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Abstract: The magnitude 6.8 Luding earthquake that occurred on 5 September 2022, triggered
multiple large-scale landslides and caused a heavy loss of life and property. The investigation of
earthquake-triggered landslides (ETLs) facilitates earthquake disaster assessments, rescue, recon-
struction, and other post-disaster recovery efforts. Therefore, it is important to obtain landslide
inventories in a timely manner. At present, landslide detection is mainly conducted manually, which
is time-consuming and laborious, while a machine-assisted approach helps improve the efficiency
and accuracy of landslide detection. This study uses a fully convolutional neural network algorithm
with the Adam optimizer to automatically interpret the aerial and satellite data of landslides. How-
ever, due to the different resolutions of the remote sensing images, the detected landslides vary in
boundary and quantity. In this study, we conducted an assessment in the study area of Wandong
village in the earthquake-affected area of Luding. UAV images, GF-6 satellite images, and Landsat
8 satellite images, with a resolution of 0.2 m, 2 m, and 15 m, respectively, were selected to detect ETLs.
Then, the accuracy of the results was compared and verified with visual detection results and field
survey data. The study indicates that as the resolution decreases, the accuracy of landslide detection
also decreases. The overall landslide area detection rate of UAV imagery can reach 82.17%, while
that of GF-6 and Landsat 8 imagery is only 52.26% and 48.71%. The landslide quantity detection
rate of UAV imagery can reach 99.07%, while that of GF-6 and Landsat 8 images is only 48.71% and
61.05%. In addition, for each landslide detected, little difference is found in large-scale landslides,
and it becomes more difficult to correctly detect small-scale landslides as the resolution decreases.
For example, landslides under 100 m? could not be detected from a Landsat 8 satellite image.

Keywords: landslide detection; remote sensing images of different resolutions; fully convolutional
neural network; Adam optimizer; Luding earthquake

1. Introduction

Landslides are the most common geological hazards in mountainous areas, which are
characterized by large numbers, wide distribution, and severe destruction. The factors that
induce landslides include rainfall, earthquake, snow melt, human activities, etc. Among
them, landslides that are induced by strong earthquakes are higher in number, distribu-
tion range, and scale than any other types of landslides, and they have the characteristics
of a concentrated and continuous distribution. Earthquake-triggered landslides (ETLs)
often cause great damages to roads, houses, farmlands, oil and gas pipelines, and water
management facilities in the earthquake area, resulting in large casualties and seriously
affecting the post-earthquake rescue and post-disaster reconstruction. For example, the
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2008 Wenchuan Ms 8.0 earthquake in Sichuan triggered more than 15,000 geological haz-
ards [1], which caused more than 20,000 deaths. Landslides accounted for up to 40% of all
potential hazard sites induced by the earthquake. At some point, the extent and impact
of earthquake-induced geological hazards exceed the hazards that are directly caused by
the earthquake [2].

The investigation of ETLs is one of the most urgent tasks for post-earthquake emer-
gency relief and subsequent post-disaster reconstruction. Visual detection is the mostly
used method to catalog ETLs, which is time-consuming and laborious, and often cannot
meet the needs of earthquake emergency relief. Therefore, there is an urgent demand for
automatic interpretation for investigating ETLs.

For example, Wen et al. used a Landsat series remote sensing data and digital eleva-
tion data (DEM) to conduct an in-depth analysis of the feature characteristics of landslide
areas such as Mao County in Sichuan and Nayong in Guizhou [3]. Given the fact that the
damage to topography and landforms by landslide disasters shows a similar pattern in
remote sensing data, all the landslides had been detected by analyzing such a pattern [4-6].
Ramdhoni et al. performed a landslide extraction by the Smorph method using a slope and
slope shape to establish the corresponding transformation matrix, and the landslide extrac-
tion accuracy reached 79.54% [7]. In the field of landslide detection automation, machine
learning techniques such as support vector machines, artificial neural networks, and deep
learning have been widely used. Sameen et al. proposed a method for landslide detection
that used residual networks to enhance the same designed network through fusing feature
information to obtain better performance [8]. Long et al. used the Mianyuan River basin,
the extreme seismic area of the Wenchuan earthquake, as the study area to automatically
detect geological hazards’ information in the basin. They used the maximum likelihood
method and random forest algorithm based on high-resolution multitemporal satellite
images such as RapidEye to quantitatively analyze the spatial and temporal evolution
trends of geological hazards after the earthquake [9]. Ye et al. used hyperspectral remote
sensing data to detect landslides based on a deep learning framework with constraints
(DLWC) [10]. Their method improved the detection results through logistic regression (LR)
by combining the detected image features with additional constraints as input. In recent
years, in the field of machine learning on ETL detection, the neural network approach is
more common [11-16]. The advanced development of deep learning techniques such as the
convolutional neural network (CNN) has been widely successful in extracting information
from images and it surpasses the other traditional methods [17]. Liu et al. used a U-Net
neural network and combined it with a GEE large remote sensing platform to achieve
the rapid detection of large-area co-seismic landslides with a detection accuracy of about
70% [18]. Most of the articles used medium-resolution images, and since ETLs often cause
severe surface damage and land cover changes, all the above studies have shown the feasi-
bility of remote sensing automatic detection technology in ETL investigation. However,
an accurate comparison of multiple types of image effects with machine learning models
is lacking.

With the introduction of different discriminative models, despite the fact that land-
slide automatic detection technology has been developed, there are still some problems,
especially that most of the current studies are based on a single kind of remote sensing
images for detection research. For ETLs, due to their wide distribution, a large number of
remote sensing images of different types and resolutions are often used in emergency in-
vestigations [19-21]. Additionally, such differences in landslide detection from multisource
remote sensing images are rarely addressed.

On 5 September 2022, at 1252 h, an MS6.8 magnitude earthquake occurred in Luding
County, Ganzi Prefecture, Sichuan Province, China, with a depth of 16 km. The epicenter
was 29.59° N, 102.08° E. The seismic source mechanism of the earthquake is resolved
as a walking-slip type rupture. As of 17:00 on 11 September 2022, a total of 93 people
were killed by the earthquake. The earthquake-affected area is located in the Hengduan
Mountains on the southeastern edge of the Tibet Plateau, which is a typical alpine valley



Land 2023, 12, 681

30f19

area characterized by short and steep slopes, high altitudes, and broken rocks. These
geomorphological features caused a large number of landslides after the earthquake. In
this paper, the Wandong village in the Luding earthquake area was selected as the study
area. Remote sensing images with different resolutions, such as UAV images, GF-6 satel-
lite images, and Landsat 8 satellite images were used to automatically detect landslides
using the full convolutional neural network (FCN). The differences in the automatic ETL
detection accuracy from different images were quantitatively compared, and the reasons
for these accuracy differences were analyzed. This study provides support in terms of the
applicability and effectiveness of deep learning methods for further improvement in the
field of ETL detection. It also holds a reference value for assessing the integrity of acquired
landslide catalogs based on remote sensing images with different resolutions.

2. Study Area
2.1. Overview of the Study Area

The study area of this paper is located in the village of Wandong, Detuo Town, Luding
County. It is 9.43 km from the earthquake center and within the earthquake intensity
zone of a magnitude of eight. The village is on the east side of the seismogenic fault
Xianshui River Rift, between the Xianshui River Rift and the Jinping Mountain Rift Zone
where the Dadu River flows through its eastern part (Figure 1). The study area covers
102.05°~102.26° E and 29.33°~29.70° N, with an area of about 9.26 square kilometers. The
maximum elevation of the study area is 2767 m, the minimum elevation is 978 m, and the
maximum difference in elevation reaches 907 m. The slopes in the area are steep, with
8% of the slopes less than 15°, 17% of the slopes between 15° and 25°, 40% of the slopes
between 25° and 35°, 22% of the slopes between 35° and 45°, and 13% of the slopes greater
than 45°.
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Figure 1. Schematic map of the disaster area (a). location of study area (b). hill shade map of study
area (c) topographical map of study area. (d). slope map of study area.

After the Luding earthquake, the Institute of Mountain Hazards and Environment,
Chinese Academy of Sciences used the visual detection of UAV images to investigate the
ETLs in the region, which was further verified by visual investigation, and acquired a total
of 434 ETLs with a landslide area of 1.49 km?.
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2.2. Multisource Remote Sensing Data

To compare the differences between images of different resolutions for ETL detection,
three groups of images with different resolutions were sourced, namely, the UAV image,
GF-6 image, and Landsat 8 image (Table 1). The UAV image has the highest resolution
of 0.2 m, which was taken on 6 September 2022. The UAV image is a set of stitched and
calibrated orthophotos of drone images provided by Sichuan Geographic Information
Bureau. The GF-6 image with a resolution of 2 m was taken on 10 September 2022 while
the Landsat 8s 15 m resolution image was taken on 11 September 2022. The Landsat image
used in this paper is a fusion of RGB and 15 m panchromatic bands. Different features of
the landslides are shown in the images with different resolutions (Figure 2). In the UAV
image, the landslide boundary is clear, and the granular texture formed by broken rocks
of the landslide body can be detected; in the GF-6 image, the landslide boundary is clear,
but the landslide body does not show textural features; while in the Landsat 8 image, the
boundary of the landslide body is more blurred. Smaller landslides (Figure 3) are still
clearly identifiable in the UAV image, while they are fuzzier in the GF-6 image and cannot
be shown in the Landsat 8 image.

Table 1. Basic parameters of remote sensing image.

UAV GF-6 Landsat 8
Resolution (m) 0.2 2 15
Acquisition time 6 September 2022 10 September 2022 11 September 2022
Type Photos RGB true color composite image Multispectral image
Sichuan Geographic Aerospace Information Research
Source Information Bureau Institute, Chinese Academy of Sciences NASA

Figure 2. Schematic diagram of different scales landslides in each image (Landslide 1, covering an
area of 21,680 m?, located at 102°9'6”E, 29°31'53” N; (a) clear landslide in UAV image (b); clear
landslide in GF-6 image (c); clear landslide in Landsat 8 image; Landslide 2, with an area of 419 m2,
location: 102°8'27” E, 29°31’54” N (d); the landslide is relatively identifiable in the UAV image (e);

the landslide is fairly vague in the GF-6 image (f); the landslide cannot be displayed in the Landsat
8 image).
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Figure 3. Schematic diagram of FCN.

3. Methods
3.1. Deep Fully Convolutional Neural Networks

A fully convolutional neural network (FCN) was used for ETL detection in this study.
The approach’s main function is to obtain the function mapping between input and output
variables, which are all quite tedious, complex, and non-linear. By constantly adjusting the
number of neurons in the input, output and hidden layers of the network and the connec-
tion weights between the layers in the network, the requested non-linear function mapping
relationship can be converged. After several adjustments of the network structure and ex-
perimental validation, the model structure shown in Figure 3 was designed by considering
the training accuracy and learning efficiency. In this paper, a total of four convolutional
layers were set up and the parameters were updated using the Adam optimizer.

3.2. Adam (Adaptive Moment Estimation) Optimizer

For training time and validation score by the traditional iterative gradient descent
algorithm, either random gradient descent or batch gradient descent algorithms have
disadvantages. The batch gradient descent method is slow in training when the sample size
is large; the random gradient descent method uses only one sample to decide the gradient
direction, which leads to a solution that might not be the optimal. Therefore, this paper
used Adam’s algorithm instead of the traditional iterative gradient descent algorithm for
landslide detection.

The Adam algorithm is an optimization of the gradient descent Adagrad algorithm [22]
and the Rmsprop algorithm [23]. Additionally, the Adam algorithm has the advantages
of not being affected by the gradient scaling transformation when the parameters are
updated; it can automatically adjust the learning rate, be easily implemented, and has
efficient computation rate [24]. Therefore, the Adam algorithm was chosen in this paper
as the optimizer to improve the accuracy of the algorithm. The specific steps of Adam are
as follows:

1. Calculate the | function derivative at moment ¢, i.e., the gradient:

gt = Vo] (0:-1), 1)

2. Using the idea of momentum algorithm, the gradient of the current step is calculated
by considering the historical momentum and the current gradient together:

my = beta1 X My_1 + (1 — betal) X gt, (2)

where m; represents the first-order exponential smoothing value of the historical
gradient, and the beta; coefficient is the exponential decay rate, with a default value
of 0.9.
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3. Referring to the previous Rmsprop algorithm, the first-order exponential smoothing
value of the gradient squared is calculated. This step calculates the variance of
the gradient:

vy = betay X v;_1 + (1 — betay) x §+°2, (3)

where v; represents the first-order exponential smoothing value of the gradient square,
The beta; coefficient is the exponential decay rate. The weighted mean of the gradient
square is 0.999 by default.

4. The gradient parameters are updated as follows:

e_t:9_(t—1)—a><m;t/(\/(v;t)Jre) @)

where 4 is the initial learning rate of 0.001, ¢ is a constant 108 to avoid a divisor of
0. The update of gradient can be adaptively adjusted from the two angles: gradient
mean and gradient squared, which also play a certain role of annealing.

5. At the initial stage of training, since my, vy is initialized to 0, which will cause m; to
be biased towards 0; therefore, it is necessary to correct the bias m;, v;, to solve the
problem at the initial stage of training. The formula is as follows:

iy =me/ (1 — beta}), (5)

0y = vi/ (1 — betah), (6)

In this study, the images of the study region were being matched and segmented,
and the study region was divided into 500 x 500 pixel point images to produce accurate
landslide inventory images, the 500 x 500 pixel range with an actual area of 10,000 m?
allows for more efficient image segmentation while providing sufficient detail. To ensure
the same feature details in divided areas, before segmentation, we resampled GF-6 and
Landsat 8 image to the same size as the UAV image. The landslide results of all inventory
images are set as raster to correspond to the images. Then, 70% of the inventory images
were randomly selected as the training set for training, and the tested results were then
stitched and calibrated to get the final overall landslide detection area. All workflows are
implemented in python.

4. Comparison of Landslide Area Detection
4.1. Confusion Matrix

The deep fully convolutional neural network model is used to detect landslides from
UAV images, GF-6 images, and Landsat 8 images, respectively. The UAV images detected
1.43 km? of landslides, which was the closest to the actual 1.49 km?2, while the GF-6 and
Landsat 8 images deciphered a relatively smaller landslide area of 1.12 km? and 1.32 km?.
(Figure 4)

In this study, a confusion matrix was constructed for detecting landslides and non-
landslides from different types of remote sensing images (Table 2). In the matrix, P repre-
sents positive areas, i.e., the areas where landslides occurred, and N represents negative
areas, i.e., the areas where no landslides occurred. TP represents the true positive areas, i.e.,
the areas where both actual and predicted cases are positive, which means the correctly
interpreted landslide areas; TN represents true negative areas, i.e., the areas when both the
actual and predicted cases are negative, meaning the correctly interpreted non-landslide
areas; FN represents pseudo-negative areas, i.e., the areas where the actual condition is pos-
itive but the predicted condition is negative, showing the incorrectly interpreted landslide
areas; and FP represents pseudo-positive areas, i.e., the areas where the actual condition
is negative but the predicted condition is positive, showing the incorrectly interpreted
non-landslide areas.
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Figure 4. Detected areas in each image ((a) correctly detected areas in UAV; (b) correctly detected
areas in GF-6; (c) correctly detected areas in Landsat 8; (d) undetected areas in UAV; (e) undetected
areas in GF-6; (f) undetected areas in Landsat 8; (g) misidentified areas in UAV; (h) misidentified

areas in GF-6; and (i) misidentified areas in Landsat 8).

Table 2. Landslide detection area results from remote sensing images.

Landslide (Detection) (km?)

Non-Landslide (Detection) (km?)

UAV 1.23 0.26
Landslide (1.43 km?) GF-6 TP 0.79 FN 0.70
Landsat 8 0.73 0.76

UAV 0.20 7.57

Non-landslide (7.77 km?2) GF-6 FP 0.33 TN 7.44
Landsat 8 0.59 7.18

4.1.1. Correctly Detected Landslide Areas (TP) and Correctly Detected Non-Landslide

Areas (TN)

Of the 1.43 km? of landslides detected by the UAV images, the correctly detected
landslide area was 1.23 km?, accounting for 82.17% of the total area of landslides in the
region; of the 1.11 km? of landslides detected by the GF-6 images, the correctly detected
landslide area was 0.78 km?, accounting for 70.42% of the total area of landslides in the
region; and of the 1.32 km? of landslides detected by the Landsat 8 images, the correctly
detected landslide area was 0.72 km?, accounting for only 55.13% of the total landslide area
in the region. In general, the area of correctly detected landslides decreases sharply as the

image resolution decreases.

Correspondingly, the correctly detected non-landslide area was 7.77 km?, the area
of that by UAV images was 7.57 km?, by GF-6 images it was 7.44 km?, and by Landsat

8 images it was 7.18 km?, respectively.
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4.1.2. Misidentified Landslide Areas (FP)

Of all the landslide areas detected by the remote sensing images, some of them were
non-landslide areas, among which the misidentified non-landslide area was 0.20 km? in
the landslides detected by UAV images, 0.33 km? by GF-6 images, and 0.59 km? by Landsat
8 images. Because of UAV images” high resolution, most of the misidentified landslides
were the boundaries around the landslides, and the area was small; the areas between the
landslides were mostly misidentified in GF-6 images, while roads and other features were
mostly misidentified as landslides in Landsat 8 images.

4.1.3. Undetected Landslide Areas (FN)

All types of images had landslide areas that were not correctly detected during land-
slide detection. Among them, the undetected landslide area by UAV images was 0.27 km?,
which was relatively small, while the undetected landslide areas by GF-6 images and
Landsat 8 images were relatively larger, 0.71 km? and 0.77 km?, respectively.

The undetected part in UAV images was mostly the edge of landslides with dense
vegetation cover. Furthermore, individual large landslides were not completely broken
after the occurrence, which left the vegetation on the landslide largely intact, so it was
unable to correctly detect the complete landslide body by UAV images. In addition to the
above-mentioned situation, the undetected areas that are common to GF-6 images and
Landsat 8 images (Figure 5) were mostly distributed at the mouth of the gully and both
sides of the river. These undetected areas’ surface features were similar to the surrounding
ravines and roads, and their landslide shape was mostly narrow and long, resembling
the shape of the ravines. Due to the limitation of image spatial resolution, the mixed
image elements in the medium and low-resolution images were widely present, causing
the distinction between the features to be less obvious. This has made it difficult to detect
landslides in these two types of images, because of the poor segmentation effect.

0 0.45 0.9 1.8

Figure 5. Undetected areas in GF-6 and Landsat 8 images.
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4.2. Detection Accuracy

Based on the confusion matrix, five indicators were calculated and obtained (Table 2),
including overall accuracy, positive accuracy, recall, F1 score, and average cross-merge ratio
(mloU), and were then compared for the detection accuracy of different types of remote
sensing images.

Accuracy is the proportion of correct prediction results to the total results. The formula
is as follows:

Accuracy = (TP + TN)/(TP + TN + FP + FN), (7)

Precision is the ratio of the area of positive correct areas to the total positive areas. The
formula is as follows:
Precision = TP /(TP + FP), (8)

Recall is the ratio of correctly predicted landslide samples to all detected landslide
samples. The formula is as follows:

Recall = TP/(TP + FN), )

F1 Score is the harmonized average of precision rate and recall rate, and the formula is
as follows:
F1 = 2(precision x recall)/(precision + recall), (10)

The average cross-merge ratio (mloU) is the average of the ratio of the intersection
and merge sets of the two sets of true and predicted values, and the formula is as follows:

mloU = (TP/(TP + FP + FN) + TN/(TN + FP + FN))/2, (11)

The statistics found that UAV images had a higher accuracy rate compared to both
GF-6 images and Landsat 8 images. The overall accuracy rate characterizes the correctness
of different images for landslide zone and non-landslide zone detection, including the true
positive rate and true negative rate. The overall accuracy rate of UAV images reached
94.45%, while that of GF-6 and Landsat 8 images was similar at 88.78% and 85.22%, respec-
tively. The positive accuracy of UAV images was the highest at 86.01%, while the positive
accuracy of GF-6 images was reduced to 70.54%, and the positive accuracy of Landsat
8 images was 54.96%. Therefore, it can be seen that the spatial resolution of the image has a
greater effect on the accuracy of landslide detection. The correct rate in landslide detection
decreases sharply as the image resolution is reduced. Compared with GF-6 and Landsat
8 images, UAV images had a lower pseudo-positive rate and pseudo-negative rate for ETL
detection, while the pseudo-positive rate in GF-6 and Landsat 8 images were similar at
7.66% and 8.31%, respectively. For the pseudo-negative rate, GF-6 images were lower than
Landsat 8 images.

5. Comparison of Individual Detection of Landslide

The auto-detection only captured the area where landslides occurred but it did not
distinguish different individual landslides. The area where ETLs developed would have a
large number of landslides concentrated in patches. In order to study the effect of resolution
on automatic landslide detection, this study used a manual method to distinguish different
individual landslides from the automatically interpreted ones, especially by the criteria of
geomorphological features to differentiate the landslides in mixed patches. The differences
in automatically detected landslides based on remote sensing images of different resolutions
were further analyzed for cataloguing the segmented landslides.

5.1. Number and Area of Individual Landslides

A total of 434 landslides were visually interpreted in the study area. Landslide areas
were mainly concentrated in the range of 100-1000 m? and 1000-10,000 m2, with 199 and
179 landslides, respectively, accounting for 87% of the total number of landslides. A total
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of 15 landslides were smaller than 100 m? and 41 landslides were larger than 10,000 m?2.
Among them, the smallest landslide was 29 m? and the largest landslide area was 84,191 m?.
The smallest landslide that could be deciphered by UAV images was 46.91 m?, 73.54 m? by
GF-6 images, and 105.14 m? by Landsat 8 images.

In general, the higher the resolution of the image, the greater the number of land-
slides detected. However, for the 199 landslides of 100-1000 m?2, UAV images detected
197 landslides, accounting for 98.99% of the landslides, while for GF-6 images and Landsat
8 images, the detection rate was improved, with 77 and 83 landslides, accounting for 39.07%
and 41.71%, respectively. The details can be found in Table 3.

Table 3. Landslide detection results from remote sensing images.

UAV GF-6 Landsat 8
Total area of FCN detection/ m?2 1,425,870 1,110,561 1,322,209
Accuracy 94.45% 88.78% 85.22%
False positive rate 2.91% 7.66% 8.31%
False negative rate 2.16% 3.56% 6.36%
Precision 86.01% 70.54% 54.96%
Recall 82.00% 52.67% 48.32%
F1 Score 83.96% 60.30% 51.42%
mloU 83.25% 65.45% 59.34%

When detecting landslides, although landslides can be detected by remote sensing
images of different resolutions, the detected areas of landslides can also vary. For example,
the actual area of a landslide located at 102°9'6” E, 29°31/52” N was 21,680 m?, while the
area detected by UAV images was 20,762 m?, 14,248 m? by GF-6 images, and only 10,975 m?
by Landsat 8 images. The area proportion follows the area trend. For the landslides of
1000-10,000 m2, the total area of landslides is 529,482.48 m?, the UAV image can detect
80.16% of the landslides, and the GF-6 image and Landsat 8 image are still lower, 37.63%
and 32.54%, respectively.

According to the above data, we found that the larger the landslide area was, the
better the image detection would be in all three types of different-resolution images. The
larger the landslide area is, the more obvious the change in the surface coverage is, so
it is easier to be identified and interpreted by FCN. In order to analyze the effectiveness
of landslide detection, the average detection rate was used, which is the average of all
individual landslide detection rates within the given range.

In our study, Landsat 8 images could not detect landslides below 100 m?. Only
landslides between 100-1000 m? could be identified and interpreted, but only in small
amounts. For landslides of 1000-10,000 m?, the average detection rate of UAV images was
35.58% higher than that of GF-6 images and 36.86% higher than Landsat 8 images. For
landslides larger than 10,000 m?, the average detection rate of UAV images was 16.93%
higher than GF-6 images and 21.81% higher than Landsat 8 images. (Figure 6)UAV images
were more effective than the other two images in landslide detection regardless of area
scales, and the smaller the area scale, the better the results would be. At the same time, the
three types of images conformed to the understanding that the higher the image resolution,
the better the detection. Only in detecting the area of 100-1000 m?, the overall detection
rate of GF-6 images was 17.11%, slightly lower than that of the Landsat 8 images, while
the average detection rate is 9.08% lower due to some large-scale landslides in the Landsat
8 images that were not fully detected.
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Figure 6. Average detection rate of each image.

5.2. Frequency—Area Curves

Landslide area—frequency curves can represent the proportional characteristics of
landslides at different sizes and also reflect the overall magnitude of landslide events
triggered by earthquakes [25,26]. The catalogued landslide data detected from UAV, GF-6,
and Landsat 8 images were plotted for producing area—frequency curves to compare with
the reference landslide data (Figure 7). The results showed that when a landslide area
was larger than 2000 m?, the area—frequency curves of the landslide detected by UAV,
GF-6, and Landsat 8 images were more similar to those of the reference landslides with
small differences.
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Figure 7. Frequency-area curves of landslides of remote sensing image.
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When the landslide area was less than 2000 m?, the area—frequency curves of landslides
detected by different images showed larger differences. The inflection point of the area—
frequency curve of the reference landslide data appeared at the position of 250 m?, while for
UAV images, the inflection point was located at the position of 100 m?. Additionally, GF-6
and Landsat 8 images showed two inflection points. The landslide frequency from UAV
image interpretation was higher than the reference curve in the interval between 250 m?
and 2000 m? regarding the landslide area. The landslide frequency from GF-6 and Landsat
8 images was lower than that of the reference, it was mostly because some landslides in the
area could not be detected, which thus reduced the frequency. Additionally, since some
landslides could not be detected as complete, the broken and incomplete landslides were
therefore detected and counted in a smaller range.

As for the landslides with an area of less than 100 m?, there was a higher frequency
of landslides detected by GF-6 and Landsat 8 images. According to the conclusion above,
it was caused by incomplete detection of landslides in larger areas. Table 4 shows that
GF-6 detected only one landslide within 100 m?, while Landsat 8 images did not detect any
landslides. Therefore, it suggests that the frequency of landslides in this part was composed
of landslides that were incompletely detected in the range of 250 m? to 2000 m?.

Table 4. Landslide indicators in each area of remote sensing images.

Landslide Area (m?)
0-100 100-1000 1000-10,000 >10,000
Visual detection Quantity 15 199 179 41
field Area 971.36 90,365.91 529,482.48 875,830.89
Quantity 13 197 179 41
UAV Quantity 86.67% 98.99% 100% 100%
proportion
Area 644.90 67,136.95 424,454.14 737,596.27
Area 66.39% 74.29% 80.16% 84.21%
proportion
tit 1 77 145 41
Landslide survey data gﬁzﬁtity
Gf-6 Y 6.67% 38.69% 81.00% 100%
proportion
Area 6.78 15,464.37 199,229.51 567,406.37
Area 0.70% 17.11% 37.63% 64.78%
proportion
Quantity 0 83 141 41
Landsat 8 Quantity 0 41.71% 78.77% 100%
proportion
Area 0 19,031.83 172,269.57 537,743.39
Area 0 21.06% 32.54% 61.40%
proportion

6. Error Analysis
6.1. Types of Automatic Remote Sensing Detection Errors

The types of errors that existed in landslide detection influenced by different resolu-
tions were analyzed and summarized. Seven types of errors that existed in this study were
found.(Figure 8) Considering the fact that landslide detection areas are hardly identical, the
error in the interval of area 95%-105% is relatively small, and was therefore, not included
in this paper for error statistics. Landslide detection areas that were smaller than the
actual area had more errors in the three images. Especially for GF-6 and Landsat 8 images,
due to the relatively low resolution of the images and the large image element size, the
mixed image elements in the landslide boundary area had a greater influence on landslide
detection. This error type existed in 77 places in UAV image-based landslide detection,
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83 places in GF-6 images, and 97 places in Landsat 8 images, accounting for 35.00%, 23.31%,
and 24.49% of the error quantity, respectively (Table 5).

b

Vizual investigated ETLs

<

FCN detected ETLs

Figure 8. The type of automatic detection errors. (a) The landslide detection area in black line is
smaller than the actual area in red. (b) The landslide detection area is larger than the actual area.
(c) The detected area of the landslide partially coincides with the actual area. (d) A landslide is
detected as multiple landslides. (e) Multiple landslides are detected as a single landslide. (f) Multiple
landslides are detected as multiple landslides.

Table 5. Types of automatic detection errors in remote sensing images.

Error Types UAV GF-6 Landsat 8
The single detected area of landslide is 7 83 97
less than the actual landslide
The single detected area of landslide is 17 19 35
more than the actual landslide
The single detected area of landslide 29 19 o
partially coincides with the actual area
One single landslide is detected as multi 13 7 2
Multi landslides are detected as single 67 53 58
Multi landslides correspond to other 13 5 1
multi landslides
Undetected landslides 4 170 169

The appearance of the error of the landslide detection area larger than the actual area
on UAV images was mainly a case of misjudging the gully at the foot of the landslide as a
landslide, thus making the landslide detection area larger than the actual area. This type of
error existed in 17 places in UAV image-based landslide detection, reaching 7.73% of its
error quantity. Additionally, this type of error was found in GF-6 and Landsat 8 images,
mainly because of the misjudgment of similar feature attributes, especially in areas where
the landslide area was more similar to the surrounding environmental feature attributes,
such as roads, open spaces, etc. This type of error was 19 and 35 on GF-6 and Landsat
8 images, reaching 5.34% and 8.84% of their error numbers, respectively. The number
of landslide errors identified was highest for GF-6 and Landsat 8 images, with 170 and
169 errors, reaching 47.75% and 42.68% of their errors, while this error was less frequent in
UAYV images.
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6.2. Analysis of Spatial Distribution Errors

The relative position of landslide identification errors was analyzed by compar-
ing the unidentified landslide areas, the misidentified areas, and the mass center of the
landslide areas.

The distance between the mass center of the undetected landslide area and that of
the corresponding landslide was calculated (Figure 9). The origin position was the mass
center of the landslide. The results showed that the area of the undetected landslides in
UAV images was relatively small and mainly located in the area around the landslide far
from the mass center of the landslide with an average distance of 17.61 m, and the farthest
of 160.86 m. The area of the undetected areas in GF-6 and Landsat 8 images was relatively
large and closer to the mass center of the landslide. When the undetected landslide area
was located at the origin position, it means that the landslide was not detected as a whole.
The average distance of the undetected area from the mass center of the corresponding
landslide in GF-6 images was 11.76 m, and the farthest distance was 180.28 m. For Landsat
8 images, it was 13.65 m and 211.63 m, respectively.

Centroid diagram of misidentified area
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Figure 9. Schematic diagram of the location of each undetected area from the mass center of the
landslide (The zero point position is the mass center of the complete landslide area. The positions
of the points are relative to the mass center of the complete landslide area. The size of the circle
represents the area of the undetected landslide).

The average distance between the misidentified area center and the corresponding
landslide center (Figure 10) in UAV images was 35.07 m, with the nearest distance being
2 m and the farthest distance being 486.04 m; 36.45 m, 1.41 m, and 186.10 m for GF-6 images;
and 103.14 m, 21.63 m, and 194.65 m for Landsat 8 images. UAV image-based data of each
type were the largest among the three types of images, and the distribution was the most
dispersed, which suggested that the misidentified parts in UAV images were those farthest
from the boundary part of the landslide area.
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Figure 10. Schematic diagram of the location of each undetected area from the center of the landslide
(The zero-point position is the mass center of the complete landslide area. The positions of the points
are relative to the mass center of the complete landslide area. The size of the circle represents the area
of the misidentified landslide).

6.3. Landslide Detection and Land Cover Type

The accuracy of automatic ETL detection is influenced by land cover types of the
landslide occurrence area. The five main land cover types included in this study are
forestland, high-coverage grassland, low-coverage grassland, built land, and water area
(Table 6).

Table 6. Landslide rate under different surface coverage in remote sensing images.

Urban and Rural,
Forest High-Coverage Low-Coverage Industrial and
Grassland Grassland Mining, and
Residential Land
Total area (m?) 1,205,622 2,587,019 4,155,431 366,290
Visual detection Landslide area (m?2) 395,710 443,210 556,017 64,279
Landslide area proportion 27.12% 30.37% 38.10% 4.41%
FCN-detected area (m?2) 338,462 467,564 482,057 63,706
UAV Correctly detected area (m?2) 294,644 402,229 427,352 56,940
Accuracy 87.05% 86.03% 88.65% 89.38%
FCN-detected area (m?) 207,510 376,553 387,588 108,975
GF-6 Correctly detected area (m?) 175,506 258,710 282,867 46,147
Accuracy 84.58% 68.70% 72.98% 42.35%
FCN-detected area (m?) 609,560 456,960 507,616 95,865
Landsat 8 Correctly detected area (m?) 140,753 243,160 282,400 44,909
Accuracy 23.09% 39.89% 46.33% 7.37%

In this paper, the number of landslides on each land cover type was counted. Some
of the landslide areas were under various land cover types, and the area counts were
performed for the areas within multiple different land cover types in this paper.

In the four feature types, the correct interpretation rate decreased as the resolution
decreased. The effect of resolution on the interpretation results was particularly evident
on the built land, for example, industrial and mining, and urban and rural residential
areas. The accuracy of interpretation in UAV images in this feature type reached 89.38%,
which was the highest among the four feature types; while for GF-6 images, it was only
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42.35%, the lowest among the four feature types; and for Landsat 8 images, the accuracy
rate decreased to 7.37%, which was much lower than the accuracy of interpretation in the
other three feature types.

As the resolution decreased, the percentage of landslide interpretation increased under
the feature types of high-coverage grassland. This is because when landslides occur in
this feature type, the surface damage is more obvious and the landslide area changes
significantly from the surrounding non-landslide areas, so it is easier to be interpreted.
Under the feature type of high-coverage grassland, the interpretation accuracy in UAV
images was 17.33% higher than that in GF-6 images and 46.14% higher than that in Landsat
8 images. The interpretation accuracy in GF-6 images was 28.81% higher than that in
Landsat 8 images.

As the resolution decreased, the percentage of landslides interpreted under the forest
feature type decreased continuously. The percentage of landslides interpreted under the
forest feature type in Landsat 8 images was 9.35% lower than that in UAV images, and 1.95%
lower than that in GF-6 images. (Figure 11) This is due to the fact that when landslides
occur under this feature type, the surface damage is more obvious and the landslide area
changes significantly from the surrounding area where no landslides occur, so it is easier to
be detected. In contrast, for landslides under two feature types: low-coverage grassland
and built land, Landsat 8 images detected 4.22% more landslides under the low-coverage
grassland feature type than UAV images, and 3.34% more than GF-6 images; under the
build land, Landsat 8 image-based detection results were higher than those of UAV images.
Under the type of built land, Landsat 8 image-based detection result was 2.81% higher
than that of UAV images and 1.58% higher than that of GF-6 images. The results suggested
that as the resolution decreased, the proportion of landslide interpretation area with low
vegetation coverage increased.

24.95% .
27.12% Forest

36.18%
38.10%

4.82%
4.41%

Urban and rural.industrial and

34.05% mining residential land

30.37%

Visual interpretation UAV
15.60%
P 23.00% i .
High coverage grass
37.06%
40.40% Aok
6.05%
141%
Low coverage grass
36.37%
33.90%
GF-6 Landsat8

Figure 11. Proportion of landslides under different surface coverage in remote sensing images.

7. Conclusions and Discussions

We quantitatively compared and analyzed the ability and error types of remote sens-
ing images with different resolutions: UAV images (resolution of 0.5 m), GF-6 images
(resolution of 2 m), and Landsat 8 images (resolution of 15 m) in detecting the area and
number of ETLs. The conclusions are as follows:

1. Differences in detecting ETL areas.

The resolution of the image plays a major role in automatic ETL detection. The higher
the resolution of the image is, the higher the accuracy of landslide detection. In this study,
the overall accuracy rates of UAV, GF-6, and Landsat 8 images were 94.45%, 88.78%, and
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85.22%, respectively, and the precision rates were 86.01%, 70.54%, and 54.96%, respectively.
The ETL area that was correctly detected in UAV images was 82.00%, against 52.67% and
48.32% when compared with GF-6 and Landsat 8 images, respectively.

2. Differences in detecting individual ETLs.

The ability of remote sensing images with different resolutions to detect individual
ETLs varies greatly. The minimum landslide areas that were automatically detected in
UAV, GF-6, and Landsat 8 images were 46.91 m?2, 73.54 m?, and 105.14 m?, respectively, in
this study. The quantity of ETLs detected in UAV images was 99.07%, against 60.83% and
61.06%, compared with GF-6 and Landsat 8 images, respectively.

The detection rate of remote sensing images for landslides of different scales is quite
different as well. In general, the larger the landslide area is, the higher the detection
accuracy. The study showed that when the area of landslide was smaller than 100 m?,
66.39% of the landslide was detected by UAV images, while for GF-6, it was only 0.70%.
No landslide was detected by the Landsat 8 images. For landslide areas of 100~1000 m?,
74.29% landslides were detected in UAV images, while for GF-6 and Landsat 8 images the
rate was only 17.11% and 21.06%, respectively. For 1000-10,000 m?2, 80.16% of landslides
were detected in UAV images, and only 37.63% and 32.54% for GF-6 and Landsat 8 images,
respectively. For areas larger than 10,000 m?, 84.21% landslides were detected by UAV
images, and only 64.78% and 61.40% for GF-6 and Landsat 8 images.

3. Errors of detecting ETLs.

The main errors in automatic ETLs detection by remote sensing include six types: the
detected area of a single landslide was smaller than the actual area, larger than the actual
area, partially overlaps with the actual area, a single landslide was detected as multiple
landslides, multiple landslides were detected as one single landslide, and multiple land-
slides corresponded to multiple landslides. These types accounted for different proportions
in remote sensing images of different resolutions. For example, the main error in UAV
images was that the detected area of a single landslide was smaller than the actual area,
while for GF-6 and Landsat 8 images, the errors were mainly about undetected landslides.
In addition, the positions of the undetected and incorrectly detected landslide areas relative
to the actual landslide are also different. The higher the image resolution, the closer the
undetected landslide area is to the actual landslide, while the incorrectly detected landslide
area is to the actual landslide.

The land cover has a great influence on landslide detection. ETLs are mainly dis-
tributed in low-coverage grassland, high-coverage grassland, and forest areas. In this study,
low-coverage grassland, high-coverage grassland, and forest areas accounted for 38.10%,
30.37%, and 27.12% of the total landslide area, respectively, while landslides in built land
occurred less. The GF-6 image had a higher detection accuracy of landslides in forestland,
followed by low-coverage grassland and high-coverage grassland, and a lower detection
accuracy of landslides in built areas; Landsat 8 images had a relatively high detection rate
of landslides in low-grass covered areas, followed by grassland and forestland, but the
detection rate was relatively low. The most prominent is that the detection of landslides on
built land was particularly low, which also shows that Landsat 8 images cannot distinguish
well between built land and landslides. Compared with GF-6 and Landsat 8 images, the
image of land cover types detected in UAV images was less affected by the land cover type,
including landslides on built land, which also had a high detection rate.

When carrying out ETLs surveys, the number and area of actual seismic landslides can
be inferred using the results of this study based on the number of landslides interpreted
from low- and medium-resolution remote sensing images for some areas where aerial
photography is not available. In addition, this method is mainly based on the detection
of land cover, so it is also applicable to rainfall-type landslides after rapid sliding, but for
slowly deforming landslides, the detection method in this paper is not applicable because
of their insignificant surface changes.

Obtaining a complete ETLs inventory by automatic detection is more difficult than
visual detection. At present, many factors affect the accuracy of landslide detection [27,28].



Land 2023, 12, 681 18 of 19

For example, the FCN detection method takes pixels as the basic unit, thus producing a
large number of debris polygons. It is still time-consuming and laborious to integrate and
eliminate them manually. The detection accuracy of ETLs from medium-resolution images
still needs to be improved. Further improvements to the algorithm model are needed.
This study illustrated the ability and accuracy of ETL detection by remote sensing images
of different resolutions on the one hand, and statistically analyzed the types of errors in
ETL detection by remote sensing images with different resolutions. On the other hand,
the model can be further optimized in order to provide the detection accuracy of ETLs by
remote sensing. Additionally, the algorithm for debris polygons generated by landslide
edges can be improved by adding some edge detection algorithms to make landslide
identification more accurate.
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