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Abstract: With the continuous development of computer vision technology, more and more landslide
identification detection tasks have started to shift from manual visual interpretation to automatic
computer identification, and automatic landslide detection methods based on remote sensing satellite
images and deep learning have been gradually developed. However, most existing algorithms often
have the problem of low precision and weak generalization in landslide detection. Based on the
Google Earth Engine platform, this study selected landslide image data from 24 study areas in China
and established the DN landslide sample dataset, which contains a total of 1440 landslide samples.
The original YOLOv7 algorithm model was improved and optimized by applying the SE squeezed
attention mechanism and VariFocal loss function to construct the SE-YOLOv7 model to realize the
automatic detection of landslides in remote sensing images. The experimental results show that the
mAP, Precision value, Recall value, and F1-Score of the improved SE-YOLOv7 model for landslide
identification are 91.15%, 93.35%, 94.54%, and 93.94%, respectively. At the same time, through a field
investigation and verification study in Qianyang County, Baoji City, Shaanxi Province, comparing
the detection results of SE-YOLOv7, it is concluded that the improved SE-YOLOv7 can locate the
landslide location more accurately, detect the landslide range more accurately, and have fewer missed
detections. The research results show that the algorithm model has strong detection accuracy for
many types of landslide image data, which provides a technical reference for future research on
landslide detection based on remote sensing images.

Keywords: landslide detection; deep learning; attention mechanism; YOLOv7

1. Introduction

Landslide is a type of geological hazard widely distributed in the world. When land-
slides occur, they are often accompanied by destroyed roads, damaged railroads, and
collapsed structures, causing serious casualties and economic losses. Studies have shown
that the direct and indirect economic losses caused by landslides amount to hundreds of
millions of dollars and the number of deaths exceeds 4000 per year worldwide. In addition,
landslides may also cause a series of secondary hazardous processes, such as river valley
landslides resulting in weirs, weir outbursts resulting in floods, and coastal landslides
that can induce tsunamis [1]. In recent years, due to global warming, population growth,
over-exploitation of mineral resources, and continuous environmental degradation, the
frequency of landslides has been gradually increasing and the damage caused is also in-
creasing year by year [2,3]. Therefore, it is important to carry out landslide hazard research
for the sustainable development of human habitats. Since the 1990s, China has carried out
systematic and comprehensive geological hazard manual surveys and group survey and
prevention work, but according to statistics, more than 70% of the catastrophic geological
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hazard events in recent years are not within the known geological hazard potential sites,
so there is an urgent need to carry out a nationwide large-scale geological hazard survey
through automatic and efficient landslide identification technology methods [4,5]. With the
rapid development of Earth observation technology, the application of remote sensing tech-
nology in large-scale geological disaster investigation is becoming more and more common.
The rapid, comprehensive, and accurate identification of landslides from a large amount of
remote sensing data is of great significance for disaster prevention and mitigation.

The development of landslide identification by using remote sensing technology has
gone through four main stages, which are a visual interpretation of landslides by remote
sensing images, image element-based landslide identification method, object-oriented land-
slide identification method, and deep learning-based landslide identification method for
remote sensing images [6]. The visual interpretation method of landslides is the earliest
remote sensing interpretation method and mainly works through the visual recognition of
remote sensing images by researchers and experts, and the accuracy of landslide location
recognition is high but it requires strong knowledge and experience of researchers and
it is subjective, time-consuming, and laborious and it is impossible to quickly interpret
landslides from large-area remote sensing images [7–9]. The image element-based landslide
identification method takes the image element as the analysis unit and uses a specific
algorithm model to realize the acquisition of landslide location and range from remote
sensing images [10], which is fast but not high in accuracy and requires a large number of
remote sensing images and cannot identify landslide information in remote sensing images
of different resolutions. In order to overcome some of the above drawbacks, many scholars
have made methodological improvements. Marjanović et al. [11] experimentally compared
the effectiveness of three different methods: support vector machines, decision trees, and
logistic regression for landslide identification. The experimental data were obtained from a
specific area of the mountain Fruška Gora in Serbia, and the experimental results concluded
that the support vector machine method outperforms other existing detection methods for
landslide detection. Li et al. [12] proposed a hybrid method for fast landslide identification
based on automatic thresholding of panchromatic (PAN) images as a data source. The
method is a combination of image differencing, a multi-level local thresholding strategy, and
a newly developed directed recursive method. After experimental analysis, the method
could quickly detect landslides due to the Wenchuan Earthquake in Beichuan County,
China, with faster detection speed and higher accuracy. The object-oriented method of
remote sensing image landslide extraction takes a single learning object as the smallest
unit of information extraction. The smallest unit of image analysis processing is a small
image obtained by segmenting the original image and no longer a single pixel, which is
different from the image element-based method. Using spatial features such as the shape
and texture of the target objects in the image, the targets with the same features are divided
into the same class of objects, the recognition process of neural networks is simulated to a
certain extent, and the method is more accurate [13–15]. However, since its threshold value
is often set only to fit a specific study area, the migration is relatively poor and cannot be
applied to all images. In recent years, due to the rapid development of computer hardware
and deep learning methods, remote sensing image landslide recognition methods based
on deep learning have gradually become popular, such as logistic regression, support
vector machine, Bayesian method, and decision tree. Such methods are logical and highly
accurate and can be applied to remote sensing images of large areas. For landslide recogni-
tion, the existing deep learning algorithms mainly include convolutional neural networks
(CNNs) [16,17], recurrent neural networks (RNNs) [18–20], and generative adversarial
networks (GANs) [21]. Krizhevsky et al. [22] proposed the AlexNet network architecture
model. This model is the first to use a deep convolutional neural network with ReLU,
Dropout, LRN, and other structures for deep fusion. Experiments show that the model
achieves a large improvement in recognition accuracy and speed. The model was made
the champion of the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) 2012.
Amato et al. [23] used World View-2 remote sensing imagery of the western mountains of
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Austria as an experimental data source to identify landslides in the imagery by employing
a deep learning approach. Object-oriented, unsupervised, and semi-automatic landslide
recognition was achieved and high recognition accuracy was obtained. Ghorbanzadeh
et al. [24] used remote sensing imagery of the landslide-prone area of Rasuwa in Nepal
as research data. The effect of topography and spectra on the performance of landslide
detection by artificial neural networks, support vector machines, random forests, and
CNNs of different depths was verified by the mean crossover joint method. They also
compared the difference between various methods in terms of recognition accuracy and
speed. Yang and Mao [25] developed an automatic landslide identification model based on
RetinaNet with deep learning using UAV image data and satellite image data. The model
can automatically draw landslide boundaries and quantitatively compare and analyze the
identified landslide boundaries with the field survey results. Cheng et al. [26] proposed
an improved YOLO-SA landslide detection model. The experiments used Google remote
sensing images of Qiaojia and Ludian Counties in Yunnan Province as data sources for
landslide detection analysis. The results proved that the landslide recognition accuracy was
94.08%, the speed was 42 f/s, and the F1-Score was 90.65%, which were all at a high level.
Yu et al. [27] achieved automatic detection of loess landslides in complex backgrounds
by improving the YOLO X model and using the Google GEE remote sensing image data
platform as the experimental data source to achieve high accuracy and recognition speed
of identification.

The attention mechanism in neural networks originated from the study of the human
visual system, and it is a way to allocate computational resources to more important tasks
with limited computational power. It is also a resource allocation scheme to solve the
information overload problem [28–30]. By introducing the attention mechanism in different
neural networks, the algorithmic model can be made to automatically locate useful infor-
mation among the large amount of input information and suppress the attention to other
useless information. To achieve the purpose of solving the information overload problem,
the efficiency and accuracy of image recognition can be improved at the same time [31].
To improve the model’s ability to detect landslides against complex backgrounds as much
as possible during the computation, some researchers have tried to introduce attention
mechanisms in different algorithmic models, which not only improve the speed of model
computation but also improve the accuracy of landslide identification. Hu et al. [32] pro-
posed a new architectural unit called the “Squeeze and Excite” (SE) module. It adaptively
recalibrates the feature responses of channels by explicitly modeling the interdependencies
between channels. They experimentally demonstrated that adding the SE module to the
CNN network algorithm adds only a slight additional computational effort, but brings a
significant performance improvement to the model. Ji et al. [33] redesigned a novel spatial
channel attention module based on the attention mechanism to emphasize the unique
features of landslide images. They also created a landslide dataset from Bijie, China. The
experimental analysis yielded an F1 value of 96.62% for the model, demonstrating the
excellent performance of the spatial channel attention mechanism. Dai et al. [34] proposed
a new dynamic head framework that unifies the target detection head with the attention
module. The application of this framework did not add additional computational effort to
the computer, yet significantly improved the representation of the target detection head,
and further experiments demonstrated the effectiveness and efficiency of the dynamic head
attention mechanism on the COCO benchmark.

Based on the above technical development. This study innovates based on the YOLOv7
algorithm model and proposes a new SE-YOLOv7 model by adding the SE squeezed at-
tention mechanism and VariFocal loss function, which further improves the accuracy of
landslide detection against complex backgrounds in remote sensing images. The innova-
tions of this study are as follows:

(1) Introduction of squeeze excitation (SE) into the YOLOv7 model to construct the SE-
YOLOv7 deep learning model for automatic landslide identification against complex
backgrounds in remote sensing imagery.
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(2) In the SE-YOLOv7 model, the loss function of the original YOLOv7 model is replaced
by the VariFocal loss function to improve the detection accuracy.

(3) A total of 1940 positive and negative sample images are selected to constitute the
DN dataset in this paper, of which 1440 landslide images from 24 different regions
in China are selected for the positive sample, and the negative sample is 500 images
that do not contain landslides. This dataset is used to train the SE-YOLOv7 model to
improve the generalization of the model.

(4) Comparing the landslide recognition ability of different deep learning models on the
DN landslide dataset.

2. Study Area and Dataset

The remote sensing images used in this study were obtained from the Google Earth
Engine platform, and most of the remote sensing images have a spatial resolution of 1 m or
2 m. To ensure that the dataset contains as many landslide types as possible, we selected
24 different study areas in China and collected landslide image data from each of these
24 study areas. We extracted 1440 landslide images of different types in the 24 study areas
through the Google Earth Engine platform as positive samples for training and detecting
models, and the positive samples also included the 2019 Bijie landslide dataset produced by
Prof. Shunping Ji’s group at Wuhan University (http://gpcv.whu.edu.cn/data/, accessed
on 3 May 2023) [33]. The positive samples consist of 1130 earthslides and 310 rockslides,
debris flows are not included. To enhance the accuracy of the model training process, we
also selected 500 images without landslides in 24 study areas as negative samples. The
negative samples contain mountains, rivers, lakes, forests, grasslands, farmlands, terraces,
roads, rural buildings, county buildings, and urban buildings in the study areas. Since
the images of the Google Earth Engine platform are stitched together from remote sensing
images of different satellites, it must cause differences in the resolution and imaging date
of our selected images. A total of 1940 images of positive and negative samples together
constitute this DN dataset, the composition of the DN dataset is shown in Table 1, and
some of the landslide images are shown in Figure 1.

Table 1. The DN landslides dataset in this paper. The landslide images contain one or more landslides,
and there are no landslides in the negative samples.

Prefecture Study Areas Landslide Images Non-Landslide Total Images

North China Beijing, Hebei, Shanxi 78 60

1940

East China Anhui, Zhejiang, Jiangxi, Fujian 121 80
Central China Henan, Hubei, Hunan 169 80
South China Guangdong, Guangxi, Guizhou 790 80

Southwest China Sichuan, Yunnan, Tibet 130 100
Northwest China Shaanxi, Gansu, Qinghai, Xinjiang 152 100

To ensure the accuracy of data selection, we used a combination of expert visual
interpretation and a field survey of the study area to identify the landslides in the study
area. The expert visual interpretation method was carried out by three experts to visually
interpret the landslides within the remote sensing images, two experts in the field of geology
and one expert in the field of remote sensing. Meanwhile, to further verify the accuracy
of visual interpretation, we selected Qianyang County, Baoji City, Shaanxi Province as the
landslide data validation area and conducted on-site landslide hazard surveys to analyze
the accuracy of model calculations and other indicators by comparing the landslide field
survey results with the model calculation results.

Qianyang County is located in the western region of Shaanxi Province. Qianyang
County borders Lingtai County in Gansu Province to the north, Chencang District in Baoji
City, Shaanxi Province to the south, and Long County in Baoji City to the west. The area of
the county is 996.46 square kilometers, and the population of the county is about 131,000
as of 2021; the location of Qianyang County in China is shown in Figure 2. Qianyang
County is located in the western hilly and ravine area of the Weibei Plateau, with complex

http://gpcv.whu.edu.cn/data/
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and diverse terrain. It is mountainous in the north and south, and the southern part of the
county is the Wu Yue branch of Arrowhead Ridge, with an elevation of about 1000–1502 m.
In the north is Qian Mountain, with an elevation of 1000–1545 m. The total area of the
mountainous region is 782.31 square kilometers, accounting for 78.5% of the total area of
the county. The central part of Qianyang County is a faulted basin with the Qian River
passing through it, dividing the area into more than 20 irregular loess remnants. The
area is 138.7 square kilometers, accounting for 13.9% of the total area. Qianyang County
has a warm temperate semi-humid continental monsoon climate with an annual average
precipitation of 677.1 mm and an annual average temperature of 10.9 ◦C. The northern Qian
mountains are a warm and humid agricultural, forestry, and animal husbandry area with
an average annual temperature of 8.7 ◦C, annual precipitation of 562.8 mm, low humidity,
and low precipitation. The central region is a warm and humid grain-producing area with
an average annual temperature of 10.8–11.5 ◦C and an average annual precipitation of
653.0 mm. The topography of Qianyang County varies greatly from region to region, and
it is a transition area where different landform types such as loess plateau, Weihe Basin,
and Qinling–Longshan Mountains intersect. Geological environmental conditions are
complex and changeable, resulting in frequent geological hazards and a fragile ecological
environment. Typical geological hazards in the region mainly include landslides, cave-ins,
mudslides, and unstable slopes, which are some of the most serious geological hazards in
Shaanxi and even nationwide [35].
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Figure 2. The location of the study areas. Qianyang County is located in the west of Shaanxi Province,
which is located in northwest China. The landslides collected in Qianyang County were used to
validate the detection results of the SE-YOLOv7 model. The green square in the picture shows the
study areas.

Qianyang County is located at the southern edge of the Shanxi–Gansu–Ningxia Basin.
The main stratigraphic lithological and geological information of the study area is shown
in Figure 2. The study area has a fragile geological environment and is prone to geological
hazards. According to the records of the county, the magnitudes of felt earthquakes in the
study area are mainly 1.8–3.4. There are also many earthquakes of magnitudes 4–6 in the
province and some earthquakes outside the province, and the geological hazards caused
by these earthquakes should not be ignored in the future. The southern part of Qianyang
County is rich in limestone mines, and with the expansion of the scale of construction, the
stability of the slopes on both sides of the terraces is reduced in the process of excavation,
which is also prone to new geological hazards. In addition, the construction of roads and
houses and excavation of caves have also damaged the stability of slopes, especially on the
edge of the tableland or slope areas, exacerbating the occurrence of geological hazards [36].

3. Methods
3.1. Equipment

The experimental study in this paper is based on a Windows 11 operating system,
relying on the PyTorch deep learning framework, Intel i7 processor, 32GB RAM, and
NVIDIA GeForce RTX 3060 graphics card as the device hardware.
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3.2. YOLOv7 Algorithm

You Only Look Once (YOLO) is a neural network-based target detection scheme.
It reprocesses the target detection problem into a regression problem for computational
analysis, which can be realized from the direct input of the original image to the output
of the target location and target category. It is a real end-to-end training scheme with fast
analysis speed, high accuracy, and strong generalization ability, and has been widely used
in the field of real-time target detection [37–39]. The computational principle of YOLO is to
first input an image and divide the image into different grids according to certain rules,
with each grid being responsible for predicting multiple bounding boxes while giving the
confidence level of each window. Each bounding box contains five prediction parameters:
x, y, w, h, and confidence. x and y represent the relative values of the center of the bounding
box to the boundary, w and h represent the ratio of the width and height of the predicted
box to the width and height of the original image, and the confidence is the IOU value of
the predicted detection box A and the real box B. The confidence and IOU values during
the analysis are calculated as shown in the following equations.

con f idence = Pr(object)× IOUtruth
pred (1)

IOU =
A ∩ B
A ∪ B

(2)

Among the aforementioned many target windows, the target window with low proba-
bility is removed according to the set threshold, leaving the window with higher probability
as the detection target, and the detection process is shown in Figure 3 below.
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Due to its high recognition accuracy and fast computation speed, YOLO has become
one of the most popular algorithms in the target detection category and is widely used in
various industries, such as the processing of remote sensing images and real-time target
detection [40]. YOLOv7 is one of the latest models in the YOLO series and, compared to
other models in the YOLO series, YOLOv7 has higher computational accuracy and faster
computational speed [41–43]. The YOLOv7 model contains three main modules, which are
the input layer (input), the backbone network (backbone), and the head module (head).
The main role of the input layer in YOLOv7 is to pre-process the input images and align
them uniformly into RGB images of 640 × 640 × 3 in size, called image pre-processing, and
its position in the whole algorithm model is shown by the pink background in Figure 4.
The YOLOv7 backbone network functions as a feature extractor, a two-stream network ar-
chitecture based on the CSPDarknet53 architecture, which contains two branching sections
responsible for extracting pixel features in horizontal and vertical directions, respectively.
It is followed by a global averaging pooling layer that is used to aggregate the feature
values extracted earlier and turn them into a fixed-size feature vector. Thus, the role of the
backbone network is to extract the features of the input image during training and then
apply these useful features in predicting the location and class of the target object, whose
structure is shown by the blue area in Figure 4. The head module, also called the detection
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head, mainly includes the loss function part and the corresponding optimization strategy.
The head module in YOLOv7 uses the auxiliary head training and the corresponding
positive and negative sample matching strategy for the first time, which can improve the
performance and increase the training speed by multi-way branching during the training
process, and its structure is shown in the grey area in Figure 4.
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To better adapt to the requirements of landslide detection tasks, we improved the
original YOLOv7 algorithm and named it SE-YOLOv7. The improvement of the SE-
YOLOv7 model is mainly reflected in two aspects; firstly, the squeeze excitation module
(SE) is added to the YOLOv7 base model, and then the loss function of YOLOv7 is replaced
by the VariFocal loss function. The improvement is shown in Figure 5.
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3.3. SE Network

In recent years, the attention mechanism technique has been widely used within the
field of deep learning, especially in the fields of image segmentation and natural language
processing, where great progress has been made. The attention mechanism works by
focusing attention on the parts that the computer considers important when performing
a computational task, assigning more significant weights to the important parts, and
performing a detailed computation. Less important background parts are assigned lower
weights for cursory computation [44,45]. By relying on this mechanism, the computer’s
limited computing power resources are used wisely to improve both the accuracy and the
speed of computation. The attention mechanism works by first performing a compression
operation on the feature picture obtained by convolution to obtain the global features of
each channel. Then, the excitation operation is performed on the global features to learn
the interrelationship between each channel and obtain the weights of different channels.
Finally, the initial feature values are multiplied to obtain the final feature values. To
improve the accuracy and efficiency of the model, essentially, the SE attention module is a
gate operation in the channel dimension similar to that in RNN networks. This attention
mechanism allows the model to focus more on the most informative channel features and to
suppress noise and channel features with small weights so that the final features obtained
are closer to the expected results [46,47]. The SE attention module is simple in structure
and easy to deploy. It consists of three main basic components:

(1) Squeeze Operation. Its role is image compression. It is usually implemented using
global average pooling, which is a feature compression of the input image along the
spatial dimension, converting a single two-dimensional channel into a real number
to make it a global feature. The output one-dimensional matrix is z = [ z1,z2,. . .,zc ],
where the cth element of z can be expressed as:

zc = Fsq(uc) =
1

H ×W

H

∑
i=1

W

∑
j=1

uc(i, j), z ∈ Rc (3)

where H and W are the height and width of the feature picture of a single feature
channel, respectively. uc(i, j) is the value of each point on the feature mapping channel.

(2) Fex Stimulus Operation. After obtaining the global description features from the
image compression operation, different weights are then generated and assigned to
each channel by the Fex which establishes the interdependence between each channel.
To reduce model complexity and improve model generalization, the Fex operation
uses a bottleneck structure containing two fully connected layers, where the first fully
connected layer acts as a dimensionality reduction, then the ReLu activation function
is used for non-linear changes, and the fully connected layer is used at the end to
restore the features to their original dimensionality. The expression for the Fex process
is shown below:

s = Fex(z, w) = σ[g(z, w)] = σ[W2 × ReLU(W1 × z)] (4)
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where z is the one-dimensional matrix obtained from Fsq, W1 and W2 are both complete
connected layers, and σ is the activation function sigmoid.

(3) Scale Operation. The activation value of each channel sc (sc is the sigmoid activation
function, the value is 0–1) and the original feature value uc are multiplied to obtain the
weight coefficient of each channel after the Fex operation, which makes the model more
discriminative for the features of each channel. The scale operation is represented
as follows:

Fscale(sc, uc) = x̃c = sc × uc (5)

As shown in Figure 6, the SE network can obtain the global features at the input side
through the squeeze operation and then extract the key features by obtaining the weights of
each feature channel through the excitation operation. The SE-YOLOv7 model is developed
by embedding the SE network into the YOLOv7 model.
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3.4. Reconstructing the Loss Function

The loss function in neural network computation is usually represented by L(p, y),
which is used to estimate the magnitude of the difference between the predicted value p
and the true value y [48]. If the calculated loss function value is smaller, the model is judged
to have a better prediction and vice versa. When using computer neural networks for
landslide detection and localization in remote sensing images, because the remote sensing
images are usually large while the pixel percentage of the landslide is small, the target is too
small while the background is large, which will cause a serious scale imbalance problem
and make it difficult to accurately identify complex landslide targets. Therefore, when
using YOLOv7 for landslide detection, we choose the VariFocal loss function instead of the
target loss function in the original model to solve the above problem. The VariFocal loss
function evolved from the Focal Loss [49,50], which is defined as follows:

FL(p, y) =
{
−α(1− p)γ log(p) · · · · · · · ·if · ·y = 1
−(1− α)pγ log(1− p) · · · otherwise

(6)

where α is used to balance the weights of positive and negative samples, (1− p)γ and pγ

are used to modulate the weight of each sample, making difficult samples have higher
weights and avoiding a large number of simple negative samples dominating the loss
function during training.

Focal Loss is derived from the binary cross-entropy loss function, so the VariFocal
loss function can also be understood as a development of the binary cross-entropy loss
function by setting hyperparameters to reduce the negative sample loss weights to increase
the positive sample weights to achieve the purpose of improving the recognition ability.
The VariFocal loss function can be expressed as:

VFL(p, q) =
{
−q(q log(p)) + (1− q) log(l − p) · · · · · q > 0
−αpγ log(1− p) · · · · · · · · · · · · · · · · · · · ·q = 0

(7)
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where p is the predicted IACS score and q is the target IOU score. For positive samples in
training, q is set to the IOU between the generated Bp and Bgt, while for negative samples
in training, the training target q is 0 for all categories. IOU is represented as follows:

IOU =
Area(Bp ∩ Bgt)

Area(Bp ∪ Bgt)
(8)

where Bp is the prediction frame and Bgt is the ground truth.

3.5. Model Evaluaton Indicators

To comprehensively evaluate the accuracy of the model when performing landslide
detection, we use the Precision, Recall, F1-Score and Average Precision (AP) as the main
evaluation indexes in the calculation.

The Precision refers to the proportion of landslides that are correctly predicted as
landslides in the predicted results, as shown in Equation (9). The Recall refers to the
proportion of landslides that are correctly predicted as landslides to actual landslides, as
shown in Equation (10). Precision and Recall are mutually influential and, ideally, a good
model would have both indices high, but in reality, the two are “constrained” by each
other, so that when we pursue high Precision, Recall is low, and when we pursue high
Recall, Precision is low. Therefore, it is necessary to consider their sizes together, and a
common method is the F1-Score, as shown in Equation (11). The F1-Score is the arithmetic
mean divided by the geometric mean, with the ideal result being as large as possible. The
Average Precision (AP) is the integration of the P–R curve accuracy over the Recall, as
shown in Equation (12).

Precision =
TP

TP + FP
(9)

Recall =
TP

TP + FN
(10)

F1− score =
2× Precision× Recall

Precision + Recall
(11)

AP =

1∫
0

p(r)dr (12)

where TP refers to the example of identifying a landslide as a landslide; FP refers to the
example of identifying a background as a landslide; FN refers to the example of identifying
a landslide as a background, where p is Precision and r is Recall.

4. Results and Discussion

In this section, the experimental results of the SE-YOLOv7 model are presented. The
experiments were conducted using this model on the landslide dataset DN and compared
with other deep learning models.

4.1. Landslide Detection Performance

The DN dataset contains 1440 images, and Labelimg software was used to label the
images with landslides in the dataset. The 1440 images in the DN dataset were divided into
the training set, validation set, and test set, in which the training set accounted for 60% of
the total dataset with 864 landslide images, the validation set accounted for 20% of the total
dataset with 288 landslide images, and the test set accounted for 20% of the total dataset
with 288 landslide images, and the data distribution is shown in Table 2. The training set
was used to train the model and obtain the corresponding network parameters such as
weights w and bias b to make the model we design generalizable. The validation set was
used to determine the network structure and adjust the hyperparameters of the model,
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such as the number of iterations, the number of hidden layers, the number of neurons
per layer, the learning rate, etc. The test set was used to test the generalization ability
of the model and evaluate the recognition performance of the model. To further verify
the accuracy of the model detection results, we selected 85 typical landslide images in
Qianyang County, Baoji City, Shaanxi Province, after field investigation, for model accuracy
verification, a judgment of the error between the model detection range and the actual area
of the landslide, and to see whether there is any missed detection.

Table 2. The details of dataset division. The Qianyang landslide area is only divided into test sets for
landslide detection.

DN Dataset Qianyang Landslides

Data Composition Landslide Images Negative Images Images

Total 1440 500 85
Train 864 300
Val 288 100
Test 288 100 85

To analyze the performance of SE-YOLOv7, in our experiments, we compared the
detection results of SE-YOLOv7 with seven deep learning models including AlexNet,
ResNet, Faster R-CNN, YOLOv4, YOLOv5, YOLOX, and YOLOv7. We chose four indices,
AP, Precision, Recall, and F1-Score, to evaluate the detection performance of the above
eight deep learning models on the DN landslide dataset. Table 3 shows the comparison of
the detection performance.

Table 3. Comparison of mAP, Precision, Recall, and F1 metrics of different detection algorithm models.

Detection Method mAP0.5 (%) Precision (%) Recall (%) F1-Score (%)

AlexNet 66.91 72.19 66.56 69.26
ResNet 68.11 72.89 71.39 72.13

Faster R-CNN 73.88 80.81 76.18 77.95
YOLOv4 74.63 82.35 78.27 79.30
YOLOv5 78.85 84.36 79.67 80.01
YOLOX 83.80 86.62 81.62 84.04
YOLOv7 83.78 86.52 82.46 84.44

SE-YOLOv7 91.15 93.35 94.54 93.94

From the detection results, it can be concluded that all eight deep learning models
including SE-YOLOv7 can be applied in landslide hazard detection, and the detection
result metrics of YOLOv4, YOLOv5, YOLOX, YOLOv7, and SE-YOLOv7 are significantly
better than AlexNet, ResNet, and Faster R-CNN models, indicating that the YOLO series
algorithm models have greater advantages in the field of landslide detection. YOLOX,
YOLOv7, and SE-YOLOv7 all had test result indicators greater than 80%. The SE-YOLOv7
model has the best detection result, which is significantly higher than the others, with its
mAP of 91.15%, Precision value of 93.35%, Recall value of 94.54%, and F1-Score value of
93.94%. Compared with YOLOv7, the four indicators improved by 7.37%, 6.83%, 12.08%,
and 9.5%, respectively. The specific test results are shown in Table 3.

4.2. Landslide Detection Performance in Qianyang County

As can be found in Table 3, compared with the other six deep learning landslide
detection models, YOLOX, YOLOv7, and SE-YOLOv7 have higher values of detection
accuracy, all reaching more than 80%. To further investigate the differences between SE-
YOLOv7 with the added attention mechanism and the original YOLOv7 and YOLOX in
landslide detection, we selected Qianyang County, Baoji City, Shaanxi Province as the study
area, selected a typical landslide site through an on-site field landslide survey, and then
cropped the satellite image map of the landslide in Google Earth Engine. We compared
the detection effects of three algorithm models on complex landslide images and single
landslide images by detecting landslides in Qianyang County.
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Figure 7 shows the detection results when there is only one landslide in the picture.
Images c1–c8 in Figure 7 show the detection results of the SE-YOLOv7 model. In the image
where there is only one landslide, the complete extent of the landslide is detected and the
location of the landslide is accurate with no obvious omission when using the SE-YOLOv7
model. It is almost the same as the results of manual visual interpretation and the field
survey at the landslide site. The backgrounds of c4 and c8 are very complicated, the land is
covered by a large amount of vegetation, and it is difficult to distinguish the location and
scope of the landslide with the naked eye, but the SE-YOLOv7 model still accurately detects
the actual location of the landslide and has a strong detection performance. Pictures a1–a8
in Figure 7 show the detection results of the YOLOX model. In the detection results, it can
be seen that the extent of the landslide in picture a2 is not completely detected, only the
location of the new landslide in the middle part of the picture is identified, the old landslide
on both sides of the picture is not detected, and the part with less vegetation on the roadside
is incorrectly identified as a landslide. In picture a4, the land is covered by a large amount
of vegetation and the background of the picture is complicated, so the YOLOX model fails
to detect the landslide location. In image a6, due to the complex background of the image,
the YOLOX model incorrectly identifies the terraces within the image as landslides, and the
recognition area is incorrectly expanded. In image a8, the YOLOX-detected landslide range
is smaller than the actual landslide range. Pictures b1–b8 in Figure 7 show the detection
results of the YOLOv7 model. In the detection results, it can be seen that the range of the
landslide in picture b2 is not completely detected, only the location of the new landslide
in the middle part of the picture is identified, and the old landslides on both sides of the
picture are not detected. For b4 and b8, since the land in the picture is covered by a large
number of plants and the background of the image is complicated, YOLOv7 does not detect
the actual location of the landslide. For image b6, due to the complex background of the
image, the YOLOv7 model wrongly identified part of the terraces as landslides, and the
recognition range was wrongly expanded. Therefore, it can be concluded that the detec-
tion accuracy of the improved SE-YOLOv7 model proposed in this paper is significantly
higher than that of the YOLOX model and the YOLOv7 model in images containing only
one landslide.

The recognition results of complex landslide images are shown in Figure 8, where each
image contains more than one landslide. Pictures g1–g4 in Figure 8 show the detection
results of the SE-YOLOv7 model. In picture g2, the lower right part of the picture is an old
landslide after field investigation, and the surface of the landslide is covered by a large
number of plants, so it is difficult to identify with the naked eye, and the SE-YOLOv7
model fails to detect it. Except for image g2, the rest of the images were detected using
the SE-YOLOv7 model, and the results showed that the landslide extent was identified
completely, and the detected number and extent of landslides were consistent with the
field survey results. In Figure 8, images e1–e4 show the detection results of the YOLOX
model. In image e1, there are three small landslides that the YOLOX model failed to identify.
One old landslide covered by vegetation was not detected in picture e2, and one small
landslide was missed by the YOLOX model in picture e4. In Figure 8, pictures f1–f4 show
the detection results of the YOLOv7 model. Two small landslides in picture f1 are not
identified, one old landslide covered by vegetation in picture f2 is not detected, and the
detection range of small landslides on the right side of picture f4 is incomplete.

Therefore, Figure 8 shows that landslide detection using YOLOX and YOLOv7 has
more missed detections when the image contains multiple landslides while, in contrast,
the improved SE-YOLOv7 model proposed in this paper has more complete and accurate
detection results.
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Figure 7. The contents of the images are the detection results of YOLOX, YOLOv7, and SE-YOLOv7
models in the single landslide images of Qianyang County and landslide sites in Qianyang County.
Among them, images a1–a8 are landslide detection results of the YOLOX model, images b1–b8
are landslide detection results of the YOLOv7 model, images c1–c8 are landslide detection results
of SE-YOLOv7, and images d1–d8 are landslide photos taken during the selected field survey of
landslides in Qianyang County. a, b, c, and d show the same landslide. The red box in the pictures is
the landslide identification box, and the green box is the missed detection box of the landslide.
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Figure 8. The contents of the images are the detection results of YOLOX, YOLOv7, and SE-YOLOv7
models in the multi-landslide images of Qianyang County and landslide sites in Qianyang County.
Among them, images e1–e4 are landslide detection results of the YOLOX model, images f1–f4 are
landslide detection results of the YOLOv7 model, images g1–g4 are landslide detection results of SE-
YOLOv7, and images h1–h4 are landslide photos taken during the selected field survey of landslides
in Qianyang County. e, f, g, and h show the same landslide. The red box in the pictures is the
landslide identification box, and the green box is the missed detection box of the landslide. The pink
arrow points to the specific location of the landslide in the landslide photo.

The F1-Score of the SE-YOLOv7 model reaches 93.94% and the Precision is 93.35%.
The research results related to landslide identification from remote sensing images based
on deep learning have developed rapidly in recent years. Ju et al. [51] proposed automatic
identification of loess landslides based on Google Earth images by applying three models,
RetinaNet, YOLOv3 and Mask R-CNN, respectively, in the field of landslide detection.
Experiments yielded that the highest accuracy and F1-Score among the three methods are
those of Mask R-CNN with 47.41% and 55.31%, respectively. Niu et al. [52] proposed the
lightweight landslide detection network Reg-SA-UNet++ based on single-temporal images
captured post-landslide, whose experiments yielded an F1-Score of 92.41%. Hou et al. [7]
proposed the generalized landslide detection method YOLOx-Pro based on improved
YOLOX for optical remote sensing images, which can reach a maximum detection Precision
of 83.95% and a Recall rate of 86.76% when performing remote sensing image detection,
which is at a high level. Catani [53] proposes a landslide detection method by deep learning
of non-nadiral and crowdsourced optical images, which achieves a recognition Precision
of 93% for landslides with an F1 value of 89%. Ghorbanzadeh et al. [54] proposed a new
method for landslide detection based on Sentinel-2 imagery by adding the OBIA module
to ResU-Net, which improves the accuracy of the model in detecting landslides, with a
Precision value of 73.14%, a Recall of 80.33%, and an F1-Score of 76.56%. Amankwah
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et al. [55] proposed the deep neural network Siamese Nested U-Net (SNUNet) based on the
attention mechanism, which enables the detection of landslides from bitemporal satellite
imagery, and experiments have shown that the method achieves a Precision of 88.8% and
an F1-Score of 73%. Although the above methods perform well in landslide detection, our
proposed method has some advantages in terms of both F1-Score and detection Precision,
and the results of the study show that the SE-YOLOv7 model has great potential in the
field of landslide detection.

However, the work on landslide detection based on SE-YOLOv7 is far from over,
and there is still room for further improvement of the existing experimental methods and
datasets. Due to the complexity of the terrain features in the remote sensing image, the
areas in the image where the hillside is shaded and the vegetation is denser can easily lead
to incorrect detection by the algorithm. As shown in Figure 9, the landslide in the middle
of the image is covered by a large amount of vegetation, resulting in both YOLOv7 and
SE-YOLOv7 failing to detect it well.
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In Figure 10, there is no landslide in this image of the bank of a small reservoir in 
Qianyang County. Due to image shooting, the bank of the reservoir has obvious shadows 
and a darker color, which causes YOLOv7 to incorrectly identify two shadows as landslides, 
and the improved SE-YOLOv7 also incorrectly identifies one shadow as a landslide. 

Figure 9. Real landslides and detection results of YOLOv7 model and SE-YOLOv7. Image (a) shows
the location of the landslide, image (b) is the result of YOLOv7 detection, image (c) is the result of
SE-YOLOv7 detection. The yellow box shows the actual location of the landslide. The red box in the
pictures is the landslide identification box, the green box is the missed detection box of the landslide.

In Figure 10, there is no landslide in this image of the bank of a small reservoir in
Qianyang County. Due to image shooting, the bank of the reservoir has obvious shadows
and a darker color, which causes YOLOv7 to incorrectly identify two shadows as landslides,
and the improved SE-YOLOv7 also incorrectly identifies one shadow as a landslide.
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Figure 10. Detection results of YOLOv7 model and SE-YOLOv7 model. There are no landslides in the
image. Image (a) is the result of YOLOv7 detection, image (b) is the result of SE-YOLOv7 detection.
The red box in the pictures is the landslide identification box.

In addition, this algorithmic improvement of YOLOv7 does not consider small target
detection. Small targets in remote sensing images have less information, which is easily
lost in the process of neural network convolution. When the area of the landslide in the
image is small, the detection result is also worse. Therefore, this is the direction we want to
continue to improve in the future.
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5. Conclusions

This study takes landslides as an example, carries out landslide identification research
based on Google Earth image data, and constructs the DN landslide dataset, which contains
various types of remote sensing images of landslides. The SE attention mechanism and
VariFocal loss function are applied to improve and optimize the original YOLOv7 model,
and the SE-YOLOv7 model is proposed. By comparing with other deep learning models
such as YOLOv7, YOLOv4, and Faster R-CNN, the experimental results show that the
improved SE-YOLOv7 model has higher mAP, Precision, Recall, and F1-Score values
in landslide detection, which are significantly better than other deep learning models,
reaching 91.15%, 93.35%, 94.54%, and 93.94%, respectively. Compared with the YOLOv7
model, the improvement of the four metrics is 7.37%, 6.83%, 12.08%, and 9.5%, respectively.
Through landslide geological disaster site investigation and remote sensing image study
in Qianyang County, Baoji City, Shaanxi Province, 85 landslide sites were selected. By
comparing the detection results of SE-YOLOv7, YOLOv7, and YOLOX with the site survey
results, it was shown that the SE-YOLOv7 model has higher detection accuracy for complex
landslide remote sensing images and is better than YOLOv7 and YOLOX models and can
locate landslide locations more accurately, detect landslide range more accurately with
fewer missed detections, and has broad application prospects. Although the improved
SE-YOLOv7 method has achieved better detection results, due to the variety of landslide
morphology and the complexity of the natural environment, there are still cases of wrong
detection and missed detection in the detection experiments. Meanwhile, there is still
much room for improvement in terms of finer classification and precise identification of
landslides using deep learning methods. We believe that with the increasing maturity of
target detection technology and the continuous development of remote sensing satellite
technology, landslide detection in remote sensing images based on deep learning methods
will make more progress.
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