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Abstract: Real and effective monitoring data are crucial in assessing the structural safety of dams.
Gross errors, resulting from manual mismeasurement, instrument failure, or other factors, can
significantly impact the evaluation process. It is imperative to eliminate such anomalous data.
However, existing methods for detecting gross errors in concrete dam deformation often focus on
analyzing a single monitoring effect quantity. This can lead to sudden jumps in values of effect
quantity caused by changes in environmental variables being mistakenly identified as gross error.
Therefore, a method based on Fuzzy C-Means clustering algorithm (FCM) partitioning and density
clustering algorithm (Ordering Points To Identify the Clustering Structure, OPTICS) combined with
Local Outlier Factor (LOF) algorithm for gross error identification is proposed. Firstly, the FCM
algorithm is used to achieve the division of measurement point areas. Then, the OPTICS and LOF
algorithms are jointly utilized to determine the gross errors. Finally, the real gross errors are identified
by comparing the time of occurrence of the gross errors at measurement points in the same area.
Through the case study, the results indicate that the method can effectively identify spurious, gross
errors in the monitoring effect quantity caused by environmental mutations. The accuracy of gross
error detection is significantly improved, and the rate of misjudgment of gross errors is reduced.

Keywords: dam monitoring data; gross errors; environmental change; FCM algorithm; OPTICS
algorithm; LOF algorithm

1. Introduction

To avoid sudden dam diseases in the service process, which may lead to serious
engineering accidents and cause significant loss of life and property, it is essential to con-
tinuously monitor the operational status of the dam body in real-time. Regular analysis
of monitoring data, including deformation, seepage, and uplift pressure, allows for a
comprehensive understanding of the dam’s health status and ensures its long-term stable
operation [1–3]. Accurate monitoring data are an important prerequisite and fundamen-
tal guarantee for effective dam safety monitoring. Therefore, the preprocessing of dam
monitoring data is necessary.

The original data from concrete dam safety monitoring often includes gross errors
resulting from reading errors, instrument failures, and other factors. These errors represent
unreasonably inaccurate data points that can significantly distort dam monitoring data.
If not effectively addressed, they can compromise the accuracy of safety evaluations,
early warnings, and forecasts for the dam. Consequently, eliminating gross errors is an
important part of preliminary processing [4–6]. To identify gross errors, many scholars have
carried out related research. Traditional gross error identification methods are generally
based on statistical theories, such as 3σ criterion, Grubbs criterion, Romanowski criterion,
and Dixon criterion, which have been widely employed for gross error identification in
dam monitoring data [7–10]. However, when the structure of dam monitoring data is
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complex, problems of missing judgment and misjudgment are easy to occur. As a result,
many scholars have endeavored to enhance traditional methods, aiming to improve the
detection rate. For example, Zhao et al. [11] proposed an improved 3σ criterion based
on the Minimum Covariance Determinant. Li et al. [12] introduced an enhanced Pauta
criterion based on M estimation. With the development of big data analysis technology,
machine learning has also been gradually applied to gross error recognition [13]. Examples
include Neural Networks [14,15], Support Vector Machines [16,17], Decision Trees [18,19],
and others. Song et al. [20] proposed a gross error detection method of singular spectrum
analysis (SSA) combined with nonlinear autoregression (NAR). Qi et al. [21,22] used full
convolutional networks to learn from artificially labeled datasets and realize the recognition
of gross error data. Hu et al. [23] proposed a method for identifying anomalies by combining
dynamic time warping with a local outlier factor. Song et al. [24] developed an analysis
method for detecting outliers in dam deformation data based on multivariable panel
data and K-means clustering theory. Shao et al. [25] converted monitoring data into
images and processed outliers in combination with the cuckoo-search algorithm. Bao
et al. [26] visualized time series data and fed them into a deep neural network to detect
anomalous data [27–29]. Zhang et al. [30] integrated multiple learners and proposed an
anomaly diagnosis method using an anomaly index matrix updated with real-time data.
Gu et al. [31] used an improved IGG method and an extreme learning machine to identify
gross errors in deformation monitoring data. Li et al. [32] proposed an outlier identification
method based on a BP neural network. Liu et al. [33] utilized the wavelet transform to
identify outliers in time series data. While these methods have shown success in identifying
gross errors, many of them are computationally complex. Moreover, several primarily
rely on time series change rules and fail to fully consider the influence of environmental
changes on dam behavior. Typically, significant fluctuations in environmental factors such
as water levels and temperature can lead to corresponding variations in key parameters
like deformation. These variations represent the actual behavior of the dam, providing
valuable data reflecting its true state. However, they are prone to being misinterpreted as
gross errors.

To address the aforementioned issues, the local density difference between normal data
and data containing gross errors is considered in this paper, and a method for identifying
gross errors in dam safety monitoring data is presented. This method combines FCM
clustering, OPTICS, and LOF algorithms. Firstly, the FCM algorithm is applied to partition
the dam displacement measurement points, followed by the use of an enhanced OPTICS
algorithm for preliminary gross error identification. Subsequently, the LOF value of each
data point in the preliminary gross error dataset is calculated. If the LOF value exceeds a
predefined threshold, the data is flagged as a gross error. Finally, potential misjudgments
resulting from changes in environmental quantities are mitigated by comparing the data
with other measurement points within the same cluster, ultimately determining the final
classification of gross errors. The combination of OPTICS and LOF algorithms significantly
enhances the accuracy and sensitivity of gross error detection while also reducing the rate
of misjudgments to some extent. Because the proposed method only calculates LOF values
for a subset of the data, it can effectively reduce computational complexity.

2. Fundamentals of a Gross Error Identification Algorithm for Dam Monitoring Data
2.1. FCM Algorithm

The Fuzzy C-means (FCM) clustering algorithm introduces fuzzy set theory into
cluster analysis. Instead of categorizing sample data into a specific partition with 100%
certainty, it calculates the membership degree of each data sample corresponding to each
class by optimizing the objective function. This approach achieves optimal data clustering,
effectively enhancing the algorithm’s resistance to noise and its overall fuzziness [34,35].
To obtain accurate clustering results, it is necessary to comprehensively analyze the change
trend of the measured value series. Therefore, the comprehensive distance, a weighted com-
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bination of absolute distance, incremental distance, and growth rate distance, is adopted as
the similarity index [36]. The indicators are explained as follows.

(1) The absolute distance between the measuring point i and the measuring point j,
denoted dij(AD).

dij(AD) =

[
T

∑
t=1

(
δit − δjt

)2
] 1

2

(1)

where δit is the deformation value of the measuring point i at time t; δjt is the deformation
value of the measuring point j at time t.

(2) The incremental distance between the measuring point i and the measuring point j
is denoted as dij(KD).

dij(KD) =

[
T

∑
t=1

(
∆δit − ∆δjt

)2
] 1

2

(2)

where ∆δit = δit − δit−1; ∆δjt = δjt − δjt−1.
(3) The growth rate distance between the measuring point i and the measuring point j

is denoted as dij(GRD).

dij(GRD) =

 T

∑
t=1

(
∆δit
δit−1

−
∆δjt

δjt−1

)2
 1

2

(3)

(4) The comprehensive distance between the measuring point i and the measuring
point j is denoted dij(CED).

dij(CED) = ω1dij(AD) + ω2dij(KD) + ω3dij(GRD) (4)

where ω1, ω2 and ω3 represent the weight coefficients of the three distances, which meet
the requirement that ω1 + ω2 + ω3 = 1. This paper adopts the entropy weight method [37]
for their calculation.

Assuming that the concrete dam has n deformation measurement points, x1, x2, · · · , xn,
and the number of clusters is c, then the objective function of FCM is as follows:

minJm(U, c) =
c

∑
j=1

n

∑
i=1

um
ij dxivj(CED) (5)

where U is the membership matrix, U = [uij]c×n; uij is the membership degree of the
measuring point xi and cluster center vj; m is the fuzzy index and the best value interval is
[1.5, 2.5]; dxivj(CED) is the comprehensive distance between the measuring point xi and
cluster center vj.

The specific steps of the FCM algorithm are as follows:
Step 1: Set the fuzzy index m and cluster number c, initialize the membership matrix

U0, set the convergence accuracy ε > 0, and calculate the comprehensive distance between
the measurement points.

Step 2: Calculate cluster centers vj:

vj =
n

∑
i=1

um
ij xi/

n

∑
i=1

um
ij (6)

Step 3: Update the membership matrix U:

uij =

 c

∑
k=1

(
dxivj

dxivk

)2/(m−1)
−1

(7)
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Step 4: Repeat steps 2 and 3 until the difference in membership matrices between
consecutive iterations is less than the set threshold ε.

In this paper, the Silhouette Coefficient method is employed to determine the optimal
number of clusters (c). Various values of c are utilized for clustering, and the corresponding
silhouette coefficients are calculated. The silhouette coefficient (S) ranges between [–1, 1],
and the closer it is to 1, the better the clustering effect. The silhouette coefficient Si for a
single measurement point xi is defined as follows:

Si =
p(xi)− q(xi)

max{q(xi), p(xi)}
(8)

where p(xi) is the average distance between measuring point xi and other measuring
points within the same cluster; q(xi) is the minimum value of the average distance between
measuring point xi and the samples of other clusters.

2.2. OPTICS Algorithm and Its Improvement
2.2.1. OPTICS Algorithm

Ordering Points To Identify the Clustering Structure (OPTICS) is a density-based
clustering algorithm, which is an improvement of DBSCAN [38]. Compared with DBSCAN,
although the neighborhood radius (ε) and the minimum number of neighborhood points
(MinPts) must be set, OPTICS achieves clustering results that are less dependent on the
selection of ε and MinPts. It obtains a series of parameter-set density-based clusterings by
introducing the core-distance and reachability-distance [39,40]. The OPTICS algorithm is
capable of effectively handling datasets with non-uniform density, unlike other algorithms
that require all clusters to possess similar densities. The fundamental concept behind
OPTICS is to initiate a random selection of data and expand towards the densest area. Each
data point has a reachability-distance to represent its density relationship with other data
points. Based on the reachability-distance of each data point, an accessible distance map
is generated, reflecting the density of the data. The relevant definition of the algorithm is
as follows:

Definition 1. Neighborhood radius (ε): Given a data set D, for any point p in D, the neighborhood
radius is defined as a circular region with the point p as the center and ε as the radius.

Definition 2. Minimum number of neighborhood points (MinPts): The minimum number of
points within the neighborhood radius required for a point to be considered a core point.

Definition 3. Core point: The core point has at least MinPts data points in the neighborhood radius.

Definition 4. Core-Distance: The minimum neighborhood radius of a point that makes it a core
point, that is, the distance from it to the MinPts closest point in its neighborhood. If a point is not a
core point, its core-distance is undefined.

Definition 5. Reachability-Distance: The reachability-distance from one point q to another core
point p is Max(coreDist(p), d(p, q)), which is the greater value between the distance from q to p and
the core-distance of p. If p is not a core point, then the reachability-distance from q to p is unde-
fined. d(p, q) represents the distance between p and q.

Definition 6. Direct Density Reachability: If the reachability-distance from a point q to another
core point p is less than or equal to ε, and q is in the neighborhood radius of p, then it is said to have
direct density reachability from p to q.

The core-distance and reachability-distance are shown in Figure 1. Given the neighbor-
hood radius ε = 6 and the minimum number of neighborhood points MinPts = 5, then the
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core-distance of p is 3, the reachability-distance from q to p is max(coreDist(p), d(p, q)) = 7,
and the reachability-distance from r to p is max(coreDist(p), d(p, r)) = 3.
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Figure 1. Schematic diagram of the OPTICS algorithm.

In the clustering process, OPTICS uses two queues: an ordered seed queue and a
result queue. The orderly seed queue is used to temporarily store the points to be processed
and is arranged in ascending order according to the reachability-distance. The data points
with the smallest reachability-distance are preferentially selected for processing, and the
data points are expanded to the densest area of data. In this way, data objects with high
density can be quickly found. The result queue is used to store the output data points and
is arranged in descending order of reachability-distance to form a decision graph. On the
decision graph, the regions of steep rises and steep falls can be identified, representing the
anomalous points and the points inside the cluster, respectively.

2.2.2. Improved OPTICS Algorithm

Although the clustering results are minimally affected by the setting of the parameters,
and the number of clusters does not need to be specified in advance, the time complexity
is quite high. When data is selected from the ordered seed queue for expansion, the core-
distance and reachability-distance are calculated for any point in its neighborhood. If a
data point is already in the seed sequence and the reachability-distance is greater than the
calculated result, the original data is replaced and reordered. If it does not belong to the
seed sequence, it is added to the corresponding position of the seed sequence according to
its reachability-distance. The fastest sorting algorithm is used to perform the above sorting,
and the time complexity of each data added or updated in the seed sequence is O(n log n).

Because of the high time complexity of the OPTICS algorithm, a non-sorted seed
sequence is adopted to improve the efficiency of the algorithm [41]. A temporary variable
repository is created to store data points with the minimum reachability-distance in the
seed sequence, which is no longer sorted by the reachability-distance. When the seed
sequence adds or updates a point, simply compare the size of the reachability-distance
with the temporary variable and replace the temporary variable if it is smaller. When
a point needs to be extracted from the seed sequence, it is only necessary to extract the
point from the temporary variable repository. Subsequently, identify the new minimum
reachability-distance point from the seed queue and store it in the temporary variable
repository. Compared with sorting, this method of traversing the seed queue to find the
minimum point greatly improves efficiency, and the time complexity of traversing a seed
sequence is O(n). The specific implementation steps of the algorithm are as follows:

Step 1: Create a seed queue, a result queue, and a temporary variable repository. The
seed queue is designed to store a large number of samples to be processed, and the result
queue is intended for storing samples after processing. The temporary variable repository
is utilized to store the next sample to be processed.
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Step 2: An unprocessed core point is randomly selected and placed into the result
queue. At the same time, the reachability-distance of sample points in its neighborhood
is calculated. Add these sample points to the seed queue, selecting the sample with the
minimum reachability distance and placing it in the temporary variable repository.

Step 3: If the seed queue is empty, return to step 2 (reselect the data). Otherwise, extract
the sample p from the temporary variable repository. If p is not a core point, the fourth
step is performed. If p is a core point, expand any unexpanded data q in its neighborhood
ε and calculate its reachability-distance. If q is already in the seed queue and the new
reachability-distance is less than the original value, update the reachability-distance. If q is
not in the seed queue, it is placed in the seed queue.

Step 4: The p is written into the result queue, and the sample points with the smallest
reachability-distance are re-found in the seed queue and put into the temporary variable
repository. Repeat step 3 until all points in the data set are processed. Then, the algorithm
ends, and the ordered sample points in the result queue are output.

2.3. LOF Algorithm

The LOF algorithm is a method for determining whether a sample is abnormal accord-
ing to the ratio of the local density of a sample to that of its neighbors [23]. The outlier
degree of data is determined by calculating the outlier factor of each data sample. The
greater the outlier factor value, the higher the likelihood that the sample is abnormal data.
Moreover, the algorithm is capable of computing the LOF values for specified data points
without the need to traverse all data points, thus significantly reducing computational
complexity. The related concepts of the algorithm are as follows:

Definition 7. The distance db(a) between object a and object b: the distance between point a and
its b-th nearest neighbor.

Definition 8. The b-th distance neighborhood of an object a (denoted as Nb(a)): the set of data
points whose distance from a is less than or equal to db(a).

Definition 9. Reachability-Distance: The reachability-distance from object a to object o is the
greater of the db(o) and the direct distance between object o and a, i.e.,:

reach − distanceb(a, o) = max{db(o), d(a, o)} (9)

Definition 10. Locally Reachable Density: The locally reachable density of an object a is defined as
the reciprocal of the average reachability-distance from each point in the Nb(a) to a, i.e.,:

lrdb(a) = 1

/ ∑
o∈Nb(a)

reach − distb(a, o)

|Nb(a)|

 (10)

Definition 11. Local Outlier Factor (LOF): The local outlier factor of an object a is defined as the
average of the ratio of the locally reachable density of Nb(a) to the locally reachable density of a, i.e.,

LOFb(a) =

∑
o∈Nb(a)

lrdb(o)
lrdb(a)

|Nb(a)| (11)

Figure 2 shows a schematic diagram of the LOF algorithm identifying a few outliers
in the sample.
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3. Gross Error Identification Method for Dam Safety Monitoring Based on
FCM-OPTICS-LOF Algorithm

The dam body undergoes displacement due to water pressure, temperature, and aging
effects. While the displacement magnitude varies at different measuring points, there is a
certain commonality in the load received. As a result, several measuring points may exhibit
similar deformation patterns. Therefore, the FCM clustering algorithm is employed to
partition the dam measuring points based on deformation, ensuring that measuring points
within each region share similar deformation process lines. Subsequently, the OPTICS
clustering algorithm, combined with the LOF algorithm, is utilized to identify gross errors
in the monitoring data.

In the reachability-distance diagram of OPTICS, the abscissa represents the order of
the output data points, and the ordinate represents the reachability-distance. A point with
a larger reachability-distance indicates lower data density and a higher likelihood of gross
error. Typically, gross errors constitute only a small portion of the overall data. Therefore,
data at the top ρ% of the reachability-distance (where ρ is the selected percentage) are
treated as preliminary gross errors. Following this, the LOF value of each data point in
the preliminary gross errors is calculated, and data with an LOF value greater than the
threshold are identified as gross errors. On the basis of identifying gross errors with the
OPTICS algorithm, the LOF algorithm is further used to detect local abnormalities in data.
This multi-level gross error identification method can be applied to various types of data
sets and reduce the missed detection rate.

However, data points with low densities may also be true values characterizing the
normal operating conditions of the dam due to changes in environmental quantities (e.g.,
water level). To address this, it is necessary to identify the gross errors of other measurement
points located in the same zone but on different vertical lines, and the appearance time
of the gross errors should be compared. If a measurement point is detected with gross
errors at a certain moment while other measurement points in the same area at this moment
are valid, it is judged as a gross error. If two measurement points exhibit gross errors
simultaneously, then it is considered that the anomaly is the real value caused by the
change in environmental quantity. Thus reducing the misjudgment rate. The specific
implementation process of the method is shown in Figure 3.
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4. Case Study
4.1. Project Overview

A certain concrete hyperbolic arch dam is located in Sichuan Province, China, with a
maximum dam height of 305 m. The dam crest elevation is 1885 m, and the lowest elevation
of the foundation is 1580 m. A total of 29 vertical displacement monitoring points are
arranged in the dam sections #5, #9, #11, #13, #16, and #19 to monitor the deformation
of the dam body. To validate the effectiveness of the proposed gross error identification
method in this paper, displacement monitoring data from the dam are selected for analysis
for the period from 1 September 2015, to 31 December 2018. Figure 4 shows a photograph
of the hyperbolic arch dam.
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4.2. Clustering Partition

The FCM clustering algorithm is employed to assess the similarity in the deformation
of the 29 measurement points. The range of clusters (c) is set from 3 to 10, and the silhouette
coefficient is computed for each cluster. As illustrated in Figure 5, when the number of
clusters (c) is set to 5, the silhouette coefficient reaches its maximum value of 0.64. At this
point, the samples within the cluster demonstrate high aggregation, and there is significant
separation between samples belonging to different clusters. Consequently, we select c = 5
as the optimal number of clusters. The dam partitioning results are displayed in Figure 6.
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4.3. Gross Errors Identification

This section selects displacement monitoring data from typical monitoring points
PL13-1 and PL13-2 in Zone II, PL13-3 and PL16-3 in Zone I, as well as PL11-5 and PL16-5 in
Zone IV of the dam for the purpose of outlier (gross error) identification verification. In each
displacement dataset, 15 artificial gross error data points are introduced. The specific loca-
tions and values of the introduced outliers for PL13-1 and PL13-2 are presented in Table 1
(the remaining four monitoring points are shown in Tables A1 and A2 in Appendix A). The
displacement time series for each zone after introducing outliers are illustrated in Figure 7.
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Table 1. Locations and magnitudes of gross errors introduced in monitoring points PL13-1
and PL13-2.

PL13-1 PL13-2

Data Raw
Data/mm

Gross Error
Size/mm

the Data after
Adding the

Gross
Error/mm

Data Raw
Data/mm

Gross Error
Size/mm

the Data after
Adding the

Gross
Error/mm

14 November 2015 27.62 1.38 29 14 September 2015 29.34 −1.5 27.84
23 January 2016 25.15 −1.15 24 1 December 2015 33.51 1.7 35.21
31 March 2016 2.1 1.4 3.5 11 January 2016 34.59 1.8 36.39
14 June 2016 −10.5 −1.4 −11.9 16 February 2016 25.76 −1.9 23.86
19 July 2016 5.78 1.22 7 4 April 2016 7.82 1.76 9.58

12 September 2016 15.67 2.33 18 18 May 2016 4.7 2 6.7
22 October 2016 25.24 −1.54 23.7 16 June 2016 −3.39 1.66 −1.73
5 December 2016 26.7 1.2 27.9 3 August 2016 20.91 −2.1 18.81

26 March 2017 −1.74 −1.46 −3.2 29 October 2016 30.83 1.88 32.71
26 May 2017 −9.4 −1.40 −10.8 10 March 2017 12.94 2.25 15.19

11 August 2017 20.91 1.59 22.5 26 August 2017 27.98 −1.89 26.09
15 February 2018 8.74 −1.44 7.3 14 January 2018 28.36 1.65 30.01

22 March 2018 −2.74 −1.56 −4.3 17 March 2018 6.72 −3 3.72
12 June 2018 −11.86 1.66 −10.2 20 July 2018 24.32 1.86 26.18

19 November 2018 26.89 1.31 28.2 18 November 2018 32.25 1.77 34.02

Utilizing the OPTICS algorithm, clustering analysis is performed on the displacement
data from monitoring points PL13-1 and PL13-2. Given that gross errors constitute only a
small portion of the data, the preliminary gross errors are selected based on the top 4% [41]
of reachability-distance. The reachable distance plots for the two monitoring points are
shown in Figure 8. The LOF values for each data point in the preliminary gross errors
are then computed. Notably, some data points exhibited LOF values significantly greater
than 1, designating them as gross errors. The scatter plot of LOF values for the monitoring
points is illustrated in Figure 9.

Water 2024, 16, x FOR PEER REVIEW 12 of 20 
 

 

  
(a) (b) 

Figure 8. (a) Reachability distance for measurement point PL13-1; (b) Reachability distance for 
measurement point PL13-2. 

  
(a) (b) 

Figure 9. (a) LOF values for preliminary gross errors at measurement point PL13-1; (b) LOF values 
for preliminary gross errors at measurement point PL13-2. 

Considering the quantity of data and the distribution of LOF values, the first 20 data 
points are identified as outliers. For monitoring point PL13-1, aside from the 15 intention-
ally introduced anomalies, data points on 7 September 2015, 11 September 2016, 12 July 
2017, 11 July 2018, and 12 July 2018 are also flagged as outliers. Similarly, intentional 
anomalies introduced to PL13-2 are successfully identified, and additional outliers are de-
tected on 7 September 2015, 27 June 2017, 11 July 2017, 12 July 2017, and 11 July 2018. To 
ascertain the final genuine outliers, a comparison of the occurrence time of abnormal data 
between PL13-1 and PL13-2 is conducted. Considering the slight lag in the response of 
monitoring points at different positions on the dam when subjected to environmental fac-
tors, the displacement data on 7 September 2015, 12 July 2017, 11 July 2018, and 12 July 
2018 for PL13-1, as well as the data on 7 September 2015, 11 July 2017, 12 July 2017, and 
11 July 2018 for PL13-2, are determined not to be outliers. Instead, they represent meas-
ured data reflecting actual dam displacement changes due to environmental variations 
and require no further processing. 

Similarly, gross error identification is conducted for monitoring points PL13-3 and 
PL16-3 in Zone Ⅰ, as well as PL11-5 and PL16-5 in Zone IV (see Figures A1–A4 in Appendix 
A). For all monitoring points, the 15 intentionally introduced outlier data points are accu-
rately identified. Furthermore, at PL13-3, data points on 27 June 2017, 28 June 2017, and 
11 July 2017 are identified as gross errors. Similarly, at PL16-3, data points on 6 September 
2015, 28 June 2017, and 11 July 2017 are flagged as gross errors. However, through 

Figure 8. (a) Reachability distance for measurement point PL13-1; (b) Reachability distance for
measurement point PL13-2.

Considering the quantity of data and the distribution of LOF values, the first 20 data
points are identified as outliers. For monitoring point PL13-1, aside from the 15 intentionally
introduced anomalies, data points on 7 September 2015, 11 September 2016, 12 July 2017,
11 July 2018, and 12 July 2018 are also flagged as outliers. Similarly, intentional anomalies
introduced to PL13-2 are successfully identified, and additional outliers are detected on
7 September 2015, 27 June 2017, 11 July 2017, 12 July 2017, and 11 July 2018. To ascertain
the final genuine outliers, a comparison of the occurrence time of abnormal data between
PL13-1 and PL13-2 is conducted. Considering the slight lag in the response of monitoring
points at different positions on the dam when subjected to environmental factors, the
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displacement data on 7 September 2015, 12 July 2017, 11 July 2018, and 12 July 2018 for
PL13-1, as well as the data on 7 September 2015, 11 July 2017, 12 July 2017, and 11 July
2018 for PL13-2, are determined not to be outliers. Instead, they represent measured data
reflecting actual dam displacement changes due to environmental variations and require
no further processing.
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Similarly, gross error identification is conducted for monitoring points PL13-3 and PL16-3
in Zone I, as well as PL11-5 and PL16-5 in Zone IV (see Figures A1–A4 in Appendix A). For all
monitoring points, the 15 intentionally introduced outlier data points are accurately identified.
Furthermore, at PL13-3, data points on 27 June 2017, 28 June 2017, and 11 July 2017 are
identified as gross errors. Similarly, at PL16-3, data points on 6 September 2015, 28 June 2017,
and 11 July 2017 are flagged as gross errors. However, through comparative analysis, it is
determined that the three data points for PL13-3, as well as the data points on 28 June 2017, and
11 July 2017, for PL16-3, are not gross errors. For Zone IV, outlier identification is performed
on monitoring points PL11-5 and PL16-5. After the comparison of gross error positions, three
points marked as gross error in each of the two measuring points are subsequently identified
as normal points.

The above analysis reveals that the FCM-OPTICS-LOF gross error identification
method can accurately detect intentionally introduced anomalous data. By employing
a comparative approach with similar monitoring points, the anomalous data can be ef-
fectively categorized into gross errors and points reflecting the dam’s operational state,
thereby minimizing misclassifications. This validates the effectiveness and accuracy of the
proposed gross error identification method in this study.

4.4. Comparison Analysis with Other Identification Methods

To prove the superiority of the FCM-OPTICS-LOF gross error identification method
proposed in this paper, we compare and analyze the gross error identification effects of
FCM-LOF, FCM-DBSCAN, and the method proposed in this paper. The correct rate is used
as the evaluation index:

correct rate =
T
N

(12)

where N represents the number of gross errors identified by the algorithm; T is the number
of gross errors intentionally added.

The detection results of the FCM-LOF and FCM-DBSCAN algorithms for monitoring
points PL13-1 and PL13-2 in Zone II are illustrated in Figures 10 and 11, respectively.
Using the FCM-LOF algorithm, LOF values are computed for each data point. Based on the
distribution, data points with LOF values exceeding 1.2 for PL13-1 and PL13-2 are identified
as gross errors. For PL13-1, 25 gross errors are identified using the FCM-LOF algorithm,
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of which 14 are intentionally added as anomalous data points. Through comparative
analysis between the two monitoring points, four points are not gross errors, resulting
in an identification accuracy of 66.67%. For PL13-2, in addition to the 15 intentionally
added anomalous data points, seven additional data points are identified as outliers.
Upon comparison, there are 4 points that reflect the dam’s operational state, yielding an
identification accuracy of 83.33%.

Water 2024, 16, x FOR PEER REVIEW 14 of 20 
 

 

  
(a) (b) 

Figure 10. (a) LOF values for measurement point PL13-1; (b) LOF values for measurement point 

PL13-2. 

  
(a) (b) 

Figure 11. (a) Gross error identification results for measurement point PL13-1 using FCM-DBSCAN 

algorithm; (b) Gross error identification results for measurement point PL13-2 using FCM-DBSCAN 

algorithm. 

Table 2. The correct rate of different methods in identifying gross errors. 

Monitoring Points 
Gross Error Identification Method 

FCM-OPTICS-LOF FCM-LOF FCM-DBSCAN 

PL13-1 93.75% 66.67% 58.33% 

PL13-2 93.75% 83.33% 82.35% 

PL13-3 100% 78.94% 75% 

PL16-3 93.75% 75% 78.94% 

PL11-5 93.75% 83.33% 53.33% 

PL16-5 100% 78.94% 73.33% 

Figure 10. (a) LOF values for measurement point PL13-1; (b) LOF values for measurement
point PL13-2.

Water 2024, 16, x FOR PEER REVIEW 14 of 20 
 

 

  
(a) (b) 

Figure 10. (a) LOF values for measurement point PL13-1; (b) LOF values for measurement point 
PL13-2. 

  
(a) (b) 

Figure 11. (a) Gross error identification results for measurement point PL13-1 using FCM-DBSCAN 
algorithm; (b) Gross error identification results for measurement point PL13-2 using FCM-DBSCAN 
algorithm. 

Table 2. The correct rate of different methods in identifying gross errors. 

Monitoring Points 
Gross Error Identification Method 

FCM-OPTICS-LOF FCM-LOF FCM-DBSCAN 
PL13-1 93.75% 66.67% 58.33% 
PL13-2 93.75% 83.33% 82.35% 
PL13-3 100% 78.94% 75% 
PL16-3 93.75% 75% 78.94% 
PL11-5 93.75% 83.33% 53.33% 
PL16-5 100% 78.94% 73.33% 

Figure 11. (a) Gross error identification results for measurement point PL13-1 using FCM-DBSCAN
algorithm; (b) Gross error identification results for measurement point PL13-2 using FCM-DBSCAN
algorithm.

Using the FCM-DBSCAN algorithm, 19 data points for PL13-1 are classified as gross
errors, with seven being intentionally added as anomalous values. Upon comparison
with PL13-2, seven of these data points are not gross errors, resulting in an identification
accuracy of 58.33%. For PL13-2, 24 data points are classified as gross errors, with 14 being
intentionally added as anomalous values. Seven of these data points are identified as data
reflecting the dam’s operational state, resulting in an identification accuracy of 82.35%.

The same method is applied to the remaining four monitoring points for gross error
detection. The specific identification results are detailed in Table 2 and Comparative
Figure 12.

Table 2 lists the correct rate of gross error detection for each monitoring point based on
the three methods. The average values of the correct rate are 77.70%, 70.21%, and 95.83%
based on FCM-LOF, FCM-DBSCAN, and the proposed method, respectively. Specifically,
the correct rate of all six monitoring points is between 66.67% (PL13-1) and 83.33% (PL13-2
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and PL11-5) based on the FCM-LOF method, between 53.33% (PL11-5) and 82.35% (PL13-2)
based on the FCM-DBSCAN method, and between 93.75% (PL13-1, PL13-2, PL16-3, and
PL11-5) and 100% (PL13-3 and PL16-5) based on the proposed method. It is evident that the
FCM-LOF and FCM-DBSCAN algorithms exhibit a notable occurrence of omission or mis-
judgment when identifying gross errors. In comparison, this study combines OPTICS with
the LOF algorithm and employs secondary discrimination based on the time of occurrence
of outliers at similar monitoring points. This approach effectively categorizes anomalous
data into gross errors and points reflecting the dam’s operational state, accurately eliminat-
ing genuine gross errors. This indicates that the FCM-OPTICS-LOF algorithm possesses
the strongest gross error identification capabilities. The proposed method can be applied to
the gross error detection of dam monitoring data. In this way, real and reliable monitoring
data representing dam health status can be obtained to provide more accurate guidance for
dam management and maintenance.

Table 2. The correct rate of different methods in identifying gross errors.

Monitoring Points Gross Error Identification Method
FCM-OPTICS-LOF FCM-LOF FCM-DBSCAN

PL13-1 93.75% 66.67% 58.33%
PL13-2 93.75% 83.33% 82.35%
PL13-3 100% 78.94% 75%
PL16-3 93.75% 75% 78.94%
PL11-5 93.75% 83.33% 53.33%
PL16-5 100% 78.94% 73.33%
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5. Conclusions

To address the issue of gross error identification in the safety monitoring data of
dams and further enhance accuracy while reducing misjudgments, this paper considers
leveraging the deformation similarity between measurement points to distinguish gross
errors from genuine data influenced by environmental factors. We propose a gross error
identification method based on FCM deformation zoning, combining the OPTICS algorithm
with the LOF algorithm. We validate the proposed method using measured displacement
data from a concrete arch dam as an example and draw the following conclusions:

(1) The FCM-OPTICS-LOF gross error identification method proposed in this study
effectively identifies all gross errors within the dataset. And it will not misjudge
abrupt data fluctuations induced by changes in environmental variables as gross
errors. This presents a reliable and effective new approach for gross error identification
in dam deformation monitoring data.

(2) The proposed FCM-OPTICS-LOF method for gross error identification demonstrates
higher accuracy compared to both the standalone LOF method and the widely em-
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ployed DBSCAN method, belonging to the same density clustering algorithms. This
affirms the superiority of the proposed method. Furthermore, the method’s ability to
identify gross errors by comparing different measurement points allows simultaneous
recognition of two or more points, significantly enhancing the efficiency of gross
error detection.

(3) Although the proposed gross error identification method in this paper achieves ac-
curate identification, the threshold selection of the LOF value needs to be manually
judged and determined for the specific situation. How to adaptively select the appro-
priate threshold needs to be further studied and explored.

Author Contributions: Conceptualization, L.C., C.G. and S.Z.; methodology, L.C., C.G. and Y.W.;
software, L.C., C.G. and S.Z.; validation, L.C., C.G. and Y.W.; formal analysis, L.C. and C.G.; investi-
gation, C.G.; resources, S.Z.; data curation, L.C. and S.Z.; writing—original draft preparation, L.C.
and S.Z.; writing—review and editing, C.G. and Y.W.; supervision, C.G.; project administration, C.G.
and S.Z.; funding acquisition, C.G. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (Grant Nos.
U2243223 and 52209159), the Water Conservancy Science and Technology Project of Jiangsu (Grant
No. 2022024), the Fundamental Research Funds for the Central Universities (Grant No. B230201011),
the Jiangsu Young Science and Technological Talents Support Project (Grant No. TJ-2022-076), and
the China Postdoctoral Science Foundation (2023M730934).

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflicts of interests.

Appendix A

Table A1 shows the positions and magnitude of gross errors added to PL13-3 and
PL16-3. Table A2 shows the positions and magnitude of gross errors added to PL11-5 and
PL16-5. Figures A1 and A2 display the reachable distance plots and LOF scatter plots for
PL13-3 and PL16-3 in Zone I. Figures A3 and A4 show the reachable distance plots and
LOF scatter plots for PL11-5 and PL16-5 in Zone IV.

Table A1. Locations and magnitudes of gross errors introduced in monitoring points PL13-3 and
PL16-3.

PL13-3 PL16-3

Data Raw
Data/mm

Gross
Error Size/mm

the Data
after

Adding
the Gross
Error/mm

Data Raw
Data/mm

Gross
Error Size/mm

the Data after
Adding the

Gross
Error/mm

6 October 2015 38.87 −1.56 37.31 5 November 2015 34.09 1.86 35.95
24 November 2015 39.32 −1.78 37.54 20 December 2015 36.35 1.73 38.08

19 January 2016 38.72 1.45 40.17 25 February 2016 30.16 −1.95 28.21
22 March 2016 22.72 2.3 25.02 23 April 2016 21.75 −1.6 20.15
30 May 2016 13.11 1.89 15 29 July 2016 28.71 −2 26.71

22 August 2016 28 1.68 29.68 18 October 2016 34.27 1.59 35.86
7 November 2016 38.52 −1.86 36.66 19 January 2017 32.23 −1.83 30.4
14 February 2017 31.66 1.96 33.62 21 April 2017 15.64 2.56 18.2

16 May 2017 10.84 1.82 12.66 18 July 2017 33.07 1.68 34.75
14 October 2017 37.22 −1.65 35.57 26 October 2017 34.5 −3 31.5
8 January 2018 37.73 −1.76 35.97 25 December 2017 35.14 1.96 37.1
30 March 2018 17.61 2.89 20.5 2 March 2018 27.02 1.82 28.84

13 July 2018 31.9 1.9 33.8 15 May 2018 17.09 −1.49 15.6
27 September 2018 37.72 2.8 40.52 3 August 2018 35.27 2 37.27
13 December 2018 40.77 1.53 42.3 6 November 2018 36.55 1.67 38.22



Water 2024, 16, 978 16 of 19

Table A2. Locations and magnitudes of gross errors introduced in monitoring points PL11-5 and
PL16-5.

PL11-5 PL16-5

Data Raw
Data/mm

Gross
Error Size/mm

Data
after

Adding
the Gross
Error/mm

Data Raw
Data/mm

Gross
Error Size/mm

Data after
Adding the

Gross
Error/mm

22 September 2015 30.3 −1.53 28.77 30 September 2015 30.81 1.71 32.52
23 January 2016 30.2 1.69 31.89 24 November 2015 31.18 −1.79 29.39

9 April 2016 24.67 1.98 26.65 29 January 2016 30.65 1.84 32.49
25 June 2016 21.72 −1.76 19.96 9 April 2016 25.86 1.88 27.74

7 September 2016 28.65 2.8 31.45 17 June 2016 23.11 −1.92 21.19
22 December 2016 32.41 −1.64 30.77 28 July 2016 29.32 1.77 31.09
26 February 2017 28.24 1.58 29.82 13 September 2016 30.11 −2.4 27.71

20 May 2017 21.99 1.65 23.64 21 October 2016 31.41 1.92 33.33
14 August 2017 31.54 1.73 33.27 25 December 2016 31.47 −1.85 29.62
23 October 2017 31.74 −1.82 29.92 10 March 2017 27.61 1.58 29.19
10 January 2018 31.29 −1.64 29.65 29 June 2017 27.53 −2.08 25.45

5 March 2018 27.23 2.2 29.43 16 December 2017 32.14 1.7 33.84
16 June 2018 23.03 −1.74 21.29 7 March 2018 27.95 −1.55 26.4

3 September 2018 31.84 1.84 33.68 13 June 2018 23.84 1.72 25.56
5 November 2018 31.99 −2.3 29.69 12 September 2018 32.36 −1.68 30.68
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