion [1–5]. The evaluation method for the effect of artificial precipitation enhancement
mainly focuses on the following four aspects:

(1) Comparing the target cloud operation with contrast cloud radar echoes, satellite
inversion products, etc., and conducting physical inspections [6–11];

(2) Statistical evaluation of rainfall in the affected area and comparison area [12–17];
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(3) Adopting a comprehensive inspection method that combines numerical model simu-
lation and live observation [18–21];

(4) Random evaluation of rainfall increase rates [22–26].

In (1) and (2), due to the significant spatiotemporal variability of precipitation in
China, it is challenging to identify an appropriate reference area for comparison. For (3),
live observation data are usually collected at discrete stations with 1-h resolution, while the
artificial rainfall process usually lasts for only 4–7 h or even shorter. Thus, it is difficult to
distinguish the increase in precipitation due to artificial means from natural variation using
limited data. As for (4), the randomization method requires a sufficiently long experiment
period to test the effect of single or a few artificial precipitation enhancement operations.
However, this method wastes half of the operation time and may not completely eliminate
human influence, making non-randomization methods more commonly used in practice.

Deep learning, a promising branch of machine learning, has received extensive atten-
tion in recent years and has been widely used in pattern recognition, image processing,
fault detection, classification, and prediction tasks [27–35]. Compared to shallow mod-
els, deep learning has three major characteristics: unsupervised feature learning, strong
generalization ability, and big data training. Deep learning-based predictive models are
generally accepted to exhibit attractive performance in terms of accuracy, stability, and
effectiveness. As rainfall is a direct indicator to evaluate the effect of artificial precipita-
tion, it is important to compare the accuracy of natural precipitation variation in the last
4–7 h under climatic conditions within half an hour before the implementation of artificial
precipitation. Therefore, short-term prediction algorithms based on deep learning can
be used to evaluate the effect of artificial precipitation enhancement. A local prediction
system based on deep learning was proposed by [36] to predict short-term rainfall at
16 points in Japan individually, using various forms of massive data provided by the Japan
Meteorological Agency (JMA). However, as there are only a few artificial precipitation
enhancement operations in each region per year, data is limited. Work in [37] proposed a
SmaAT-UNet architecture for short-term forecasts, which is applicable to cases with small
amounts of data and calculation. However, the predicted precipitation maps of all models
are quite blurry due to the use of MSE as the guiding loss function, which is biased towards
blurry images.

In summary, while deep learning-based prediction algorithms have been widely
applied in the meteorological field, they require a large and diverse amount of training data.
For the evaluation of artificial precipitation enhancement, deep learning algorithms have
faced challenges due to the scarcity and uneven distribution of training samples, which
limits their predictive accuracy and impacts the credibility of the evaluation results. As a
result, traditional methods based on physical models or statistical principles remain the
mainstream approach. However, these methods often require the selection of a comparison
area (as shown in Figure 1) and can only provide qualitative evaluations, which may not
lead to convincing conclusions. Therefore, we propose a deep learning algorithm based
on small sample training to invert the 1–7 h rainfall natural catalysis situation in the same
area that meets the meteorological conditions of artificial precipitation enhancement. We
evaluate the effectiveness of artificial precipitation enhancement by comparing the residual
between the natural catalysis rainfall and the actual rainfall enhancement. The grid-based
residual data can be verified through the collected data from rainfall monitoring stations,
thus proving the feasibility of our evaluation plan.

This paper is organized as follows. In Section 2, we provide a brief overview of related
research on evaluating the effect of artificial precipitation enhancement. Section 3 describes
the proposed UNET-GRU architecture and other models used for effect evaluation. In
Section 4, we present the experiments conducted and the results obtained. A discussion of
the results is provided in Section 5. Finally, we conclude with some remarks in Section 6.
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Figure 1. The classical evaluation method of artificial precipitation enhancement effect. 
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2. Related Work
2.1. Classical Evaluation Methods Model in Meteorological Field

The traditional approach for evaluating the effect of artificial precipitation enhance-
ment relies on statistical methods (Figure 1). This involves determining the impact area
and comparison area of the operation, and estimating the difference between natural pre-
cipitation and measured precipitation based on these two regions to determine the effect of
the operation. However, in many cases, the impact area and comparison area of artificial
precipitation enhancement are not fixed. In such cases, the floating comparison area method
is usually employed to evaluate the effect, which involves dividing the comparison area
based on principles such as similar weather systems, similar terrain, and good precipitation
correlation. Therefore, a reasonable division of the comparison area is a prerequisite for the
statistical evaluation of the effect of artificial precipitation enhancement.

2.2. Application of Deep Learning Model in Meteorological Field

Deep learning methods, including convolutional neural networks (CNNs) and re-
current neural networks (RNNs), have been widely applied in weather forecasting. For
instance, Kevin Trebing et al. introduced the SMART-UNET algorithm with CBAM atten-
tion block for short-term precipitation forecasting [37]. Xingjian Shi et al. utilized radar
CAPPI data to achieve regional precipitation forecasting with convolutional LSTM [38].
Jing J et al. introduced the MLC-LSTM algorithm to extrapolate echo sequences by lever-
aging the space time correlation between multi-level weather radar echoes [39]. The deep
learning methods can handle the nonlinear problem of precipitation and radar echo that
cannot be solved by statistical methods and numerical simulations. Furthermore, they can
better simulate the natural evolution of natural precipitation and radar echo. However,
these methods have rarely been used in evaluating the effect of artificial precipitation
enhancement. The evaluation of this effect requires predicting the rainfall under natural
conditions, which can also be achieved through deep learning methods. Therefore, intro-
ducing deep learning techniques to improve the existing evaluation methods of artificial
precipitation enhancement can have significant theoretical and practical value.

2.3. UNET

In the field of computer vision, the FCN is a well-known image segmentation net-
work. In the field of medical image processing, UNET is a popular network for semantic
segmentation tasks, often used as a baseline [40]. The UNET architecture consists of two
parts: feature extraction and upsampling. This structure is commonly referred to as an
encoder decoder structure. The network resembles a letter U, hence its name. As shown in
Figure 2, the input image is first convolved and pooled. In the original UNET paper, the



Water 2023, 15, 1585 4 of 17

image is pooled four times, resulting in features of sizes 144 × 144, 72 × 72, 36 × 36, and
18 × 18. The 18 × 18 feature map is then upsampled to obtain a 36 × 36 feature map, which
is concatenated with the previous 36 × 36 feature map to preserve channel information.
The concatenated feature map is then convolved and upsampled to obtain a 72 × 72 feature
map, which is again concatenated with the previous 72× 72 feature map. After four rounds
of upsampling, a 288 × 288 prediction result with the same size as the input image can
be obtained.

Water 2023, 15, x FOR PEER REVIEW 4 of 18 
 

 

2.3. UNET 

In the field of computer vision, the FCN is a well-known image segmentation net-

work. In the field of medical image processing, UNET is a popular network for semantic 

segmentation tasks, often used as a baseline [40]. The UNET architecture consists of two 

parts: feature extraction and upsampling. This structure is commonly referred to as an 

encoder decoder structure. The network resembles a letter U, hence its name. As shown 

in Figure 2, the input image is first convolved and pooled. In the original UNET paper, 

the image is pooled four times, resulting in features of sizes 144 × 144, 72 × 72, 36 × 36, and 

18 × 18. The 18 × 18 feature map is then upsampled to obtain a 36 × 36 feature map, which 

is concatenated with the previous 36 × 36 feature map to preserve channel information. 

The concatenated feature map is then convolved and upsampled to obtain a 72 × 72 feature 

map, which is again concatenated with the previous 72 × 72 feature map. After four rounds 

of upsampling, a 288 × 288 prediction result with the same size as the input image can be 

obtained. 

12 64 64

2
8
8

×
2

8
8

in
p

u
t 

im
a
g
e
 t

il
e

128 128

1
4
4

×
1
4
4

256 256

7
2
×

7
2

512 512

3
6
×

3
6

512

1
8
×

1
8

1024

256

128

64

128 64 1

o
u
tp

u
t 

p
re

d
ic

t 
m

a
p

Copy and crop

Conv 3×3,ReLU

Max pool 2×2

Up conv 2×2

Conv 1×1

 

Figure 2. UNET structure. 

UNET has several advantages. Firstly, as the network layer becomes deeper, the fea-

ture map’s field of view increases. While shallow convolution focuses on texture features, 

deep networks focus on essential features, making both deep and shallow features grid 

meaningful. Secondly, larger-sized feature map edges obtained through deconvolution 

are often lack of information. This is because, during downsampling, some edge features 

are lost, and these cannot be retrieved during upsampling. Therefore, one edge feature 

can be retrieved through feature splicing. 

UNET has found wide applications in medical image segmentation due to four char-

acteristics of medical images. Firstly, medical images have simple semantics and fixed po-

sitions, making their semantic information relatively simple, and there is no need to filter 

out useless information. All features of medical images are important, including both low-

level features and high-level semantic features, making the skip connection structure (fea-

ture splicing) of the U-shaped structure better used. Secondly, medical images are difficult 

Figure 2. UNET structure.

UNET has several advantages. Firstly, as the network layer becomes deeper, the
feature map’s field of view increases. While shallow convolution focuses on texture features,
deep networks focus on essential features, making both deep and shallow features grid
meaningful. Secondly, larger-sized feature map edges obtained through deconvolution are
often lack of information. This is because, during downsampling, some edge features are
lost, and these cannot be retrieved during upsampling. Therefore, one edge feature can be
retrieved through feature splicing.

UNET has found wide applications in medical image segmentation due to four char-
acteristics of medical images. Firstly, medical images have simple semantics and fixed
positions, making their semantic information relatively simple, and there is no need to
filter out useless information. All features of medical images are important, including both
low-level features and high-level semantic features, making the skip connection structure
(feature splicing) of the U-shaped structure better used. Secondly, medical images are
difficult to obtain, and the dataset available is usually very small. The amount of data
may only be a few hundred, or even fewer than a hundred. Therefore, it is easy to over-fit
large networks like DeepLabv3+. While large networks have stronger image representation
ability, simpler and fewer medical images do not have much content to express. As a result,
some people find that, in the decimal scale, the segmented SOTA model has no advantage
over the lightweight UNET. Thirdly, medical images are often multimodal, such as in the
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ISLES, data on modalities such as CBF, MTT, and CBV can usually be obtained. In medical
imaging tasks, we often need to design our network to extract different modal features,
lightweight and simple UNET more operation space.

In the field of artificial precipitation enhancement effect inspection, the UNET al-
gorithm has been found to be applicable for short-term rainfall prediction in the same
region, because it has the ability to handle the above three characteristics. Firstly, the area
of interest for precipitation enhancement (artificial rainfall area) is usually specific and
localized (characteristic 1). Secondly, the number of opportunities for artificial precipitation
enhancement in a specific area is limited each year (characteristic 2), with generally only
tens of operations per year in the same area, each operation lasting for 4–7 h. Finally,
the available data for precipitation enhancement evaluation include various modal data
formats such as radar data (MCR, MTOP, CAPPI, etc.), satellite data, and real-time data
(characteristic 3). Therefore, the UNET algorithm can be used to evaluate the effect of
artificial precipitation enhancement.

3. Methods
3.1. Effect Evaluation Method Based on Deep Learning

The classical method involves determining a contrast area and an affected area, and
comparing the rainfall in these two areas. However, the comparison and affected areas
cannot be entirely consistent, which may result in less convincing evaluation results. To
address this, we propose setting the affected area as the comparison area to ensure that both
areas have the same meteorological conditions (e.g., wind speed, air temperature, and radar
data) prior to the implementation of artificial precipitation enhancement. By inverting the
deduction process under natural conditions (4–7 h), we can use it as a comparison area to
compare with the affected area. Thus, we transform the evaluation method into Figure 3.
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This paper proposes an evaluation method for artificial precipitation enhancement
effects based on deep learning. The method focuses on designing a reasonable short-term
rainfall forecasting algorithm and building a training model for natural evolution and
artificial precipitation enhancement conditions separately using historical data. After
implementing artificial precipitation enhancement in the region, the current meteorological
data can be inputted into both models to obtain rainfall predictions under natural evolution
and artificial precipitation enhancement conditions, allowing for the evaluation of artificial
precipitation enhancement effects. To verify the model’s applicability, the predicted rainfall
from the artificial precipitation enhancement model can be compared with actual rainfall.
It should be noted that the general rainfall forecast model is not applicable in this method
due to the small dataset under artificial precipitation enhancement conditions (dozens
of datasets per year). Deep learning algorithms usually require tens of thousands of
datasets for training, which can lead to poor model generalization ability or even overfitting.
Therefore, it is necessary to propose a short-term rainfall forecasting algorithm that supports
small dataset training.

3.2. UNET-GRU Algorithm

Therefore, we propose a convolution GRU algorithm that integrates UNET, as shown
in Figure 4, for short-term rainfall forecasting. The algorithm utilizes the four modes of
weather radar data with 6-min resolution (MTOP, MCR, MVIL, and CAPPI) to generate an
image, which is then processed by the UNET network to extract modal characteristics. As
different modes contain dense links, we introduce convolution GRU to better utilize the
relationship between continuous radar data and explain the nonlinearity in multimodal
data modeling. The output of the model is the grid rainfall at a specific time in a certain
area. Due to the large data volume of CAPPI data with its 24 layers, the training sequence
is not included in this experiment, as our laboratory computer is not capable of handling
such large datasets. Nonetheless, the proposed algorithm still yields satisfactory results.
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GRU (as shown in Figure 5) is a highly effective variation of the LSTM network,
featuring a simpler structure with comparable performance. As a result, it has become a
popular choice in many applications. In common with LSTM, GRU is capable of addressing
the long dependency problem in RNNs. The GRU model has only two gates: a reset gate
and an update gate. The reset gate functions similarly to LSTM’s forgetting gate, but it does
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not forget the information of the memory unit Ct−1 from the previous time step. Instead, it
forgets the information of the hidden layer unit ht−1 from the previous time step:

rt = σ(Wr·[ht−1, xt] + br) (1)
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The function of update gate is different from that of LSTM. It controls the balance be-
tween the hidden layer state ht−1 at the previous moment and the current input information.

Zt = σ(Wz·[ht−1, xt] + bz) (2)

The input information is rt · ht−1 after forgetting,

h̃t = tanh(Wh·[rt·ht−1, xt] + bh) (3)

ht after balance:
ht = (1− Zt)·ht−1 + zt·h̃t (4)

[] represents concat, · represents element-level multiplication.

3.3. Other Models

As a comparison, we trained both the UNET and CoGRU (GRU algorithm supporting
convolution operation) architectures, resulting in a total of three models compared in
this study. Table 1 presents a comparison of the models’ parameters. When examining
the standard UNET architecture and our proposed UNET-GRU architecture, it is evident
that the latter has slightly more parameters—approximately 21.6 million compared to
approximately 17.3 million.
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Table 1. Number of parameters of the compared models.

Model Parameters

UNET 17,272,577
CoGRU 2 210,701

UNET-GRU 21,555,009

3.4. Training

All three models mentioned above were trained for a maximum of 200 epochs. An
early stopping criterion was utilized, which stopped the training process if the validation
loss did not improve in the last 15 epochs. This criterion was satisfied in all training
iterations, so the maximum of 200 epochs was never reached. Additionally, a learning rate
scheduler was employed, which decreased the learning rate to one-tenth of the previous
rate when the validation loss did not improve for four epochs. The initial learning rate was
set to 0.001, and the Adam [36] optimizer with default values was used. The training was
conducted on a single NVIDIA GeForce RTX 3090 Super with 24 GB of VRAM.

3.5. Model Evaluation

The loss function used in this study is the mean squared error (MSE) between the
output images and the ground truth images. The MSE is calculated as follows:

MSE =
∑n

i=1(yi − ŷi)
2

n
(5)

where n represents the number of samples, yi is the value of the ground truth, and ŷi is
the value of the prediction. Apart from mean squared error (MSE), various performance
evaluation metrics are calculated, including precision, recall (probability of detection),
accuracy, F1-score, critical success index (CSI), false alarm rate (FAR), and Heidke skill score
(HSS). For the precipitation map dataset, these metrics are computed for rainfall greater
than a threshold of 0.5 mm/h. To achieve this, a Boolean mask is generated for each pixel
of the predicted output and target images using the specified threshold. Based on this, the
number of true positives (TP) (prediction = 1, target = 1), false positives (FP) (prediction
= 1, target = 0), true negatives (TN) (prediction = 0, target = 0), and false negatives (FN)
(prediction = 0, target = 1) can be calculated. Finally, the CSI, FAR, and HSS metrics can be
computed as follows:

CSI =
TP

TP + FN + FP
(6)

FAR =
FP

TP + FP
(7)

and
HSS =

TP× TN − FN × FP
(TP + FN)(FN + TN) + (TP + FP)(FP + TN)

(8)

The selection of the threshold of 0.5 mm/h is consistent with the works by Shi et al. [41,42]
and Xingjian et al. [43], and it can differentiate whether there is rain or not.

4. Experiments
Precipitation Map Dataset

We obtained three-dimensional radar from Swan radar from the Hubei Meteorological
Service Center, which includes MCR, MTOP, MVIL, QPE30, QPE60, and MOSAIC maps at
6-min intervals from the last four years (2017–2020) in Hubei province. The dataset consists
of approximately 1.8 million maps generated by 14 PD weather radars, with each raw
map having dimension of 1200 × 800. During the period, 177 artificial rain-enhancement
operations were conducted in Shiyan and 123 in Wuhan. The impact of artificial rainfall
generally lasts for about 7 h, as shown in Figure 6. Therefore, to train the rainfall model
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under natural conditions, we excluded the data influenced by artificial precipitation. We
extracted a map with a dimension of 288 × 288, with the longitude and latitude of the
evaluation site for artificial precipitation enhancement as the center, as the training data.
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To improve the model training, only data that meet the criteria for rainfall enhance-
ment, as shown in Table 2, can be used as training data. One issue to address is determining
the appropriate number of grid points for evaluating the rainfall enhancement criteria.
Through the analysis of data from 2017 to 2020 (as shown in Figure 7), we found that
selecting a 10 × 10 grid as the reference for rainfall enhancement criteria provides the most
suitable data. As the grid size increases, the number of eligible training data decreases.
Therefore, the optimal grid size is 10 × 10, which is consistent with the working area of
most artificial precipitation enhancement operations.

Table 2. Rainfall enhancement criteria for stratiform and cumulus mixed clouds.

Season Altitude
(Unit: m)

MCR
(Unit: dbz)

MTOP
(Unit: km)

MVIL
(Unit: kg/m3)

Spring (March to May) <1000 >20 >4 >5

Summer (June to August) <1000 >25 >5 >10

Autumn (September
to November) <1000 >20 >5 >5

Winter (December
to February) <1000 >15 >4 >5

In the data preparation stage, we normalized the values in the training and testing
sets by dividing them by the maximum value in the training set. Additionally, we cropped
the precipitation maps to use only a subset of the original image (see Figure 8). This
was because many pixels in the original image contained no data values, which was due
to the maximum range of the radar being smaller than the image size (as shown in the
black edges on the left panel of Figure 8). The rectangular area within the radar range is
1200 pixels × 800 pixels, equivalent to 1200 km by 800 km. For ease of neural network
training, we performed a central crop of size 288 pixels × 288 pixels (as shown in the
right panel of Figure 8). The crop size was determined based on the movement speed of
clouds. On average, the speed of cloud movement is 36 km per hour, with a maximum of
50–60 km per hour. The speed and direction of clouds are influenced by factors such as
wind speed, cloud height, and cloud density. In our algorithm, we selected 12 maps that
met the requirements for cloud seeding as training inputs, with a time interval of 6 min
between each map. If we do not consider the direction of movement, the maximum radius
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of cloud movement in each map can be calculated as 72 km. Therefore, we chose a size
of 144 pixels × 144 pixels for each map, which is sufficient for training. To ensure the
generalizability of the training, we doubled the length and width of each map.
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The output of the training is the rainfall of each grid point in each region. Actual grid
rainfall data is actually difficult to obtain. We usually only obtain 1-h resolution rainfall
data by radar retrieved quantitative precipitation estimation (QPE) and discrete monitoring
station rainfall data for each region. Therefore, these two 1-h resolution data must be
converted into 6-min resolution grid data for algorithm training.

At present, radar measurement of precipitation is mainly based on Z-I relationship [44–46].
That is Z = A× Ib, where Z is the radar reflection factor (unit: mm3/m6). I is rainfall
intensity (unit: mm/h). A and b are coefficients. The accuracy of quantitative precipitation
estimation depends to a large extent on the determination of A and b parameters in the
Z-I relationship. Because the precipitation properties are different in different seasons and
locations, the Z-I relationship is also different. At present, many stations still only use the
fixed Z-I relationship provided by the manufacturer to estimate ground precipitation. With
the construction of a large number of encrypted automatic weather stations, the spatial and
temporal density of precipitation observation has greatly increased. It has become a reality
to make full use of the encrypted ground precipitation observation data and the intensity
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of radar echo to carry out high-precision Z-I relationship analysis. Many domestic scholars
have also carried out relevant research. This paper proposes a specific technical scheme
based on this problem. By integrating the radar network mosaic data of daily business
applications and the precipitation observation data of the ground encrypted automatic
weather station, based on the optimization method, the local dynamic Z-I relationship
is established, and the quantitative precipitation inversion data with 6-min resolution is
obtained in real time. The optimization algorithm is divided into the following three steps:

(1) Based on the rainfall Z-I relationship, convert the 6-min radar real reflectivity fac-
tor Z in the past hour into the radar-estimated rainfall I, and then accumulate the
6-min radar-estimated rainfall I to obtain the hourly radar-estimated rainfall, so as to
compare it with the precipitation observed by automatic ground stations.

(2) In order to obtain the optimal parameters A and b for radar retrieval of precipitation,
the hourly radar-estimated precipitation is R and the ground automatic station ob-
served precipitation is G, and the error target discriminant function CTF is selected:

CTF = min

{
n

∑
i=1

[
(Ri − Gi)

2 + |Ri − Gi|
]}

(9)

In Equation (9), R is the hourly radar-estimated precipitation; G is the precipitation
observed by the automatic ground station; n is the total logarithm of radar automatic
station data matching involved in rainfall Z-I relationship fitting. In practical business
applications, in order to save calculation time and ensure that parameters A and b
change within a reasonable range, the adjustment ranges of A and b are limited to
[150.00, 400.00] and [0.80, 2.40] respectively, and the adjustment intervals are 0.10 and
0.01 respectively. For each group of A and b, a CTF can be obtained. By constantly
adjusting the combination of A and b, it is determined that the Z-I relationship of
precipitation determined by Equation (9) A and b whose error objective discriminant
function CTF reaches the minimum is optimal.

(3) Convert the precipitation Z-I relationship obtained in step (2) of the 6-min radar
reflectivity factor prediction field within the current 1 hour into precipitation, and
then accumulate it into hourly radar quantitative precipitation retrieval data to meet
the needs of precipitation inspection.

In addition, in order to quantitatively analyze the precipitation inversion error of the
dynamic Z-I relationship method, the mean error (EME), mean relative error (EMRE) and
other test parameters are calculated.

The error calculation equation is:

EME =
1
n

n

∑
i=1

(Ri − Gi) (10)

EMRE =
1
n

n

∑
i=1

|Ri − Gi|
Gi

(11)

Equations (10) and (11), Ri and Gi are the precipitation inversion value and real value
of the automatic ground weather station respectively; n is the total number of sites.

5. Results and Discussion

After training the three discussed models, we selected the model with the lowest
validation loss for each model. These best-performing models were then used to calculate
several metrics introduced in Section 3 on the test set. The models were trained, evaluated,
and tested on the dataset. In precipitation nowcasting, a common baseline is the persistence
method. The persistence model predicts the last input image of a sequence as the prediction
image, based on the assumption that the weather will not significantly change from time
point t to t + 1. Especially in nowcasting, this baseline is not easy to outperform because
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the time differences between images are so short (e.g., 2 or 6 min) that weather conditions
often remain the same [47].

5.1. Evaluation on Precipitation Map Dataset

The results obtained on the dataset are presented in Table 3. It is important to note that
the MSE values were calculated after denormalizing the model predictions to the original
rainfall (mm/6 min). The results demonstrate that every model we tested outperformed
the common persistence baseline by a significant margin on the Precipitation map dataset.
This is remarkable since, as mentioned earlier, it can be challenging to surpass this baseline
in nowcasting due to the short time differences between the input and target.

Table 3. MSE and scores on rainfall bigger than 0.5 mm/h indicating rain or no rain. Best result for
that score is in bold. A ↑ indicates that higher values for that score are good whereas a ↓ indicates
that lower scores are better.

Model MSE
↓

Accuracy
↑

Precision
↑

Recall
↑

F1
↑

CSI
↑

FAR
↓

HSS
↑

Persistence
(baseline) 1.1697 0.7264 0.7315 0.8313 0.729 0.5735 0.2736 0.4039

UNet 0.1239 0.6615 0.8530 0.7913 0.5078 0.3403 0.3385 0.3951

CoGRU 0.1542 0.6294 0.6643 0.8042 0.5216 0.3529 0.3706 0.4238

UNet-GRU 0.1182 0.6311 0.874 0.8462 0.5192 0.3506 0.3689 0.4139

Based on the figure, it is evident that the UNET-GRU model outperforms other models
in terms of capturing the development of heavy rain clusters and accurately describing
the vertical distribution of rain clusters. However, the hybrid model, which combines
the strengths of multiple models, is even more superior in performance compared to any
single model.

5.2. Evaluate the Effect of Rainfall Enhancement

We conducted a 7-h rainfall inversion based on two artificial rainfall cases implemented
in Shiyan and Wuhan, both in Hubei Province. Information regarding the rain enhancement
operation is presented in Table 4. The inversion results were compared with the actual
rainfall, as shown in Figures 9 and 10. The results indicated that the inversion accuracy
in Shiyan was higher compared to that in Wuhan. This may be attributed to the fact that
Shiyan is situated in a mountainous region and is less influenced by human activities. The
radar data are relatively stable, leading to more accurate predictions.

Table 4. Description of information related to artificial precipitation enhancement.

No. Date Rockets
(pcs)

Start
Time End Time Conditions

before op.
Conditions

after op.
Area
(km2) Effect Region

1 30 July 2017 6 05:58:10 06:52:40 Light to
moderate rain

Moderate to
heavy rain 400 good Wuhan

2 26 April 2018 4 00:06:32 00:48:22 overcast light rain 360 good Shiyan

Data from the rainfall monitoring station and the rain enhancement operation record
file (Table 4) show that the meteorological conditions in Wuhan before artificial rain oper-
ation were light to moderate rain (0.20 mm/h to 0.7 mm/h), consistent with the rainfall
predicted through deep learning in Figure 9a. Based on the natural catalytic inversion
lasting for 7 h, starting from 5:58:10 a.m. on July 30, 2017, it can be inferred that if the
artificial rain operation had not been carried out, the rainfall during the 7-h period would
have been only 3.56 mm, whereas the actual rainfall was 18.91 mm, with a residual value of
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15.35 mm (Table 5). This indicates a significant rain enhancement effect, which is consistent
with the results recorded in historical files for this artificial rain operation (Table 4).
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Table 5. Effect estimates of artificial precipitation compared with historical records.

No. Date Start Time Duration Naturally Evolved
Rainfall

Actual
Rainfall

Residual
Rainfall Effect Region

1 30 July 2017 05:58:10 7 h 3.56 mm 18.91 mm 15.35 mm good Wuhan

2 26 April 2018 00:06:32 7 h 1.05 mm 11.03 mm 9.98 mm good Shiyan
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Figure 10. Comparison of 7-h grid and average rainfall inversion for a simulated artificial rainfall
event in the Shiyan region. (a) Comparison chart of 1-h rainfall forecast and actual measurement
values for each model (lasts for 7 h). (b) Comparison of 1-h grid-based rainfall forecasts and observed
values from different models (lasts for 7 h).

Similarly, the artificial rain operation carried out in Shiyan, China on 26 April 2018
at 12:32 a.m. also shows good results. Before the operation, the weather was cloudy and
the rainfall changed only slightly. However, the rainfall began to increase in the fourth
hour and reached its peak in the sixth hour. The artificial rain operation lasted for 7 h and
produced a rainfall of 11.03 mm, while the natural evolution only produced 1.05 mm of
rainfall. This fully demonstrates the success of this artificial rain operation.

From Figures 9a and 10a, it can be observed that in the rainfall estimation algorithm,
the rainfall estimated by the UNET algorithm is generally larger than that estimated by
the UNET-GRU and GRU algorithms. The consistency of rainfall estimation by the UNET-
GRU and GRU algorithms is relatively good, but in Figure 9a, the GRU algorithm shows
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prediction distortion in the first hour, indicating that the robustness of the GRU algorithm
is inferior to that of the UNET-GRU algorithm. From Figures 9b and 10b, it can also be
observed that the UNET-GRU algorithm is superior to the other two algorithms. The
rainfall maps predicted by the GRU and UNET algorithms are blurred, while the rainfall
map predicted by the UNET-GRU algorithm has relatively high clarity.

6. Conclusions

In this study, we propose a novel evaluation method to assess the effectiveness of
artificial precipitation enhancement. Our approach involves training a weather evolution
and development model using artificial neural networks, which simulates the natural catal-
ysis process under increasing rainfall conditions. This eliminates the need for a traditional
evaluation method that requires selecting a contrast test area. Our experimental results
demonstrate that the effect of artificial precipitation enhancement can be quantitatively
evaluated by a grid, rather than relying solely on qualitative assessment, thereby making
the evaluation method more reliable and scientifically sound. To demonstrate the univer-
sality of our approach, we tested our evaluation method using two sets of artificial rainfall
data for 7-h rainfall inversion.

In some cases, the SWAN radar data used for algorithm training may be contaminated
due to terrain effects, especially in densely populated urban areas, which can lead to
an increase in prediction errors. Therefore, it is necessary to clean the radar data before
algorithm training. Additionally, the model currently has approximately 21.6 million
parameters, and training once on one piece of RTX3090 graphics card takes about 10 hours,
which is unacceptable. Therefore, optimizing the model is an aspect worth researching.
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