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Abstract: This study extensively explores the impact of climate change on meteorological droughts
within metropolises in Iran. Focused on Tehran, Mashhad, Isfahan, Karaj, Shiraz, and Tabriz, this
research employed CMIP6 climate models under varying climate change scenarios (SSPs) to forecast
severe meteorological droughts spanning the period from 2025 to 2100. The investigation utilized a
diverse set of drought indices (SPI, DI, PN, CZI, MCZI, RAI, and ZSI) to assess the drought severity
in each city. This study is crucial as it addresses the pressing concerns of rapidly decreasing water
levels in Iran’s dams, serious declines in underground aquifers, and the compounding issues of
land subsidence and soil erosion due to excessive groundwater withdrawal in the face of severe
droughts. This study culminated in the generation of box plots and heatmaps based on the results.
These visual representations elucidated the distribution of the drought values under different indices
and scenarios and provided a depiction of the probability of severe drought occurrences until the end
of the century for each city. The resulting findings serve as invaluable tools, furnishing policymakers
with informed insights to proactively manage and fortify metropolitan resilience against the evolving
challenges posed by a changing climate.

Keywords: climate change; drought; CMIP6; metropolises; Iran

1. Introduction

Drought stands as one of the most expensive natural disasters and has the capacity to
generate extensive, enduring, and often overlooked effects on agriculture, on ecosystems,
and on socioeconomic factors [1]. These consequences stem from their gradual emergence
and prolonged duration [2]. Severe drought events, intensified by the ever-growing specter
of climate change, present a profound challenge to regions dependent on stable water
resources [3]. Among those regions, the Iranian metropolises of Tehran, Mashhad, Isfahan,
Tabriz, Shiraz, and Karaj are struggling with the alarming prospect of increasingly frequent
and severe droughts. As we approach a century marked by unprecedented climate fluctua-
tions, the urgency of predicting and mitigating these upcoming challenges becomes critical
for ensuring long-term sustainability.

As evidenced by the Special Report on Extremes of the Intergovernmental Panel on Cli-
mate Change (IPCC), a growing number of regions have been facing an increasing severity,
duration, and frequency of drought events [4,5]. Drought, a natural hazard that is caused
by a long-term deficiency of precipitation or water, has been defined in multiple categories
based on different domains of the hydrological cycle or anomalous supply failures, such as
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meteorological drought, agricultural drought, hydrological drought, and socioeconomic
drought [6]. Prolonged meteorological droughts tend to further trigger hydrological, agri-
cultural, and other droughts, resulting in substantial damage to agricultural productivity,
ecosystem services, watershed systems, and drinking water supply [7,8]. As prolonged
drought leads to substantial declines in runoff and streamflow, the accumulation of surface
sediment, nutrients, and bacteria is exacerbated [9,10]. Consequently, heavy precipitation
events or floods in the post-drought period may lead to a sudden increase in concentra-
tions, resulting in extreme water quality impacts and posing significant challenges to the
sustainable management systems of water resources [11,12].

In the pursuit of sustainable urban development, acknowledging and addressing the
implications of climate change stands as a pivotal priority. Cities, as hubs of human activity,
face multifaceted challenges exacerbated by climate change, ranging from heightened
temperatures and extreme weather events to resource scarcity [13]. By integrating climate
change considerations into urban planning and development strategies, cities can bolster
their resilience, mitigate environmental risks, and ensure long-term sustainability [14].
Incorporating climate-conscious policies enables cities to adapt infrastructure, optimize
resource management, and foster eco-friendly practices, thereby enhancing livability, mini-
mizing vulnerabilities, and cultivating environmentally conscious communities [15].

A thorough examination of drought research unveils a broad array of studies, chiefly
categorized based on temporal aspects (exploring occurrences in the past, present, or future)
and delving into its multifaceted causes and consequential effects. These investigations
display a range of methodological approaches, where certain studies lean on a singular
drought index to delineate drought conditions [16–18], while others employ a multitude of
indices for a more nuanced assessment [19–21]. Additionally, certain research delves into
historical drought occurrences and the underlying causes [22–24], whereas others project
future drought scenarios through methodologies such as the statistical downscaling of
Global Climate Models (GCMs) [25–27], machine learning, AI techniques [28–30], etc. Fur-
thermore, the impact assessments of drought extend across agricultural [31], ecological [32],
and socioeconomic domains [7], reflecting the intricate interplay between water scarcity
and diverse societal sectors.

This study undertakes an investigation into the prediction of severe drought (severely
dry to extremely dry conditions) within the Iranian context, concentrating on the afore-
mentioned six major metropolises. The advanced capabilities of CMIP6 (Coupled Model
Intercomparison Project Phase 6) multi-model simulations are employed to undertake
a comprehensive study spanning the entirety of the 21st century. The research aims to
enhance understanding of the intricate dynamics of severe drought occurrences in Iran’s
metropolises. The significance of this research is not only found in its temporal scope,
which encompasses the challenges and changes these metropolises may face until the end
of the century, but also in its utilization of various climate change scenarios (Shared Socioe-
conomic Pathways (SSPs)). Furthermore, recognizing the limitations of relying on a solitary
index to furnish actionable insights for decision-making, this study employs a diverse array
of drought indices. This multifaceted approach aims to comprehensively evaluate and
assess severe drought occurrences, acknowledging the intricate and multifaceted nature of
these climatic events. Considering the above, the novelty of this research can be highlighted
in several aspects:

1. Focus on Iran’s metropolises: While previous studies mostly investigated specific
cities within Iran, this study uniquely concentrates on the six metropolises of the
country. This specific focus allows for a deeper understanding of severe drought
occurrences in densely populated urban areas, which may face unique challenges
compared to rural or less densely populated areas.

2. Utilization of CMIP6 GCMs: This study stands out by utilizing the advanced capa-
bilities of CMIP6 multi-model simulations, which represent the latest generation of
climate models. Very few studies have incorporated CMIP6 GCMs due to their recent
development. By employing these cutting-edge models, this research contributes to
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advancing the understanding of climate dynamics and their implications for severe
drought in Iran’s metropolises.

3. Employment of seven drought indices: Unlike many previous studies that have used
a limited number of drought indices, this research employs seven drought indices.
The utilization of multiple indices enhances the robustness and reliability of this
study’s findings.

4. Investigation of cumulative dry days: This approach provides insights into the persis-
tence and cumulative impact of drought events, which is essential for understanding
their long-term implications for Iran’s metropolises. Additionally, this investigation
sheds light on how different GCMs predict dry days, offering a comparative analysis
of their projections.

The framework of this study is shown in Figure 1.
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2. Materials and Methods
2.1. Iran’s Metropolises and Observed Data

Iran is an expansive country that spans various geographic regions, and its diverse
landscapes contribute to a wide array of climate types. From the arid deserts in the central
regions to the humid subtropical areas along the Caspian Sea, Iran showcases a remarkable
climatic diversity. This research focused on six metropolises in Iran, each showcasing a
distinct climate profile: Tehran, Mashhad, Isfahan, Karaj, Shiraz, and Tabriz.

• Tehran:

- Geographic Coordinates: 35.6895◦ N, 51.3890◦ E.
- Climate: Situated in the northern part of Iran, Tehran experiences a cold semi-

arid climate. It is nestled in the foothills of the Alborz Mountains, which shield
the city from the harsher climates of central Iran. Summers are hot and dry,
with temperatures often exceeding 35 ◦C, while winters are relatively mild, with
temperatures occasionally dropping below freezing. Tehran receives most of its
precipitation during the winter months, mainly in the form of rain, but snowfall
is not uncommon, particularly in the higher elevations of the city.
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- Population: Approximately 8 million.

• Mashhad:

- Geographic Coordinates: 36.2605◦ N, 59.6168◦ E.
- Climate: Located in northeastern Iran, Mashhad experiences a cold semi-arid

climate. Situated on a plateau surrounded by mountains, the city’s climate is
influenced by its elevation and proximity to the desert regions. Summers are
hot, with temperatures often exceeding 35 ◦C (95◦F), while winters are cold,
with temperatures occasionally dropping below freezing. Snowfall is relatively
common during the winter months.

- Population: Approximately 3 million.

• Isfahan:

- Geographic Coordinates: 32.6546◦ N, 51.6680◦ E.
- Climate: Located in central Iran, Isfahan features a cold desert climate. Situated in

a vast, arid plain surrounded by mountains, the city experiences hot summers and
cold winters. Summers are characterized by high temperatures, often exceeding
40 ◦C, while winters are relatively mild, with temperatures occasionally dropping
below freezing. Isfahan receives minimal precipitation throughout the year, with
most rainfall occurring during the winter months.

- Population: Approximately 2 million.

• Karaj:

- Geographic Coordinates: 35.8355◦ N, 50.9915◦ E.
- Climate: Located northwest of Tehran, Karaj shares a similar climate to its neigh-

boring capital. Situated in the foothills of the Alborz Mountains, the city expe-
riences a cold semi-arid climate. Summers are hot and dry, while winters are
cool and rainy, with occasional snowfall. Karaj receives most of its precipitation
during the winter months, primarily in the form of rain.

- Population: Approximately 1.9 million.

• Shiraz:

- Geographic Coordinates: 29.5926◦ N, 52.5836◦ E.
- Climate: Located in southwestern Iran, Shiraz experiences a cold semi-arid cli-

mate. Situated on a plateau surrounded by mountains, the city’s climate is
influenced by its elevation and proximity to the Zagros mountains. Summers are
hot and dry, with temperatures often exceeding 35 ◦C, while winters are relatively
mild, with temperatures rarely dropping below freezing. Shiraz receives most of
its precipitation during the winter months, primarily in the form of rain.

- Population: Approximately 1.8 million.

• Tabriz:

- Geographic Coordinates: 38.0962◦ N, 46.2738◦ E.
- Climate: Located in northwestern Iran, Tabriz experiences a humid continental

climate. Situated at the foothills of the Sahand mountains, the city’s climate
is influenced by its elevation and proximity to the Caspian Sea. Summers are
warm and dry, while winters are cold and snowy, with temperatures occasionally
dropping below freezing. Tabriz receives most of its precipitation during the
winter months, primarily in the form of snow.

- Population: Approximately 1.5 million.

These cities’ varying climates are a reflection of Iran’s climatic diversity, influenced
by its vast topography and geographical location. The geographic locations of these
metropolises are shown in Figure 2. The observed records of daily precipitation and
average temperature data were acquired from the Islamic Republic of Iran Meteorological
Organization [33], spanning from 1951 to 2023 for Tehran, Mashhad, Isfahan, Shiraz, and
Tabriz, and from 1985 to 2023 for Karaj, due to the availability of the data.
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2.2. GCMs and Scenarios

GCMs play a vital role in forecasting future climate conditions under varying emis-
sion scenarios. These models, known for their universal applicability [34], exhibit varied
simulation performances across different climatic elements and geographical regions. This
diversity in outcomes underscores the nuanced nature of GCMs, highlighting the need
for careful consideration when interpreting their projections. This study utilized 35 GCM
simulations derived from the Coupled Model Intercomparison Project Phase 6 (CMIP6)
datasets. These datasets were accessed through the NASA Earth Exchange Global Daily
Downscaled Projections (NEX-GDDP-CMIP6) portal [35], which provides a platform for
obtaining high-resolution, bias-corrected, and downscaled climate data. The use of multiple
simulations from the CMIP6 ensemble offers a comprehensive view of potential climate
futures, taking into account a wide range of GCM outputs. This approach enhances the ro-
bustness of this study by incorporating a diverse array of climate scenarios and projections.
The climate data were obtained in the NetCDF format, spanning from 1951 to 2015, and
were extracted for designated geographic locations. Table 1 details the GCMs employed
in this study, along with their respective resolutions and the scenarios each model was
subjected to.

Table 1. GCMs used in this study and the corresponding scenarios.

# Model Resolution (lon × lat) Scenarios

1 ACCESS-CM2 192 × 144 SSP126, SSP245, SSP370, and SSP585

2 ACCESS-ESM1-5 192 × 145 SSP126, SSP245, SSP370, and SSP585

3 BCC-CSM2-MR 320 × 160 SSP126, SSP245, SSP370, and SSP585

4 CanESM5 128 × 64 SSP126, SSP245, SSP370, and SSP585

5 CESM2 288 × 192 SSP126, SSP245, SSP370, and SSP585

6 CESM2-WACCM 288 × 192 SSP245 and SSP585

7 CMCC-CM2-SR5 288 × 192 SSP126, SSP245, SSP370, and SSP585
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Table 1. Cont.

# Model Resolution (lon × lat) Scenarios

8 CMCC-ESM2 288 × 192 SSP126, SSP245, SSP370, and SSP585

9 CNRM-CM6-1 720 × 360 SSP126, SSP245, SSP370, and SSP585

10 CNRM-ESM2-1 256 × 128 SSP126, SSP245, SSP370, and SSP585

11 EC-Earth3 512 × 256 SSP126, SSP245, SSP370, and SSP585

12 EC-Earth3-Veg-LR 320 × 160 SSP126, SSP245, SSP370, and SSP585

13 FGOALS-g3 180 × 80 SSP126, SSP245, SSP370, and SSP585

14 GFDL-CM4 360 × 180 SSP245 and SSP585

15 GFDL-CM4_gr2 720 × 360 SSP245 and SSP585

16 GFDL-ESM4 360 × 180 SSP126, SSP245, SSP370, and SSP585

17 GISS-E2-1-G 144 × 90 SSP126, SSP245, SSP370, and SSP585

18 HadGEM3-GC31-LL 192 × 144 SSP126, SSP245, and SSP585

19 HadGEM3-GC31-MM 432 × 324 SSP126 and SSP585

20 IITM-ESM 192 × 94 SSP126, SSP245, SSP370, and SSP585

21 INM-CM4-8 180 × 120 SSP126, SSP245, SSP370, and SSP585

22 INM-CM5-0 180 × 120 SSP126, SSP245, SSP370, and SSP585

23 IPSL-CM6A-LR 144 × 143 SSP126, SSP245, SSP370, and SSP585

24 KACE-1-0-G 192 × 144 SSP126, SSP245, SSP370, and SSP585

25 KIOST-ESM 192 × 96 SSP126, SSP245, and SSP585

26 MIROC6 256 × 128 SSP126, SSP245, SSP370, and SSP585

27 MIROC-ES2L 128 × 64 SSP126, SSP245, SSP370, and SSP585

28 MPI-ESM1-2-HR 384 × 192 SSP126, SSP245, SSP370, and SSP585

29 MPI-ESM1-2-LR 192 × 96 SSP126, SSP245, SSP370, and SSP585

30 MRI-ESM2-0 320 × 160 SSP126, SSP245, SSP370, and SSP585

31 NESM3 192 × 96 SSP126, SSP245, and SSP585

32 NorESM2-LM 144 × 96 SSP126, SSP245, SSP370, and SSP585

33 NorESM2-MM 288 × 192 SSP126, SSP245, SSP370, and SSP585

34 TaiESM1 288 × 192 SSP126, SSP245, SSP370, and SSP585

35 UKESM1-0-LL 192 × 144 SSP126, SSP245, SSP370, and SSP585

SSPs serve as climate change scenarios projecting global socioeconomic changes up
to 2100, as outlined in the IPCC Sixth Assessment Report on Climate Change in 2021 [4].
These pathways are instrumental in deriving greenhouse gas emissions scenarios aligned
with diverse climate policies. SSPs offer narratives that articulate alternative socioeconomic
trajectories. These storylines provide qualitative descriptions interlinking various elements
within the narratives. Moreover, they include quantitative data associated with scenarios
concerning the national population, urbanization, and the GDP (per capita) [36].

• SSP1—Choosing the sustainable route (minimal hurdles for mitigation and adaptation):

The world is shifting towards sustainability, balancing inclusive development with
environmental constraints. Shared global resources are managed better, education and
healthcare investments reshape demographics, and economic growth now emphasizes
overall human well-being. This focus is reducing inequality globally and within nations,
steering consumption toward minimal material growth and lower resource use.

• SSP2—Middle of the road (medium challenges to mitigation and adaptation):
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The world largely mirrors historical trends in social, economic, and technological
norms. Disparities persist in development and income growth among nations. Efforts
towards sustainable development progress incrementally. Environmental degradation con-
tinues, with sporadic improvements, resulting in a slight decrease in resource consumption.
Global population growth stabilizes in the latter half of the century. Income inequality
improves slowly, and challenges in reducing the vulnerability to societal and environmental
changes persist.

• SSP3—Regional rivalry:

Nations prioritize domestic and regional issues due to resurging nationalism, competi-
tiveness, and security concerns. Policies focus on national and regional security, diverting
resources from broader development goals to achieve energy and food security. Declining
investments in education and technology slow economic growth and foster resource-
intensive consumption, worsening inequality. Developed countries face low population
growth, while developing nations experience higher rates. Limited international attention
to environmental problems results in severe degradation in specific regions, complicating
mitigation and adaptation efforts.

• SSP4—Inequality:

Challenges for adapting to changes are significant while mitigation faces minimal
hurdles. Inequalities widen due to uneven investments in human capital, creating global
social divisions. A divide emerges between interconnected, knowledge-driven societies
and fragmented, low-income communities engaged in less advanced industries. Social
cohesion weakens, fostering conflict. High-tech sectors advance, while the energy sector
diversifies between carbon-intensive and low-carbon sources. Environmental policies
primarily address local issues in middle- and high-income regions.

• SSP5—Fossil fuel-fueled development:

The world prioritizes competitive markets and innovation for rapid technological
advancement and human capital growth, aiming for sustainability. Despite extensive
investment in healthcare and education, there is the widespread use of fossil fuels and
resource-intensive lifestyles, rapidly expanding the global economy. The global population
peaks and starts declining, while local environmental issues like air pollution are well man-
aged. Confidence exists in governing social and ecological systems, including considering
geo-engineering interventions if needed.

2.3. Drought Indices

Several drought indicators have been developed to describe and identify various
forms of drought. Standardized drought indicators are frequently applied to assess the
diverse types of drought, enabling comparisons across various timeframes and geographic
extents [37]. Drought indices used in this study, accompanied by their respective classifica-
tions are listed in Table 2. Further elucidation regarding these indices is provided below.

Table 2. Drought indices used in this study (Standardized Precipitation Index (SPI), Deciles Index
(DI), Percent of Normal (PN) Precipitation, China Z-Index (CZI), Modified China Z-Index (MCZI),
Rainfall Anomaly Index (RAI), Z-score Index (ZSI)), and their classifications.

SPI/CZI/MCZI PN DI RAI ZSI

Range Classification Range Classification Range Classification Range Classification Range Classification

2.0+ Extremely wet 120+ Very wet 9–10 Very wet 4+ Extremely wet 2.0+ Extremely wet

1.5 to 1.99 Very wet 100 to 120 Wet 7–8 Wet 2 to 4 Very wet 1.5 to 1.99 Very wet

1.0 to 1.49 Moderately wet 80 to 100 Normal 5–6 Near normal 0 to 2 Wet 1.0 to 1.49 Moderately wet

−0.99 to 0.99 Near normal 70 to 80 Slightly dry 3–4 Dry −2 to 0 Dry −0.99 to 0.99 Near
normal

−1.0 to −1.49 Moderately dry 55 to 70 Moderately dry 1–2 Severely dry −4 to −2 Severely dry −1.0 to −1.49 Moderately dry

−1.5 to −1.99 Severely dry 40 to 55 Severely dry −4 and less Extremely dry −1.5 to −1.99 Severely dry

−2.0 and less Extremely dry 40 and less Extremely dry −2.0 and less Extremely dry
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2.3.1. Standardized Precipitation Index (SPI)

The SPI index is widely used to analyze and understand meteorological droughts
across various periods. It was developed in 1993 by researchers at Colorado State Univer-
sity to improve water supply monitoring in Colorado [38]. The SPI’s strength lies in its
adaptability, allowing for comparisons across different climate regions. It achieves this by
standardizing precipitation data, making it follow a specific pattern based on statistical
models. The SPI begins with the raw precipitation data, which are inherently unpredictable.
To make this data more manageable, mathematical techniques such as gamma or Pearson
Type III distributions are applied, transforming the data into a predictable, normal distribu-
tion. The resultant SPI values span from +2.0 to −2.0. Given the possibility of precipitation
data conforming to a gamma distribution, the calculation of the SPI entails the utilization
of the probability density function inherent to the gamma distribution:

g(x) =
1

βαΓ(α)
xα−1e

−x
β for x > 0 (1)

where the gamma function is denoted by Γ, where x represents the quantity of precipitation
(x > 0), (α > 0) stands as the shape parameter, and (β > 0) represents the scale parameter. The
SPI then quantifies how far the observed precipitation deviates from the long-term average
in terms of standard deviations. The positive SPI values indicate higher than average
precipitation, while the negative values signify below average precipitation. This versatility
makes the SPI suitable for monitoring both dry and wet conditions. It is important to
have a dataset spanning at least 30 years for accurate SPI calculations, emphasizing the
significance of reliable data [39].

2.3.2. Deciles Index (DI)

The DI index, introduced by Gibbs and Maher (1967) [40], provides a method for as-
sessing monthly precipitation levels based on a long-term record of data. The DI calculation
involves several steps. Initially, the monthly precipitation totals are sorted in descending
order to construct a cumulative frequency distribution. This distribution is then divided
into ten parts, each representing a tenth of the deciles. These deciles are subsequently
organized into five groups, with two deciles assigned to each group. The classification is
based on the percentage of precipitation relative to the long-term record (Equation (2)).

DECn = Per(Pm, n)
DIi,j = n i f DECn−1 < Pi,j ≤ DECn

(2)

The term DECn represents the deciles associated with the value of n, where n takes on
values such as 10, 20, . . ., 90. Per signifies the percentile function, and Pm corresponds to
the rainfall observed in month m. The DI index offers a straightforward way to assess the
deviation of current precipitation conditions from long-term averages. This information
is valuable for understanding the relative wetness or dryness of a given period, aiding in
various applications, including drought monitoring and water resource management [41].

2.3.3. Percent of Normal (PN) Precipitation

The PN index is an easy and straightforward tool for quantifying drought conditions.
It is computed as the ratio of the normal precipitation (pi) to the observed precipitation (p),
expressed as a percentage. To obtain a meaningful PN index, a minimum of 30 years of
precipitation data is required, making it suitable for long-term drought assessments [42].
The calculation of the PN drought index at a specific station is calculated according to the
following formula:

PN =
pi
p
× 100 (3)

This formula allows for the straightforward derivation of the PN index, making it a
valuable tool for gaining insights into precipitation anomalies and long-term drought patterns.
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2.3.4. China Z-Index (CZI) and Modified China Z-Index (MCZI)

The CZI index is based on the Wilson–Hilferty cube root transformation, a method
introduced by Wilson and Hilferty (1931) [43]. Assuming that the precipitation follows the
Pearson Type III distribution, the following equations compute the CZI.

σ =

√
1
n

n

∑
i=1

(xi − x)2 (4)

Cs =
∑n

i=1(xi − x)2

n × σ3 (5)

CZI =
6

Cs
(

Cs

2
ZScore + 1)

1
3
− 6

Cs
+

Cs

6
(6)

where Cs represents the coefficient of skewness and σ denotes the standard deviation
derived from a set of n observations. The MCZI index is calculated similarly to the CZI, but
it employs the median of the precipitation data instead of the mean for its calculation [39].

2.3.5. Rainfall Anomaly Index (RAI)

The RAI index was introduced by Van Rooy (1965) [44]. It functions as a ranking
method to designate the extent of positive and negative precipitation, assigning values
between +3 and −3. The RAI is computed by using the following equations:

RAI = 3
[

p − p
m − p

]
(7)

If p < p, then

RAI = −3
[

p − p
X − p

]
(8)

where p represents the individual precipitation values and p denotes the mean precipitation
value. Additionally, m stands for the mean of the top ten maximum precipitation values and
X signifies the mean of the bottom ten minimum precipitation values within the dataset.

2.3.6. Z-Score Index (ZSI)

The ZSI index offers a direct method for drought assessment, differing from techniques
that entail converting precipitation data into distributions such as Pearson Type III or
Gamma distribution [39]. Its calculation involves a straightforward equation, contributing
to its user-friendly and accessible nature. The index is derived from the following equation:

ZSI =
(x − x)

σ
(9)

where X represents the observed precipitation value, x signifies the long-term mean of
precipitation, and σ denotes the standard deviation of precipitation.

2.4. Statistical Methods
2.4.1. Mann–Kendall (M-K) Trend Analysis

The M-K trend test, developed by Mann (1945) [45] and Kendall (1975) [46], is a
non-parametric method that holds applicability across various data distributions. This
test discerns the presence of a monotonic trend (whether it ascends or descends) within a
dataset across time [47]. The M-K method stands out for its independence from specific
data probability distributions, exhibiting robustness against outliers or skewed distribu-
tions [48,49]. This resilience to outliers renders it a prevalent choice in the analysis of
hydrometeorological time series data. For a given time series {Xi, i = 1, 2, . . ., n}, the null
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hypothesis H0 assumes it is independently distributed, and the alternative hypothesis H1
is that there exists a monotonic trend. The test statistic S is given by the following:

S =
n−1

∑
i=1

n

∑
j=i+1

sgn
(
xj − xi

)
(10)

where Xi and Xj are the values of sequence i and j and n is the length of the time series.
Assuming ( xj − xi

)
= θ, the value of sgn(θ) and the variance are computed as follows:

sgn(θ) =


+1 i f θ > 0
0 i f θ = 0
−1 i f θ < 0

(11)

var(s) =
n(n − 1)(2n + 5)− ∑m

i=1 Tii(i − 1)(2i + 5)
18

(12)

where Ti is the number of data in the tied group and m is the number of groups of tied
ranks. The standardized test statistic Z is computed by the following:

Z =


S−1√
var(S)

i f S > 0

0 i f S = 0
S+1√
var(S)

i f S < 0
(13)

Positive Z values signify increasing trends, while negative Z values indicate decreas-
ing trends. The assessment of trends occurs at a designated α significance level. When
|Z|>|Z1− α

2
| (for the two-tailed test) or |Z|>|Z1−α| (for the one-tailed test), the null

hypothesis is rejected, signifying a statistically significant trend within the time series.
In this study, the null hypothesis was tested at a 95% confidence level, adhering to the
standard significance level used in many statistical evaluations [50,51].

2.4.2. Nash–Sutcliffe (NS) and Modified Nash–Sutcliffe (MNS) Models Efficiency Coefficient

The NS is a normalized statistic that determines the relative magnitude of the residual
variance (‘noise’) compared to the measured data variance (‘information’) [52]. The NS
indicates how well the plot of the observed versus simulated data fits the 1:1 line (Equation
(14)). On the other hand, the MNS offers a heightened sensitivity in identifying substantial
over- or under-predictions compared to the standard square form of the NS. This modifica-
tion becomes particularly relevant when j equals 1, markedly mitigating the overestimation
of the peak values [53]. This methodological adjustment stands pivotal in refining our
understanding of the predictive accuracy, especially in situations where the forecasting is
complicated and the models have high uncertainties. A more detailed and accurate way to
evaluate the model is achieved by leveraging the parameter j within the MNS formulation,
enabling a more precise assessment of the model performance (Equation (15)).

NS = 1 − ∑i(yi − ŷi)
2

∑i(yi − y)2 (14)

MNS = 1 − ∑i|yi − ŷi|j

∑i|yi − y|j
(15)

where yi and ŷ are the observed and simulated variables, respectively; the bar indicates the
average, and i is the ith measured or simulated value. The NS and MNS functions exhibit
a continuum spanning from negative infinity to 1, where a score of 1 signifies an exact
correspondence between the simulated and observed data. Values within the range of 0
to 1 denote the proximity between simulated and observed values, while scores below 0
indicate a lack of predictive capacity within the model [54].
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3. Results and Discussion

Iran, as the Middle East’s foremost emitter and the world’s seventh-largest contribu-
tor of greenhouse gases, owes its significant emissions to the substantial production and
consumption of oil and gas, coupled with rapid urbanization [55]. Figure 3 illustrates the
historical trends in the average temperature and precipitation across Iran’s metropolitan ar-
eas, providing clear evidence of the country’s susceptibility to climate change. This climatic
shift has caused a dramatic decrease in the water levels of dams essential for the supply
of water in Iran, a significant depletion of underground aquifers, and the consequential
land subsidence and soil erosion, all of which are exacerbated by the over-extraction of
groundwater amidst persistent and severe drought conditions. The figure demonstrates a
steady increase in average temperatures across all cities, signaling a universal warming
trend. However, precipitation patterns were more variable, with no clear uniform trend
emerging across the dataset. To facilitate a nuanced analysis of these climatic trends, the M-
K trend test was applied. The test was employed to ascertain the presence and significance
of trends in the average temperature and precipitation data for each city.
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Figure 3. (a) Historical average temperature trends, and (b) historical precipitation trends in each city.

The results derived from the application of the M-K test are presented in Table 3. The
statistical evidence provided by the test further substantiates the visual trends observed
in the figures, thus offering a comprehensive view of the climatic trends that are shaping
the environment of these significant Iranian urban centers. According to Table 3, at a
95% confidence interval, all cities exhibited positive Z values, indicating a clear upward
trend in temperatures, consistent with the general expectations of global warming patterns.
In contrast, the precipitation data presented a more complex picture. At the same 95%
confidence interval, only the city of Tabriz demonstrated a statistically significant trend,
which was a decrease in precipitation. This downward trend aligns with concerns over
increased aridity and water scarcity issues in the region. However, when considering
confidence intervals other than 95%, the Z values suggested varied trends for precipitation
in other cities. Specifically, Tehran and Isfahan showed upward trends in precipitation,
whereas Mashhad, Karaj, and Shiraz exhibited downward trends. These mixed results
indicate that precipitation patterns are less consistent than temperature trends and may be
influenced by a range of local and regional factors, such as geography, urban development,
and atmospheric conditions.

In the subsequent phase of this study, a meticulous comparison was carried out
between the observed climatic data and the daily simulations generated by the GCMs.
This step was crucial to determine the precision with which these models could replicate
the real-world trends of average temperature and precipitation in the cities under study.
The core objective of this comparison was to identify the GCMs that were most successful
in mirroring the observed climatic patterns. To evaluate the accuracy of the models’
simulations against the actual observed data, the NS efficiency was employed, as defined
in Equation (14). Given the notable uncertainties that typically accompany precipitation
simulations, a more robust metric, the MNS efficiency, was utilized with the parameter
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j set to 1, in accordance with Equation (15). The results of this extensive comparison are
presented in Table 4. The table employs a color-coded system to simplify the interpretation
of the NS and MNS efficiency values. The values that indicate a higher efficiency are
marked in green, denoting a strong correlation with the observed data. The moderate
values are indicated in yellow, and the lower values, suggesting a weaker correlation, are
in red. Among the entire suite of 35 GCMs examined, several demonstrated a particularly
high degree of accuracy. The models that were most consistent with the observed data for
both precipitation and average temperature trends across the cities were ACCESS-ESM1-5,
CNRM-CM6-1, CNRM-ESM2-1, GISS-E2-1-G, IPSL-CM6A-LR, KIOST-ESM, MIROC-ES2L,
and MRI-ESM2-0. These models distinguished themselves as the most reliable and were
thus selected for use in future climate projections within the context of this research. The
other models, which did not perform as well, were excluded from further analysis. This
rigorous process of model selection is designed to ensure that subsequent climate forecasts
are built upon a solid and credible base of empirical accuracy. In the body of existing
research, other researchers have applied identical GCMs as those utilized in this study to
explore various global regions [56–63].

Table 3. The M-K trend test results.

City Variable N M-K Statistics Standard Error Z Value Prob > |Z| Alpha Sgn Trend

Tehran
Avg. Temp. 72 1494 205.71 7.26 3.93 × 10−13 0.05 1 Upward

Prec. 72 90 205.71 0.43 0.67 0.05 0 -

Mashhad
Avg. Temp. 72 1526 205.71 7.41 1.23 × 10−13 0.05 1 Upward

Prec. 72 −102 205.71 −0.49 0.62 0.05 0 -

Isfahan
Avg. Temp. 72 1472 205.71 7.15 8.62 × 10−13 0.05 1 Upward

Prec. 72 180 205.71 0.87 0.38 0.05 0 -

Karaj
Avg. Temp. 38 159 79.54 1.99 0.05 0.05 1 Upward

Prec. 38 −5 79.54 −0.05 0.96 0.05 0 -

Shiraz
Avg. Temp. 72 1448 205.71 7.03 2 × 10−12 0.05 1 Upward

Prec. 72 −272 205.71 −1.32 0.19 0.05 0 -

Tabriz
Avg. Temp. 72 1300 205.71 6.31 2.71 × 10−10 0.05 1 Upward

Prec. 72 −544 205.71 −2.64 0.01 0.05 1 Downward

Table 4. The NS and MNS efficiency values for observed vs. simulated data.

GCM Variable Tehran Karaj Tabriz Mashhad Isfahan Shiraz Average

Temp (NS) 0.94 0.93 0.92 0.91 0.94 0.92 0.93
ACCESS-CM2

PCP (MNS) 0.18 0.10 −0.11 0.18 −0.09 0.21 0.08

Temp (NS) 0.95 0.93 0.93 0.91 0.94 0.92 0.93
ACCESS-ESM1-5

PCP (MNS) 0.20 0.15 −0.10 0.20 0.01 0.25 0.12

Temp (NS) 0.94 0.93 0.93 0.90 0.94 0.92 0.93
BCC-CSM2-MR

PCP (MNS) 0.18 0.11 −0.10 0.18 −0.06 0.22 0.09

Temp (NS) 0.94 0.94 0.92 0.91 0.94 0.93 0.93
CanESM5

PCP (MNS) 0.19 0.08 −0.06 0.19 −0.05 0.20 0.09

Temp (NS) −1.45 −1.51 −1.45 −1.40 −1.45 −1.42 −1.45
CESM2

PCP (MNS) −0.37 −0.40 −0.66 −0.49 −0.53 −0.27 −0.45

Temp (NS) −1.45 −1.49 −1.46 −1.40 −1.46 −1.43 −1.45
CESM2-WACCM

PCP (MNS) −0.34 −0.42 −0.66 −0.46 −0.50 −0.26 −0.44
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Table 4. Cont.

GCM Variable Tehran Karaj Tabriz Mashhad Isfahan Shiraz Average

Temp (NS) 0.71 0.78 0.82 0.71 0.82 0.80 0.77
CMCC-CM2-SR5

PCP (MNS) 0.11 0.09 −0.14 0.14 −0.15 0.12 0.03

Temp (NS) 0.95 0.93 0.93 0.92 0.94 0.93 0.93
CMCC-ESM2

PCP (MNS) 0.16 0.12 −0.14 0.08 −0.07 0.13 0.05

Temp (NS) 0.94 0.93 0.92 0.90 0.93 0.92 0.92
CNRM-CM6-1

PCP (MNS) 0.20 0.13 −0.07 0.21 0.01 0.26 0.12

Temp (NS) 0.93 0.92 0.90 0.90 0.92 0.91 0.91
CNRM-ESM2-1

PCP (MNS) 0.24 0.12 −0.10 0.21 −0.06 0.21 0.10

Temp (NS) 0.93 0.93 0.92 0.91 0.92 0.91 0.92
EC-Earth3

PCP (MNS) 0.13 0.03 −0.15 0.12 −0.02 0.19 0.05

Temp (NS) 0.93 0.93 0.92 0.91 0.93 0.91 0.92
EC-Earth3-Veg-LR

PCP (MNS) 0.13 0.09 −0.15 0.14 −0.06 0.18 0.06

Temp (NS) 0.79 0.78 0.78 0.78 0.80 0.78 0.79
FGOALS-g3

PCP (MNS) 0.15 0.13 −0.06 0.17 −0.02 0.15 0.09

Temp (NS) 0.79 0.77 0.78 0.77 0.80 0.78 0.78
GFDL-CM4

PCP (MNS) 0.12 0.04 −0.18 0.11 −0.06 0.20 0.04

Temp (NS) 0.80 0.79 0.79 0.78 0.80 0.78 0.79
GFDL-CM4_gr2

PCP (MNS) 0.14 0.07 −0.13 0.14 −0.04 0.20 0.06

Temp (NS) 0.80 0.78 0.80 0.79 0.81 0.78 0.79
GFDL-ESM4

PCP (MNS) 0.14 0.07 −0.16 0.16 −0.07 0.21 0.06

Temp (NS) 0.95 0.93 0.93 0.92 0.94 0.92 0.93
GISS-E2-1-G

PCP (MNS) 0.21 0.16 −0.07 0.23 0.00 0.21 0.12

Temp (NS) −1.16 −1.60 −1.24 −1.08 −1.18 −1.12 −1.23
HadGEM3-GC31-LL

PCP (MNS) −0.37 −0.54 −0.53 −0.42 −0.57 −0.24 −0.45

Temp (NS) −1.15 −1.62 −1.25 −1.09 −1.18 −1.12 −1.23
HadGEM3-GC31-MM

PCP (MNS) −0.33 −0.51 −0.52 −0.38 −0.53 −0.21 −0.41

Temp (NS) 0.94 0.93 0.92 0.90 0.93 0.93 0.93
IITM-ESM

PCP (MNS) 0.17 0.06 −0.11 0.20 −0.04 0.22 0.08

Temp (NS) 0.95 0.93 0.93 0.92 0.94 0.92 0.93
INM-CM4-8

PCP (MNS) 0.10 0.00 −0.15 0.16 −0.06 0.15 0.03

Temp (NS) 0.95 0.94 0.93 0.92 0.94 0.92 0.93
INM-CM5-0

PCP (MNS) 0.15 0.11 −0.14 0.17 0.01 0.15 0.08

Temp (NS) 0.94 0.93 0.92 0.90 0.93 0.91 0.92
IPSL-CM6A-LR

PCP (MNS) 0.20 0.16 −0.08 0.23 −0.01 0.19 0.12

Temp (NS) −1.16 −1.60 −1.26 −1.07 −1.19 −1.13 −1.23
KACE-1-0-G

PCP (MNS) −0.18 −0.36 −0.39 −0.31 −0.82 −0.26 −0.39

Temp (NS) 0.95 0.94 0.93 0.93 0.94 0.93 0.94
KIOST-ESM

PCP (MNS) 0.20 0.14 −0.08 0.19 −0.07 0.22 0.10

Temp (NS) 0.94 0.93 0.93 0.91 0.94 0.92 0.93
MIROC6

PCP (MNS) 0.18 0.08 −0.10 0.18 −0.06 0.17 0.08

Temp (NS) 0.95 0.93 0.94 0.93 0.94 0.92 0.93
MIROC-ES2L

PCP (MNS) 0.25 0.12 −0.07 0.28 0.02 0.21 0.14

Temp (NS) 0.95 0.93 0.93 0.91 0.94 0.92 0.93
MPI-ESM1-2-HR

PCP (MNS) 0.11 0.04 −0.18 0.14 −0.03 0.17 0.04
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Table 4. Cont.

GCM Variable Tehran Karaj Tabriz Mashhad Isfahan Shiraz Average

Temp (NS) 0.95 0.93 0.93 0.90 0.94 0.92 0.93
MPI-ESM1-2-LR

PCP (MNS) 0.16 0.07 −0.14 0.12 −0.12 0.14 0.04

Temp (NS) 0.94 0.93 0.93 0.90 0.93 0.92 0.92
MRI-ESM2-0

PCP (MNS) 0.19 0.07 −0.07 0.18 −0.01 0.25 0.10

Temp (NS) 0.91 0.87 0.88 0.88 0.90 0.89 0.89
NESM3

PCP (MNS) 0.17 0.07 −0.15 0.10 −0.15 0.12 0.03

Temp (NS) −1.42 −1.52 −1.42 −1.33 −1.42 −1.39 −1.42
NorESM2-LM

PCP (MNS) −0.33 −0.42 −0.61 −0.44 −0.55 −0.30 −0.44

Temp (NS) −1.41 −1.48 −1.43 −1.32 −1.41 −1.38 −1.41
NorESM2-MM

PCP (MNS) −0.36 −0.36 −0.61 −0.46 −0.52 −0.27 −0.43

Temp (NS) −1.70 −1.69 −1.57 −1.43 −1.40 −1.37 −1.53
TaiESM1

PCP (MNS) −0.37 −0.47 −0.62 −0.50 −0.57 −0.29 −0.47

Temp (NS) −1.17 −1.65 −1.25 −1.09 −1.21 −1.16 −1.25
UKESM1-0-LL

PCP (MNS) −0.35 −0.53 −0.51 −0.39 −0.58 −0.24 −0.43
Strong correlation: Green; Moderately correlated: Yellow; Weak correlation: Red.

In the next step, this research advanced to the stage of projecting future climate
conditions. Projections were made for the average temperature and precipitation using the
selected GCMs, under the SSP126, SSP245, SSP370, and SSP585 scenarios. The projections
were aimed at understanding potential future severe drought conditions. To assess the
drought conditions, the SPI, DI, PN, CZI, MCZI, RAI, and ZSI indices were used. Each
index offers a different perspective on the drought conditions, using a combination of
average temperature and precipitation. Drought index values were computed for each
city using each GCM, scenario, and future year, covering a timeline from 2025 to 2100.
This extensive analysis resulted in the creation of a large dataset, comprising 1800 tables
that provide a detailed view of potential drought conditions. Table 5 is highlighted as a
representative example. It illustrates the calculated drought index values for the city of
Tehran for the year 2050, based on simulations from the eight selected GCMs under the
SSP585 scenario.

Table 5. Drought index values for Tehran, in 2050, under the SSP585 scenario.

2050—SSP585

ACCESS-ESM1-5 IPSL-CM6A-LR

SPI DI PN CZI MCZI RAI ZSI SPI DI PN CZI MCZI RAI ZSI

−0.5 3 87.4 −0.6 −0.4 −1.1 −0.6 −0.3 4 89.3 −0.3 −0.2 −0.8 −0.4

CNRM-CM6-1 KIOST-ESM

SPI DI PN CZI MCZI RAI ZSI SPI DI PN CZI MCZI RAI ZSI

−1.9 1 58.7 −2.3 −2.5 −3.5 −1.6 0.2 6 102.6 0.2 0.2 0.2 0.1

CNRM-ESM2-1 MIROC-ES2L

SPI DI PN CZI MCZI RAI ZSI SPI DI PN CZI MCZI RAI ZSI

0.1 6 100.2 0.1 0.3 0 0 −0.6 3 83.9 −0.6 −0.5 −1.2 −0.6

GISS-E2-1-G MRI-ESM2-0

SPI DI PN CZI MCZI RAI ZSI SPI DI PN CZI MCZI RAI ZSI

−0.5 3 88.7 −0.6 −0.5 −1.1 −0.6 0.6 8 113.6 0.5 0.5 0.8 0.5
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The complexity of the raw climate data, particularly when dealing with large datasets
spanning multiple GCMs and scenarios, requires effective methods of interpretation and
communication. Box plots are a statistical tool that can be effectively used to visualize
the spread and central tendency of a dataset, making it more understandable for both
technical and non-technical audiences [64]. In this study, box plots were used to distill the
information from tables like Table 5. These visual representations are particularly useful
in identifying the range of predictions for drought indices across different GCMs and
scenarios. Figure 4 specifically showcases these box plots for Tehran. The plots summarize
the range of RAI drought index values projected from 2025 to 2100 across the four SSP
scenarios. Each bar within the box plot ensemble represents the spread of the RAI values for
a given time period, obtained from the eight selected GCMs. These bars summarize eight
data points into an easily digestible format, indicating the median, quartiles, and potential
outliers of the dataset. The use of red shading on the bars that extend into the very dry to
extremely dry categories (as defined in Table 2) shows the periods of an increased risk of
severe drought conditions. This visual cue simplifies the detection of concerning trends
within the dataset without the need to delve into the complex numerical data. The analysis
findings revealed variations in the sensitivity of the seven drought indices in detecting
severe drought conditions. More severe drought conditions were detected based on the
RAI index, followed by the DI, CZI, SPI, CZI, MCZI, and PN. The generation of 168 graphs,
one for each combination of city, drought index, and scenario, presented in Appendix A,
offers a comprehensive visual database of the projected climate extremes.
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Heatmaps are an excellent way to synthesize complex data into a coherent visual form
that can quickly communicate key insights. They are particularly good at showing the
density of events across two dimensions (e.g., the time and drought severity). To distill
the data into more focused insights for individual cities, heatmap plots were derived from
the underlying box plots (Figure 5). The methodology for generating these heatmaps
involved counting how often the very dry to extremely dry conditions (represented by the
red bars in the box plots) occurred each year across all the drought indices. This count
was then represented as a color gradient in the heatmap, with the deeper shades of red
indicating a higher likelihood of severe drought conditions. Taking Mashhad under the
SSP585 scenario in the year 2083 as an example, if all seven drought indices are showing
that the conditions are very dry to extremely dry, this would be depicted as a deep red
cell in the heatmap for Mashhad for that year. This would signal to readers that there is a
strong consensus among the indices that severe drought conditions are highly probable for
Mashhad in 2083 under the SSP585 scenario. The heatmap not only shows the expected
drought conditions for a single year but also allows readers to track changes and trends
over time. The benefit of using a heatmap is that it can represent a large amount of data in a
way that is quickly understandable [65]. It shows the density of severe drought predictions
in a visually intuitive manner, where a quick scan of the color distribution can reveal years
and periods with elevated risks.
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According to Figure 5, the effects of climate change vary significantly from one city to
another, underlining the fundamental influence of geographical location on climate change
impacts. Factors such as latitude, elevation, and proximity to bodies of water, along with
ocean currents, topography, vegetation, and land use practices, are pivotal in shaping the
specific ways in which climate change manifests in different areas. These geographical
elements not only influence the local climate conditions but also determine the extent and
nature of the climate change effects, ranging from altered weather patterns and temperature
shifts to changes in precipitation and extreme weather events.

The analysis of heatmaps across various SSPs reveals differing levels of drought risk
for specific cities, which reflects how each scenario’s assumptions about greenhouse gas
emissions and socioeconomic developments might impact regional climates differently.
Based on the number of deeper red cells, the following is a breakdown of what each scenario
indicates for the metropolises in Iran:

• SSP126 (Sustainability—Taking the Green Road): Tehran, Karaj, and Tabriz show
heightened conditions under the SSP126 scenario. Since SSP126 is a low-emission sce-
nario aiming for sustainability and a smaller climate footprint, the fact that these cities
are highlighted suggests they are sensitive to even the lower end of projected climate
changes. It implies that water resource planning and drought mitigation strategies
should be considered seriously even under the most optimistic climate outcomes.

• SSP245 (Middle of the Road): More critical conditions are indicated under SSP245 for
Isfahan and Shiraz. This scenario represents a world that follows a path of moderate
emissions without too much deviation from current trends. The signal that Isfahan
and Shiraz are areas of concern under this scenario suggests that these cities might be
particularly vulnerable to the median range of climate change projections and should
prepare for significant impacts on water availability.

• SSP370 (Regional Rivalry—A Rocky Road): Mashhad, Isfahan, Shiraz, and Tabriz
are marked with critical conditions under SSP370. This scenario assumes higher
emissions due to less focus on global policy and more on regional priorities and self-
sufficiency. The critical conditions highlighted in these cities indicate a vulnerability
to scenarios where international cooperation on climate issues is lower and unilateral
national policies dominate, potentially leading to higher emissions and more severe
climate impacts.

• SSP585 (Fossil fuel-fueled Development—Taking the Highway): Particularly critical
conditions are evident under SSP585 for Mashhad and Shiraz. SSP585 is a high-
emission scenario assuming unmitigated climate change with high energy demand
and a heavy reliance on fossil fuels. The severe projections for Mashhad and Shiraz in
this scenario suggest these cities could face the most challenging drought conditions,
necessitating robust adaptation strategies to combat the potential extreme impacts of
climate change.

These findings provide a clear indication of where the efforts to mitigate climate
change and adapt to its impacts should be most concentrated. For instance, while Tehran,
Karaj, and Tabriz are areas of concern even under the low-emission scenario of SSP126,
Mashhad and Shiraz appear consistently across multiple scenarios, highlighting their
significant vulnerability to future drought conditions. This information can be used to
prioritize investments in adaptive infrastructure, water conservation programs, and policies
that encourage sustainable water use to manage future risks effectively.

Furthermore, an in-depth analysis of the climate projections was conducted, encom-
passing the cumulative number of dry days (days with precipitation < 1 mm), spanning
the period from 2025 to 2100, to further analyze the impacts of climate change on Iran’s
metropolises. According to Figure 6, Shiraz is projected to experience the highest number
of dry days, which suggests that water scarcity could become a critical issue for the city, af-
fecting everything from agriculture to drinking water supplies. After Shiraz, in descending
order of severity, Isfahan, Mashhad, Tehran, Karaj, and Tabriz are expected to experience
the highest number of dry days.
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• Model-wise observations:

- MRI-ESM2-0: This model was shown to predict the highest number of dry days
among the GCMs, indicating that its internal parameters may be more sensitive
to the drying trends under climate change in Iran.

- CNRM-CM6-1, IPSL-CM6A-LR, CNRM-ESM2-1, MIROC-ES2L, ACCESS-ESM1-5,
and GISS-E2-1-G: These models also show a high number of dry days, sug-
gesting agreement among different models about the drying trends, albeit to
varying degrees.

- KIOST-ESM: This model predicts fewer dry days compared to the other GCMs.

• Scenario-wise analysis:

- SSP585 (High-Emission Scenario): On average, this predicts the most severe
conditions with the highest number of dry days.

- SSP126 (Low-Emission Scenario): On average, this projects the least severe condi-
tions with the lowest number of dry days.

These findings underscore the need for urgent action to mitigate climate change.
Moreover, the consistency across the models in predicting more dry days for certain cities
suggests a level of confidence in these projections, making it imperative for policymakers
and city planners to develop robust adaptation strategies.

The high number of dry days anticipated for cities such as Shiraz and Isfahan, as
highlighted by the climate projections, necessitates immediate attention to water security
and climate resilience strategies. These urban centers must explore alternative water
sources, bolster water conservation efforts, and integrate sustainable practices within urban
planning to mitigate the adverse effects of climate change. Adjustments in agricultural
practices, including the selection of crops and farming techniques, will be crucial to maintain
productivity in the face of changing precipitation patterns. Additionally, Iran’s metropolises
must invest in infrastructure that can adapt to these climatic shifts. Expanding water storage
facilities, embracing water recycling methods, and cultivating drought-resistant urban
greenery are steps that can enhance the resilience to drought conditions. By proactively
addressing these challenges, metropolises can safeguard against water scarcity and ensure
a more stable future.



Water 2024, 16, 711 19 of 51

Droughts carry profound implications across various sectors within Iranian cities [66].
The strain on water resources affects not only the daily lives of residents but also the
economic vitality of these metropolises. Industries that depend on water are particularly
vulnerable, and water scarcity can disrupt both domestic and industrial applications,
sometimes necessitating water rationing measures [67]. The agricultural sector is often
hit hardest by drought conditions, with reduced crop yields and livestock productivity
posing significant threats to food security and the livelihoods of farming communities.
The economic strains from such agricultural impacts can ripple throughout the local and
national economy [68].

The health of urban populations is also at risk due to drought-induced water scarcity.
A lack of an adequate water supply can compromise sanitation and hygiene, leading to an
increased incidence of waterborne diseases. Drought conditions can exacerbate nutritional
deficits by limiting the availability of fresh produce and clean water [69]. Moreover,
severe droughts can have cascading socioeconomic effects, including the displacement of
populations. As people migrate from drought-stricken areas to cities with more resources,
they bring additional demands on already burdened urban systems, complicating issues
of housing, employment, and social services [70]. Environmental degradation is another
consequence of prolonged droughts, with soil erosion, biodiversity loss, and desertification
altering landscapes and reducing the viability of local ecosystems. Urban green spaces,
crucial for maintaining ecological balance and providing residents with recreational areas,
are particularly vulnerable [71,72].

The multifaceted impact of droughts in these metropolises underscores the urgent need
for comprehensive planning and action to address the myriad challenges posed by climate
change. This involves not only adapting to immediate threats but also fostering long-term
resilience and sustainability to protect against future environmental uncertainties.

Limitations and Sources of Uncertainty

This study was subject to certain limitations and sources of uncertainty, which are
explained below:

- Model selection and accuracy: This study relied on a subset of GCMs from the
CMIP6 series, which might have introduced uncertainty due to differences in model
performance in simulating climate patterns.

- Future scenarios: While this study explored multiple future scenarios, the accuracy
of the projections was subject to uncertainties in emission trajectories, socioeconomic
development pathways, and climate feedback mechanisms.

- Drought indices: Although this study employed several drought indices, the choice
of indices and their applicability to specific urban contexts might have introduced
variability and limitations in assessing drought severity and trends.

- Data limitations: The accuracy of these findings was contingent upon the availability
and quality of input data, which might have varied in completeness and reliability
across different cities and time periods.

- Regional specificity: This study focused solely on six Iranian metropolises, limiting the
generalizability of the findings to other regions with distinct climatic, geographical,
and socioeconomic characteristics.

4. Conclusions

The imperative pursuit of understanding the impact of climate change on meteo-
rological droughts in metropolitan areas is underscored by the profound consequences
such events can have, particularly as cities expand and face increasing pressures. This
study delved into the future of six Iranian metropolises (Tehran, Mashhad, Isfahan, Karaj,
Shiraz, and Tabriz), and employed 35 GCMs from the CMIP6 series to predict the likelihood
of severe droughts from 2025 to 2100. Specifically, the models that demonstrated more
accurate historical simulations (ACCESS-ESM1-5, CNRM-CM6-1, CNRM-ESM2-1, GISS-E2-
1-G, IPSL-CM6A-LR, KIOST-ESM, MIROC-ES2L, and MRI-ESM2-0) were used to project
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future climate conditions under varying scenarios (SSP126, SSP245, SSP370, and SSP585).
This analysis utilized several drought indices (SPI, DI, PN, CZI, MCZI, RAI, and ZSI) to
assess the conditions, generating box plots to visualize the range of drought severities
and color-coded heatmaps to depict the probability of severe droughts, thus guiding the
preemptive measures for sustainable development and resource management. This study’s
findings, highlighting varying degrees of drought risk across the different cities and scenar-
ios, serve as a crucial resource for policymakers. For instance, even under the low-emission
SSP126 scenario, Tehran, Karaj, and Tabriz show a concerning susceptibility to drought,
necessitating proactive adaptation strategies. The SSP245 and SSP370 scenarios paint a
more dire picture for Isfahan and Shiraz, while the high-emission SSP585 scenario suggests
that Mashhad and Shiraz could face the most severe drought conditions, underscoring the
need for robust mitigation efforts. By examining drought patterns using the indices, this
study indicates a clear trend towards greater aridity, which is especially marked under the
high-emission scenario. These insights offer an invaluable tool for policymakers, urban
planners, and stakeholders at all levels. They provide a clear-eyed view of the potential
future that awaits if proactive steps are not taken, enabling informed decisions that can
enhance the resilience of these cities. By offering scenario-specific forecasts, this study
equips decision-makers with the data necessary to tailor their strategies to the unique
vulnerabilities of each city, ensuring that adaptation and mitigation efforts are both efficient
and effective in confronting the looming specter of climate-induced aridity. To advance this
field of research, it is recommended that future studies consider the following:

• Delve into the socioeconomic impact of severe droughts on the populations of these
cities, analyzing how livelihoods, health, and local economies may be affected.

• Examine adaptive strategies and policies that can effectively alleviate the impact of
droughts in urban settings, focusing on best practices for water use, urban planning,
and community engagement.

• Evaluate the feasibility and efficacy of innovative water management and conservation
techniques within these metropolitan areas to address the anticipated drought scenarios.

• Investigate the potential for technological advancements, such as drought prediction
tools or water recycling systems, to improve resilience.

• Consider the role of education and public awareness programs in promoting water-
saving behaviors and supporting policy implementation.

• Assess the interplay between urban development patterns and drought vulnerability,
aiming to integrate climate resilience into future urban planning.

Understanding these facets will empower local authorities to allocate resources with
greater efficiency and reinforce the sustainability and adaptability of their cities, equipping
them to better withstand climate-induced water scarcity.
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Appendix A

The following box plots show the drought index values, based on the SPI, DI, PN, CZI,
MCZI, RAI, and ZSI indices, for Tehran, Mashhad, Isfahan, Karaj, Shiraz, and Tabriz, under
the SSP126, SSP245, SSP370, and SSP585 scenarios.
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