
Citation: Cemiloglu, A.; Zhu, L.;

Mohammednour, A.B.; Azarafza, M.;

Nanehkaran, Y.A. Landslide

Susceptibility Assessment for

Maragheh County, Iran, Using the

Logistic Regression Algorithm. Land

2023, 12, 1397. https://doi.org/

10.3390/land12071397

Academic Editors: Candide Lissak,

Christopher Gomez, Vittoria Vandelli

and Chuanrong Zhang

Received: 16 May 2023

Revised: 9 July 2023

Accepted: 10 July 2023

Published: 12 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

land

Article

Landslide Susceptibility Assessment for Maragheh County,
Iran, Using the Logistic Regression Algorithm
Ahmed Cemiloglu 1 , Licai Zhu 1, Agab Bakheet Mohammednour 2, Mohammad Azarafza 3

and Yaser Ahangari Nanehkaran 1,*

1 School of Information Engineering, Yancheng Teachers University, Yancheng 224002, China;
ahmed@yctu.edu.cn (A.C.); zhulc01@yctu.edu.cn (L.Z.)

2 Department of Control System Engineering, Al-Neelain University, Khartoum 12702, Sudan;
agab.bakheet@neelain.edu.sd

3 Geotechnical Department, Faculty of Civil Engineering, University of Tabriz, Tabriz 5166616471, Iran;
m.azarafza.geotech@gmail.com

* Correspondence: yaser@yctu.edu.cn

Abstract: Landslide susceptibility assessment is the globally approved procedure to prepare geo-
hazard maps of landslide-prone areas, which are highly used in urban management and minimizing
the possible disasters due to landslides. Multiple approaches to providing susceptibility maps for
landslides have one specification. Logistic regression is a statistical-based model that investigates the
probabilities of the events which is received extensive success in landslide susceptibility assessment.
The presented study attempted to use a logistic regression application to prepare the Maragheh
County hazard risk map. In this regard, several predisposing factors (e.g., elevation, slope aspect,
slope angle, rainfall, land use, lithology, weathering, distance from faults, distance from the river,
distance from the road, and distance from cities) are identified as main responsible for landslide
occurrence and 20 historical sliding events which used to prepare hazard risk maps. As verification,
the models were controlled by operating relative characteristics (ROC) curves which reported the
overall accuracy for susceptibility assessment. According to the results, the region is located in
a moderate to high-hazard risk zone. The north and northeast parts of Maragheh County show high
suitability for landslides. Verification results of the model indicated that the AUC estimated for the
training set is 0.885, and the AUC estimated for the testing set is 0.769. To justify the model, the results
of the LR were comparatively checked with several benchmark learning models. Results indicated
that LR model performance is reasonable.

Keywords: landslides; susceptibility analysis; logistic regression; hazard mapping; geo-hazards

1. Introduction

Landslides are the second most hazardous geo-hazard phenomenon worldwide that
cause countless damages to infrastructures and loss of lives. Geologically, the wide variety
of mass movements on the earth-surface that triggered by certain influence factors where
the movable mass moved into the downward slope by static and/or dynamic forces [1–4].
The cause of the movement of the mass can be gravity, earthquake, road construction,
heavy rain or water-pore pressure, lightning downstream of the slope, and so on [5]. These
movements can occur very slowly (only a few millimeters per year), or they can happen
very quickly and have disastrous effects. Landslides can even appear on the seabed and
underwater, creating tidal waves that destroy coastal areas [6]. According to the European
Geotechnical Thematic Network (EGTN), landslides account for about 17% of the world’s
natural disasters [7]. Therefore, identifying a suitable set of instability factors related to
slope failures requires prior knowledge of the main causes of landslides [8]. Landslide
susceptibility analysis provides appropriate information about the high potential regions
regarding the landslide occurrence probability [9]. Landslide susceptibility mapping
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relies on relatively sophisticated knowledge of slope movements and their controlling
factors. The reliability of landslide susceptibility maps mostly depends on the amount and
quality of available data, the working scale, and the selection of the appropriate analysis
procedure [10–14]. The resulting need to predict the occurrence of landslides has led to
the development of several stochastic and process-based models that emphasize the use
of geographic information systems (GIS). To solve this problem, a scientific evaluation of
the landslide-prone area is necessary. In the last decade, the mapping system of remote
sensing techniques has facilitated the preparation of geographic information and landslide
susceptibility maps [15–18].

Iran is one of the countries involved in landslides which can be triggered by rainfall,
unprincipled human activities, or earthquake events. For example, the Kejur earthquake in
Mazandaran province in 2013 did cause extensive rockfalls and brought a lot of financial
costs for the region [19]. Considering Iran’s geological complexity and active tectonically
conditions regarding earthquake events, the country is considered as high seismic activ-
ity [14]. So, providing landslide susceptibility mapping for different regions is inevitable.
Nevertheless, there are specific predisposing factors that are responsible for landslide
occurrences (regardless of the scale and mechanism) which provide suitable conditions
for massive movements [20], especially in mountainous regions [21]. In such regions,
implementing projects related to water pipelines, transportation networks and environ-
mental management, and urban planning must consider requirements to identify landslide
risks [13].

Considering the complexity of Iran’s platform regarding landslide occurrence, pro-
viding a detailed and reliable procedure to provide the susceptibility maps for landslides.
In general, different methods have been applied by researchers around the world for
landslide hazard susceptibility assessment. These methods can be classified as qualita-
tive or quantitative approaches. Qualitative methods are subjective and are based on the
experts’ opinions and depict risk zoning descriptively. Quantitative methods can be estab-
lished based on ground surveys and remote sensing applications that lead to producing
quantities. By using specialized knowledge and precise procedure, the direct relationship
between the landslides and the triggering parameters responsible for landslides occurrences
can be determined [22]. Although each method has its advantages and disadvantages,
due to the lack of international standards and uniform instructions, researchers widely
use them [23,24]. Among the wide range of quantitative which can be categorized into
deterministic, statistical, heuristic, inventory-based, geostatistic, and knowledge-based
methods [25–28]. In the meantime, statistical methods have received strong attention from
professionals regarding landslide susceptibility [29]. In statistical methods proposed for
assessing landslide susceptibility, Logistic Regression (LR) analysis has proven to be one of
the most reliable approaches [30–32]. LR is a generalized linear model type which is very
suitable for analyzing the presence or absence of a dependent variable and has been used
to predict the susceptibility of landslides [33]. LR uses discriminant analysis and likelihood
ratio to stepwise variable selection and provides more accurate landslide susceptibility by
prediction process [34].

LR is a valuable tool for landslide susceptibility analysis due to several key reasons.
Firstly, landslide susceptibility analysis often involves binary classification, where areas are
categorized as either susceptible or not susceptible to landslides. LR is specifically designed
for binary classification problems, making it well-suited. Secondly, LR provides estimates
of the probability that an area belongs to a specific class, which is particularly useful in
landslide susceptibility analysis. By estimating the probability of an area being susceptible
to landslides based on various input factors, LR enables a more nuanced understanding
of the likelihood of landslides occurring in different areas. This probability information is
crucial for informed decision-making and prioritizing mitigation efforts [30,31]. Also, LR
offers interpretability, allowing us to understand the relative importance and influence of
different predisposing factors in landslide susceptibility [34]. The coefficients associated



Land 2023, 12, 1397 3 of 20

with each independent variable provide insights into the strength and direction of their
impact on the probability of landslide occurrence [32].

Landslide susceptibility analysis considers multiple input factors, such as predispos-
ing factors and historical landslide records. LR can handle continuous and categorical
variables, accommodating a wide range of data types and allowing for a comprehen-
sive analysis. Moreover, LR models are transparent and understandable, expressing the
relationship between the input factors and the probability of landslide susceptibility in
a straightforward manner. This transparency enables stakeholders to grasp the underlying
mechanisms and potentially validate the model against their domain knowledge. Lastly, lo-
gistic regression has a well-established methodology with numerous techniques for model
assessment, including goodness-of-fit tests and evaluation metrics like operating relative
characteristics (ROC) analysis [32,33]. This rich body of knowledge surrounding logistic
regression provides confidence in its applicability and reliability for landslide susceptibility
analysis. In conclusion, logistic regression is a valuable and appropriate choice for landslide
susceptibility analysis due to its compatibility with binary classification, probability estima-
tion, interpretability, ability to handle multiple input factors, transparency, and established
methodology. Its utilization can enhance our understanding of landslide susceptibility and
inform effective mitigation strategies [31–34].

Lee et al. [35] used frequency ratio and LR models to prepare landslide susceptibility
maps in GIS. The variables used by LR are slope angle, topography, elevation, land-land
use, soil material, drainage pattern, effective soil thickness, forest type, tree diameter, tree
age, and forest density. The results showed the high accuracy of the logistic regression
model prediction compared to the frequency ratio model. Ayalew et al. [36] have studied
landslide susceptibility conditions for Sado Island landslides in Japan. The authors used
lithology, topography and slope angle as basics and implemented logistic regression and
analysis hierarchy (AHP) to cover the parametric analysis of predisposing factors. Greco
et al. [37] presented landslide susceptibility analysis based on LR in Cambria, Italy. The
researchers used six main predisposing factors to develop the landslide risk maps. As
a result, the logistic regression can predict and detect the prone area regarding land sliding.
Yalcin et al. [38] provide a comparative analysis based on LR, AHP and frequency ratio
to estimate the suitable methodology for landslide susceptibility mapping performed on
20 active landslide areas in Turkey. The results indicated that logistic regression is getting
more accurate than other approaches.

Ozdemir [39] used frequency ratio, weights of evidence and LR methods in landslide
susceptibility assessment in the Sultan Mountains of Turkey. The study aims to establish
a comparative study to understand the capability of these procedures. As a result, LR
reaches the highest performance of other methods. Shahabi et al. [40] prepare research
to analyse the AHP, LE and frequency ratio capability to develop landslide susceptibility
maps in the central Zab basin of Iran by considering eight different predisposing factors.
Researchers used the coefficient of determination (R2) and ROC curve to evaluate the
predictive model’s performance. As a result, the LR provided better predictions. In their
study, Chen et al. [30] introduced a new kernel logistic regression-based model approach
named the ‘BKLR model’, developed for spatial susceptibility analysis of landslides in
Shangnan, China. In this research, 15 conditioning factors were selected and entered into
the process, which leads to providing landslide susceptibility maps of the studied area.
Tekin [41] provides a study on landslide susceptibility mapping by using LR and landslide
inventory methods which were implemented in the Ceyhan watershed in Turkey. The
process applied to several predisposing factors and was controlled by the ROC curve and
R2. Results indicate that the LR model operated with 84.2% overall accuracy to obtain
the final susceptibility map. Nwazelibe et al. [42] utilized a comparative study on LR and
weight-of-evidence (WoE) algorithms to provide Orumba North region (Nigeria) suitability
for landslides. The models were verified and controlled by ROC overall accuracy. As a
result, LR provided more accurate results than WoE (WoE and LR results as 0.986 and 0.995,
respectively). Abeysiriwardana and Gomes [6] used GIS and LR to analyse the impact
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of vegetation on soil properties (moisture, compaction, . . . ) and landslide susceptibility
conditions. The model was validated by confusion matrix and ROC overall accuracy. Gu
et al. [43] used a geographically weighted logistic regression model (GWLR) to provide
the landslide susceptibility maps for Zhenxiong County, China. The authors operated the
model on 2015 historical data of occurred landslides and about ten predisposing factors,
which led to preparing landslide susceptibility maps. The model was implemented with
90.4% accuracy to provide results controlled by ROC curve analysis.

It is important to note that applying LR to landslide susceptibility, several key points
should be considered. LR is particularly suitable for binary classification problems, making
it well-suited for distinguishing between areas that are susceptible or not susceptible to
landslides. By modeling the relationship between input factors and the binary outcome,
LR helps identify factors significantly contributing to landslide susceptibility [34]. Also,
LR provides interpretable results [31,32]. The LR model’s coefficients associated with each
input factor can be analyzed to understand the magnitude and direction of their impact
on landslide susceptibility [33,35]. This interpretability allows researchers to gain insights
into the relative importance of different triggering factors in the study area [36]. LR can
accommodate various types of input variables. It can handle continuous and categorical
factors, which is crucial when considering the diverse predisposing factors in landslide
susceptibility analysis [35].

Furthermore, LR can effectively handle small datasets, which is often the case in
landslide susceptibility analysis due to the limited availability of historical landslide events.
Despite the small number of data points, LR can still provide meaningful predictions
and insights into the susceptibility of different areas. Also, LR results can be integrated
into a GIS environment, allowing for spatial visualization and analysis. By mapping
the predicted landslide susceptibility, decision-makers can identify high-risk areas and
incorporate this information into urban planning and land management strategies [41,42].

The presented study attempted to use the LR analysis method to develop the landslide
susceptibility maps for Maragheh County, northwest of Iran. The county has a complex
geological history that leads to occurred local scale landslides which recorded 20 historical
events during field surveys and remote-sensing studies. The model was implemented in
Python high-level programming language, and results are entered as information layers
in the GIS. Ultimately, these information layers represent the predisposing factors for the
studied region susceptibility assessment. The motivation of this study regarding using
the LR application for landslide susceptibility analysis for Maragheh County can be classi-
fied as its compatibility with binary classification, probability estimation, interpretability,
ability to handle multiple input factors, transparency, and established methodology. Its
utilization can enhance our understanding of landslide susceptibility and inform effective
mitigation strategies.

Furthermore, integrating remote sensing data with ground surveys in Maragheh
County has improved the precision and resolution of the input variables in LR modeling.
These high-resolution datasets provide valuable information on predisposing factors and
historical records. Another significant advancement is incorporating the LR algorithm for
the studied area. LR can combine with other algorithms employed to improve predictive
accuracy. Also, these advancements contribute to better-informed decision-making pro-
cesses, allowing for effective mitigation strategies and reducing the impact of landslides on
human lives and infrastructure.

The hypothesis underlying the application of LR in landslide susceptibility analysis
for Maragheh County suggests a relationship between the identified predisposing factors
and the occurrence of landslides. The null hypothesis posits that these factors do not
have a significant impact on the susceptibility of an area to landslides. Conversely, the
alternative hypothesis proposes that the combination of factors such as elevation, slope
aspect, slope angle, rainfall, land use, lithology, weathering, distance from faults, distance
from rivers, distance from roads, and distance from cities plays a crucial role in determining
the susceptibility of an area to landslides within Maragheh County. By employing LR
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and analyzing the relationships between these factors and historical landslide events,
the study aims to provide empirical evidence supporting a significant relationship. The
goal is to develop a reliable landslide susceptibility map to identify and delineate county
areas prone to landslides. This hypothesis-driven approach will better understand the
factors influencing landslide susceptibility in Maragheh County and facilitate informed
decision-making for land use planning and sustainable development initiatives.

In the context of landslide susceptibility assessment in Maragheh County, LR offers
several advantages that make it a suitable approach. Firstly, LR provides interpretable
results, allowing for an understanding of the relationship between input variables and the
likelihood of landslide occurrence. This interpretability is valuable in identifying the key
factors contributing to landslide susceptibility in the specific region. Additionally, LR can
effectively handle situations where data availability is limited or of low resolution, which
is often the case in landslide studies. It can still yield meaningful insights based on the
available data without being overly sensitive to data limitations.

Moreover, LR produces probability estimates that quantify the uncertainty associated
with landslide predictions, aiding in decision-making and risk management efforts. The
probabilistic nature of LR enables a more nuanced understanding of landslide suscepti-
bility in the studied County. The validation of LR models can be easily conducted using
evaluation metrics such as the ROC curve and AUC, providing a measure of the model’s
performance in discriminating between landslide and non-landslide areas. Suppose LR has
been successfully applied in previous studies or similar geospatial analyses in the region.
In that case, it justifies its use in subsequent landslide susceptibility assessments, ensuring
consistency and facilitating comparisons. Ultimately, the choice of application should be
carefully considered, considering the specific characteristics of Maragheh County, available
data, and research objectives.

2. Materials and Methods
2.1. Studied Case Location

Maragheh County, with 65.2185 km2 occupies about 8.4 percent of East Azerbaijan
province’s total area, which is located in northwest Iran. Maragheh city (capital of Maragheh
County) is located at 37◦23′21′′ N 46◦14′15′′ E, where limited by Urmia Lake in the west,
Tabriz in the north, and Hashtroud in the east [44]. Figure 1 presents the location of the
studied region. The climate of Maragheh is moderate. It tends to be cold and relatively
humid. The maximum temperature in this city in summer is about 35 degrees Celsius, and
its minimum in winter is about 20 degrees Celsius. The annual rainfall in Maragheh is about
330 mm, and its frost days are about 114 days a year. The highest maximum precipitation
is in March and April, and the lowest is related to summer [45]. As a topographical
condition, Maragheh is located in the Sofichay River Valley (unearthed waterway of Sahand
Mountain foothill), a Sofichay River basin. Geologically, Maragheh has been made in
alluvial deposits of Sofichay River and Sahand Stratovolcan Mountain activity, located
in northern Maragheh. The Sahand Mountain comprises pyroclastic, ignimbrites, dacite,
felsic rocks and lavas. So, the north and east parts of the County are on volcanic ashes
and the west part is covered by alluvium [46]. Geographical formations from the studied
region have varied geological histories and reflect the region’s complex tectonic history
and tectonic earthquakes. Maragheh city is affected by large and active faults in the region,
such as the Tabriz fault, Urmia-Zarinehrud fault, and north and south Maragheh faults,
which have caused various earthquakes in the region [46]. A geological map of the studied
region is presented in Figure 2.
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Regarding the complexity of the geological background of the Maragheh region. There
are several various predisposing factors, including elevation, slope aspect, slope angle, rain-
fall, land use, lithology, weathering, distance from faults, distance from the river, distance
from road and distance from cities were used as main influence parameters in landslide
occurrence which are identified as main responsible for landslides. Also, 20 historical land-
slide events are recorded during the ground survey and remote-sensing assessment. The
location of the historical landslides is shows in Figure 1. Generally, selecting predisposing
factors plays a key role in landslide susceptibility analysis, considered an essential stage in
susceptibility mapping [47]. To estimate proper parameters and have a good understanding
of predisposing factors, field surveys and remote sensing observations are required, which
are done in the studied region. The selection of the predisposing factors requires several
considerations about the triggering elements’ dependency, measurability, non-redundancy,
and relevance of geological characteristics, which leads to logical and reliable preparations.
Table 1 provides relevant information about the selected predisposing factors used in this
study. This information was used to develop the parametric maps in GIS regarding the
predisposing factors. Figure 3 provides the relative maps regarding estimated predisposing
factors in the study. Regarding the multicollinearity, the applied variables in susceptibility
analysis for landslides must be correlated. The multicollinearity term is the capability of
a predictor variable in a regression model to predict linearly from others [48]. To test for
multicollinearity variance, inflation factors (VIF) are common, and if VIF > 5, it indicates
potential multicollinearity. In this article, all selected predisposing factors produced VIF
values less than 5.00. Figure 4 provides the VIF variations for selected predisposing factors.
VIF ratio quantifies the multicollinearity severity in an ordinary least squares regression
analysis and presents how much larger the standard error increases. Low value of VIF
indicates the less errors during calculations [49,50].

Table 1. A summary of landslide predisposing factors information was used in this study.

Class Predisposing Factors Resolution Variables Data Source

Morphologic
Elevation ±30 m Continuous DEM

Slope aspect ±30 m Continuous DEM
Slope angle ±30 m Continuous DEM

Climatologic Rainfall ±30 m Continuous IMO *

Geologic

Land use ±30 m Discrete Geological data
Lithology ±30 m Discrete Geological data

Weathering ±30 m Discrete Landsat TM, ETM+
distance from faults ±30 m Continuous DEM, Google Map
distance from river ±30 m Continuous DEM, Google Map

Human related
distance from road ±30 m Continuous DEM, Google Map
distance from cities ±30 m Continuous DEM, Google Map

* IMO: Iran Meteorological Organization.

While the dataset size of 20 landslides + predisposing factors identified for studied
region may be limited, the LR algorithm still provides meaningful insights. To overcome the
challenge of a small dataset, a data augmentation technique was utilized. Data augmenta-
tion involves generating synthetic data points by applying transformations or perturbations
to the existing dataset, effectively expanding the sample size [51,52]. This technique is
helped mitigate the potential limitations arising from the small number of recorded land-
slides [53]. In this study, oversampling was considered for modeling. Oversampling
addresses class imbalance between landslide occurrences/historical records (positive in-
stances) and non-landslide areas (negative instances) in the dataset. The imbalance can lead
to biased models that favor the majority class [54]. This allows logistic regression, a binary
classification algorithm commonly used in landslide susceptibility assessment, to learn
from a broader range of examples and improve its ability to predict landslide occurrences
accurately. The oversampled dataset is used to train the logistic regression model, which



Land 2023, 12, 1397 8 of 20

estimates the coefficients for independent variables and models the relationship between
these variables and the binary outcome.
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Regarding the spatial data quality, it is acknowledged that a ±30 m resolution may
result in coarse-grained results. However, LR can still provide valuable insights even with
low-resolution data by incorporating other relevant data sources, considering identified
predisposing factors, and capturing meaningful patterns and relationships associated with
landslide susceptibility. It should be noted that LR is advantageous due to its simplicity,
interpretability, and ability to provide probabilistic outputs. It can offer valuable insights
even with low-resolution data and is computationally efficient. LR can partially address the
challenges posed by low-resolution data in landslide susceptibility assessment. Techniques
such as feature engineering, regularization, ensemble methods, and feature selection can
help overcome limitations. Feature engineering is considered to modify the LR model and
improve predictive performance. During the feature engineering, relevant features from
the database are selected and combined with approved features to capture the underlying
patterns and relationships between the predisposing factors, recorded landslides, and non-



Land 2023, 12, 1397 9 of 20

landslides. Although the study area may be small, logistic regression is applied effectively
for localized analysis and proper preparation of the susceptibility map. It is essential
to consider the specific context and scale of the study, ensuring that interpretations and
conclusions are cautious and appropriately scaled to the study area.
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2.2. Principle of Logistic Regression

The main purpose of the LR method is to predict the probability of occurrence of
a binary event from a set of variables that may be continuous, discrete or both in combi-
nation. The main difference between LR and other multiple statistical analyses is that the
independent variables do not need to be normally distributed or linearly related, and the
predicted values are converted to probabilities between 0 and 1. Therefore, many studies
have used LR for evaluation [18]. LR allows to form a multivariate regression relationship
between a dependent variable and several independent variables. LT is one of the mul-
tivariate analysis models that help predict the presence or absence of a characteristic or
outcome based on the values of a set of predictor variables. Another advantage of logistic
regression is that by adding an appropriate link function to the usual linear regression
model, the variables may be continuous, discrete, or any combination of both and not
necessarily normally distributed. In the case of multiple regression analysis, the factors
must be numerical, and in the case of a similar statistical model, deterministic analysis, the
variables must have a normal distribution [55]. The LR model is a generalization of the
general linear model (GLM) that is compatible with the GLM and can also be compatible
with the LR method, where its general model is as follows:

Y = log it(p) = ln
(

p
1− p

)
= c0 + c1 + c2 + · · ·+ cnx (1)

where Y is the probability of an accident (landslides), C0 is the width from the origin
or constant coefficient,

(
p

1−p

)
is odds ratio, c1 + c2 + · · ·+ cnx which are independent

variables [56]. Mainly the p(x) is presented as logistic function and can be calculated as
p(x) = 1

1+e−[
x−µ

s ]
which µ is a location parameter (the midpoint of the LR curve), s is
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a scale parameter, and x1 + x2 + · · ·+ xn are coefficients of independent variables (c). This
expression may be rewritten as [56]:

p(x) =
1

1 + e−(β0−β1x)
(2)

where β0 (= −µ/s) is the y-intercept, β1 is the inverse scale parameter or rate parameter
(β1 = 1/s) which these are the y-intercept and slope of the log-odds as a function of
x (µ = β0/β1, and s = 1/β1). So, after exponentiation of the log-odds functions, it can be
stated p(x)

1−P(x) = e(β0−β1x) [48].
The particular LR model various types of regressions used for binary-valued outcomes,

which is the way the probability of a particular outcome is linked to the linear predictor
function [48]:

logit
(

ε[Y i| Xi ]) = logit (p) = ln
(

p
1− p

)
= β.Xi (3)

This formulation expresses logistic regression as a generalized linear model, which
predicts variables with various types of probability distributions by fitting a linear predictor
function of the above form to some sort of arbitrary transformation of the expected value of
the variable. As the value of x (x→ +∞) increases, the logistic function will reach 1.0. Also,
by decreasing the value of x (x→ −∞), the value of the function tends to zero. Suppose
this function is used to express the probability of the dependent variable for LR.

Dai and Lee [57] stated that LR’s main advantage compared to other multivariable
statistical techniques is its capability to conduct multiple regression and diagnostic analysis
on dependent variables, which can only have two values (one for occurrence probability
and the other for non-occurrence). So, it can be useful to identify the variables based on the
probability of landslide occurrence and non-occurrence in different regions.

2.3. Logistic Regression Verification

To evaluate the LR model’s overall accuracy, mainly the operating relative character-
istics (ROC) curves were considered in this article as well. Between floors in the logistic
model, it is examined and confirmed, considering that the same slips that are used in
zoning cannot be used to evaluate the model. ROC curve is one of the most efficient
methods in providing the deterministic feature, probability identification and prediction
of systems, which quantitatively estimates the accuracy of the machine learning-based
predictive model. ROC curve is a graphical plot for binary classifiers’ diagnostic ability
to discriminate threshold is varied. The ROC curve is mainly created by plotting the true
positive rate against the false positive rate at various threshold settings, known as evalua-
tion criteria in the confusion matrix [58]. In ROC, the area under the curve (AUC) indicates
the overall accuracy of predictive values by describing its ability to correctly estimation of
events that have occurred (landslides) and not (non-occurrence of landslides). So, the AUC
will vary from 0 to 1. So that the closer the numerical value of AUC is to 1, the higher the
overall accuracy and the closer to 0, which indicates low accuracy and thus more error [59].

2.4. Comparative Justifications

As justification for the checking of predictive model performance, several benchmark
learning classifiers are considered. Naïve Bayes (NB), Decision Trees (DT), Random Forests
(RF), k-Nearest Neighbors (k-NN), and Liner Support Vector Machines (SVM) are the main
concern for comparative justification in this study. NB is an effective probabilistic classifier
that is based on Bayes’ theorem. Given the class label, it assumes that features are condi-
tionally independent, hence the ‘naïve’ assumption. NB works well with high-dimensional
data and is computationally efficient. It has been widely used in text classification tasks
and spam filtering due to its simplicity and decent performance. However, the naïve
assumption may not hold in all scenarios, which can limit its accuracy compared to more
complex models. DT is a popular class of classifiers that uses a hierarchical structure of
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nodes to make decisions based on feature values. They recursively split the data into
subsets based on the most informative features, creating a tree-like structure. DT is easy
to interpret and visualize, making them helpful in understanding the decision-making
process. However, they can be prone to overfitting if not properly pruned or regularized.
Ensemble methods like RF, which combine multiple decision trees, can mitigate overfitting,
and improve predictive accuracy by aggregating the decisions of individual trees within
DT [58,59].

The k-NN is a non-parametric classifier that assigns labels to new instances based
on the majority vote of their k-nearest neighbors in the feature space. It is simple and
intuitive but computationally expensive for large datasets. k-NN is sensitive to the choice
of k and the distance metric used for similarity calculation. It performs well when there
are clear clusters in the data or when the decision boundary is nonlinear. Linear SVM
aims to find an optimal hyperplane that separates the classes with the maximum margin.
SVMs are particularly effective in high-dimensional spaces and can handle linear and
non-linear classification tasks using kernel functions. They are robust to outliers and have
a solid theoretical foundation. However, SVMs can be computationally intensive for large
datasets and may struggle with datasets that have overlapping classes or complex decision
boundaries [58,59].

In the context of landslide susceptibility assessment, these models offer several advan-
tages. NB is computationally efficient and can handle high-dimensional data, making it
suitable for datasets often encountered in landslide studies. DT provide interpretability, al-
lowing insights into decision-making and identifying essential features. RF, as an ensemble
of decision trees, improve generalization and capture complex interactions. k-NN can cap-
ture non-linear patterns and spatial clustering relevant to landslide analysis. SVM excel in
handling high-dimensional data, dealing with overlapping classes, and capturing complex
decision boundaries [60,61]. These models provide different strengths and capabilities, and
the choice depends on factors such as data characteristics, interpretability needs, and the
complexity of relationships in the specific landslide susceptibility assessment. It is essential
to experiment and evaluate the performance of different models to select the most suitable
one for a given scenario.

In the presented study, a comparative justification was undertaken by evaluating the
mentioned classifiers in conjunction with LR. The study utilized the same input variables
and requested outputs for all predictive models to ensure consistency. The performance
evaluation was primarily controlled by the ROC curve analysis. The AUC was utilized
as a metric to assess the overall accuracy of the models. The study aimed to provide
a comparative analysis of the classifiers’ predictive performance for the specific landslide
susceptibility assessment by considering the AUC and overall accuracy.

2.5. Model Implementation

Since the LR model can examine and predict the impact of several predisposing factors
on landslide susceptibility, using LR is beneficial in predicting the probability of landslide
occurrence. The studied region is known as Maragheh County, located northwest of Iran.
Both ground survey and remote-sensing analysis were used in the studied region to extract
the proper features to identify the main predisposing factors. The assessment was improved
by recording 20 historical landslides from the County, which shows the hazardous areas
in the region. The information was prepared, classified, and used as input parameters in
the LR model. Table 1 provides information about resources of the predisposing factors
accumulations. The input parameters that gathers as an inventory dataset of landslide
predisposing factors were randomly divided into two testing and training sets responsible
for LR model learning and validating. The LR modeling was implemented in Python
programming language. The training set is considered 70% of the main dataset, and other
remaining 30% is selected for testing purposes. The model results are used as information
layers to prepare a susceptibility map for landslides in the studied region. Figure 5 provides
the process flowchart of model implication.
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Figure 5. The process flowchart of the LR-based landslide susceptibility assessment.

3. Results

Referring to various studies on landslide susceptibility assessment, it can appear that
there is no global framework for susceptibility analysis, and professionals are looking for
more accurate procedures in this matter. The presented study used the LR predictive model
regarding the high performance of the model to predict the probability of events. The
model was applied to several selected predisposing factors (one of the most important steps
in spatial prediction modelling) and 20 historical landslide records. The final susceptibility
analysis maps are an effective tool for managing future landslide occurrences in Maragheh
County. Figure 6 is presented the landslide susceptibility map using the LR method. Firstly,
the entire study region was converted to an information layer as pixels using GIS software
version 10.4. Next, all predisposing factors that entered the model were classified based on
the natural breaks classification scheme [30].
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Figure 6. Landslide susceptibility map using the logistic regression model.

Finally, these factors merged and classified into five susceptibility classes: very low,
low, moderate, high, and very high. As seen in Figure 6, it can be stated that the main
focus of the landside hazards belongs to the north and northeast part of the studied region,
showing the high and very high potential regarding landslide occurrence. From a general
perspective, the primary susceptibility condition of Maragheh County is moderate hazard
risk suitability. The second-ranked level of susceptibility regarding high potential which is
covered the north and southeast of the region. Also, Figure 7 is presented the percent of
various landslide susceptibility classes, which is estimated by the model.
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Regarding this figure, the region’s moderate susceptibility class ranks at 42.88%,
followed by high-risk potential at 33.2%. This variation indicates that Maragheh County
has moderate to high hazard risk levels regarding ground movements and the probability
of landslides. So, in sustainable development and urban management, landslide risk
management has to be considered properly.

After providing the landslide susceptibility map for Maragheh County, the applied
model must be validated and controlled regarding performance and capability. The results
of the machine learning–based predictive models are commonly validated based on ROC
curve analysis. Figure 8 illustrates the results of ROC curve analysis for LR models, which
were implemented for testing and training datasets. The AUC result from ROC in the
training set shows that the LR has good and reliable prediction capability with considerable
accuracy and performance. The AUC estimated for the training set is 0.885, and the AUC
estimated for the testing set is 0.769. A ROC provides the overall accuracy based on
true positive and false positive rates. The rate is responsible for the model performance,
which is reasonable and high in this case. Thus, the model is recommended for landslide
susceptibility assessment in the studied region.

Regarding LR application in landslide susceptibility analysis which is considered
one of the flexible machine learning-based classification models utilized for Maragheh
County susceptibility assessment. In this regard, based on conducting field surveys and
remote-sensing, several predisposing factors included elevation, slope aspect, slope angle,
rainfall, land use, lithology, weathering, distance from faults, distance from rivers, dis-
tance from roads, and distance from cities was determinate for the studied region. In the
meantime, during ground investigation, 20 historical landslide events are recorded and
verified by satellite images to correct the prone areas of land sliding. These predisposing
factors represent the morphologic, climatologic, geologic, and human works which is the
primary classification for influencing elements in the studied area. The data on predispos-
ing factors and the location of the historical landslide is used to provide the main dataset,
which randomly divides into the testing and training sets. The training set is 70% of the
main dataset, and the remaining 30% is selected for testing purposes. LR method was
implemented to prepare landslide susceptibility assessment for Maragheh County, and the
results were converted into the GIS environment. To evaluate the performance of the LR
model, ROC curves and AUC are considered for both testing and training sets to calculate
the overall accuracy of the modeling. The results confirmed that LR is a reliable method for
landslide susceptibility mapping. As per the susceptibility assessment of landslide results
for the Maragheh region, it appears the north and northeast parts are located the high and
very high susceptible area and the general view of the County demonstrate the moder-
ate to high classes for land sliding, which have to be considered in urban planning and
sustainable developments.

It is important to note that the validation process, particularly using AUC, measures
the modelling results and does not directly indicate the quality of the susceptibility map.
A high AUC value does not guarantee that the model’s results are reasonable or realistic
in terms of identifying susceptible areas, but a high AUC value is indicating the model is
implemented and operates properly. If the AUC is high, it can be concluded the model
operates and act properly and functionally. Also, the relationship between AUC and the
results of a landslide susceptibility map is indirect and requires careful interpretation.
AUC is commonly used as a metric to evaluate the performance of a predictive model,
including models used in landslide susceptibility analysis. It measures the model’s ability
to distinguish between positive and negative instances, where higher AUC values generally
indicate better discrimination between the two classes. This study related to the ‘landslide’
and ‘non-landslide’ classes. However, it is important to note that AUC alone does not
directly represent the quality or reliability of the susceptibility map itself. A high AUC
value implies that the model can differentiate between areas with different susceptibilities.
Nonetheless, the map’s accuracy and validity depend on several factors, including the
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quality and representativeness of the training data, the choice of input variables, and the
model’s assumptions and limitations.
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To establish a stronger relationship between AUC and the susceptibility map results, it
is necessary to consider additional factors. These may include conducting field validation
to compare the map’s predictions with observed landslide occurrences and incorporating
expert knowledge to evaluate the map’s consistency with known landslide-prone areas. In
this research, both methods were utilized to verify the model capability.

Firstly, by comparing the high and very high susceptible areas with the topographical
data and recorded occurred landslides, it has been determined that these areas have a good
overlap. Also, using the expert check, the model has been checked concerning geological,
topographical, and other predisposing factors. The results are indicated the model has
good agreements with real data.

In this article, a comparative verification was conducted to justify the performance of
different predictive models. The evaluation involved a ROC curve analysis, and Table 2
presents the results, specifically focusing on the AUC curve values. Based on the compar-
ative analysis, it is evident that LR achieved satisfactory overall accuracy and quality in
predicting the models. This observation serves as a justification for the effectiveness of LR
as a viable approach in the predictive modeling of the specific context being studied.

Table 2. A comparative model justification results based on the ROC analysis curve.

Model AUC Standard Error Reliability Expert Opinion

SVM 0.862 0.0291 Reliable Reliable
NB 0.655 0.0445 Need attention Need attention
DT 0.591 0.0639 Need attention Need attention
RF 0.730 0.0308 Reliable Reliable
LR 0.885 0.0278 Reliable Reliable

From the evaluation results, it can seem that the spatial distribution of the recorded
historical landslides is located in high susceptibility level, and a very-high susceptibility
level is not showing such consistency. This may be why the low data quality and model
used logic learning to cover the input-database limitations using feature engineering.
Feature engineering involves extracting relevant features or creating new ones based on
domain knowledge to enhance the model’s predictive power. In this task, we applied this
technique to mitigate the limitations and overcome to region database scale.

4. Discussion

The application of LR in landslide susceptibility analysis for Maragheh County is
highlighted as an effective approach. The study incorporates field surveys and remote
sensing to identify several predisposing factors that contribute to landslides in the region.
These factors include elevation, slope aspect, slope angle, rainfall, land use, lithology,
weathering, distance from faults, distance from rivers, distance from roads, and distance
from cities. These factors represent the morphologic, climatologic, geologic, and human
elements influencing landslide occurrences. To create the dataset for analysis, historical
landslide events (20 in total) are recorded and verified using satellite images. These
events serve as a reference to correct the susceptible areas prone to land sliding. The dataset
includes information about the predisposing factors and the location of historical landslides.
It is then randomly divided into training and testing sets, with the training set comprising
70% of the dataset and the remaining 30% used for testing purposes.

LR is implemented as the chosen method to develop the landslide susceptibility
assessment for Maragheh County. The results are then converted into a GIS environment,
allowing for visualization and spatial analysis. The performance of the LR model is
evaluated using ROC curves and AUC for both the testing and training sets, providing an
overall measure of accuracy for the modeling process. The outcomes of the analysis confirm
the reliability of the LR method for landslide susceptibility mapping. The assessment
reveals that the northern and northeastern parts of Maragheh County are classified as
highly susceptible areas. The general view of the County indicates moderate to high
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susceptibility classes for landslides. These findings have important implications for the
region’s urban planning and sustainable development, emphasizing the need to consider
landslide susceptibility in decision-making processes.

The application of LR in landslide susceptibility analysis for Maragheh County demon-
strates its flexibility as a machine learning-based classification model. By considering mul-
tiple predisposing factors and incorporating historical landslide data, the study provides
a reliable assessment of landslide susceptibility. The results highlight specific high-risk
areas and emphasize the importance of considering landslide susceptibility in planning and
development initiatives. Mainly, LR offers several advantages when applied to landslide
susceptibility analysis in Maragheh County. One of the key benefits of using LR is the
interpretability of its results. The coefficients assigned to each input factor in LR provide
a clear understanding of their influence on landslide susceptibility. This transparency
allows stakeholders and decision-makers to comprehend the relative importance of various
predisposing factors in the study area.

Additionally, LR is well-suited for binary classification tasks, making it suitable for
determining whether an area is susceptible or not susceptible to landslides. This ability to
model the relationship between input factors and binary outcomes facilitates the identifica-
tion of the landslide-prone regions within Maragheh County. The flexibility of LR is another
advantage. It can handle both continuous and categorical input variables, including diverse
predisposing factors such as elevation, slope angle, land use, and distance from geological
features. These factors play a crucial role in assessing landslide susceptibility in the region.
Statistical significance assessment is also possible with LR, enabling the identification of
input variables that significantly impact landslide susceptibility. This information helps
prioritize mitigation efforts and allocate resources accordingly.

LR is applicable even when working with small datasets, which is the case in this
analysis with only 20 historical landslide events. Despite the limited data, LR can still
provide meaningful insights and predictions for susceptibility mapping. Techniques like
data augmentation and feature engineering can enhance the model’s performance in such
scenarios [52,53]. Furthermore, LR results can seamlessly integrate into a Geographic Infor-
mation System (GIS) environment. This integration facilitates the visualization and spatial
analysis of landslide susceptibility patterns in Maragheh County. Such spatial information
aids decision-makers in urban planning and sustainable development initiatives by clearly
understanding the areas at higher risk. Its interpretability, binary classification capabilities,
flexibility, applicability to small datasets, statistical significance assessment, and compati-
bility with GIS contribute to a comprehensive understanding of landslide susceptibility
patterns. This knowledge supports effective mitigation strategies and informs sustainable
development practices in the region.

5. Conclusions

This study aimed to conduct a comprehensive landslide susceptibility analysis for
Maragheh County in the East Azerbaijan province, located in the northwest of Iran.
Through extensive field surveys and remote sensing observations, key predisposing fac-
tors were identified and extracted for the studied region. These factors and 20 records
of historical landslides served as the fundamental data for the Logistic Regression (LR)
model utilized to prepare landslide susceptibility maps. The LR model was evaluated using
a rigorous validation process, employing ROC curves, and calculating the Area Under the
Curve (AUC) for the testing and training sets. The obtained AUC values were 0.885 for the
training set and 0.769 for the testing set, indicating high accuracy in the model’s predictions.
These results validate the reliability and effectiveness of the LR model in assessing landslide
susceptibility for the region. The generated landslide susceptibility maps provided valuable
insights into the distribution of landslide-prone areas within Maragheh County.

The obtained susceptibility maps provided valuable insights into the county’s spatial
distribution of landslide-prone areas. The majority of the region, covering approximately
42.88% of the total area, exhibited moderate landslide suitability. This finding emphasizes
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the importance of incorporating landslide mitigation and management strategies into vari-
ous regional planning initiatives to minimize potential risks. Moreover, the northern part
of the county demonstrated a significantly higher susceptibility to landslides, particularly
in the mountain foothill areas. This information is crucial for land use planning and sus-
tainable development initiatives, highlighting the importance of implementing appropriate
measures to minimize landslides’ risks and potential impacts in these vulnerable regions.
Overall, this study contributes to a better understanding of landslide susceptibility in
Maragheh County by utilizing the LR model and integrating field surveys, remote sensing,
and historical landslide data.
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