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Abstract: Recently, numerous spatial prediction methods with diverse characteristics have been
developed. Selecting an appropriate spatial prediction method, along with its data preprocessing and
parameter settings, presents a challenging task for many users, especially for non-experts. This paper
addresses this challenge by exploring the potential of automated machine learning method proposed
in artificial intelligent domain to automatically determine the most suitable method among various
machine learning methods. As a case study, the automated machine learning method was applied
to predict the spatial distribution of soil subgroups in Heshan farm. A total of 110 soil samples and
10 terrain variables were utilized in the designed experiments. To evaluate the performance, the
proposed method was compared to each machine learning method with default parameters values
or parameters determined by expert knowledge. The results showed that the proposed method
typically achieved higher accuracy scores than the two alternative methods. This suggests that
automated machine learning performs effectively in scenarios where numerous machine learning
methods are available and offers practical utility in reducing the dependence on users’ expertise in
spatial prediction. However, a more robust automated framework should be developed to encompass
a broader range of spatial prediction methods, such as spatial statistic methods, rather than only
focusing on machine learning methods.

Keywords: automated method selection; digital soil mapping; soil subgroups; classification methods

1. Introduction

Spatial prediction (SP) is one of the major ways to quickly acquire the spatial distribu-
tion of target geographic variables, such as the distribution of soil subgroups or landslide
susceptibility [1,2]. SP hinges upon capturing the spatial relationships between the target
geographic variable and the environment using sample data, and then using the spatial
relationship to predict the values of the target geographic variable at the unvisited posi-
tions [3–6]. Among the many steps involved in this process, determining an appropriate SP
method to maximize the prediction performance from many available methods is a key
and critical step that might significantly impact accuracy of the result.

Three approaches exist for determining appropriate SP methods. The first approach
relies on the users’ own domain expert knowledge. In this approach, the users manually
determine the proper SP methods based on their domain knowledge, such as statistical
knowledge or experience. However, as the range of SP methods, including spatial statis-
tical and machine learning (ML) methods, expands, most users usually lack the expert
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knowledge necessary to select appropriate SP methods. This could lead the users to use
familiar or popular methods rather than the appropriate method [2].

The second approach involves developing guidelines or rules to assist in determining
the appropriate SP method. In this approach, previous studies or experiences of determin-
ing SP methods are reviewed to find the factors that affect the selection of SP methods, and
then a generic framework or rules are provided to assist users in selecting the appropriate
SP method [7,8]. For instance, Gibert et al. proposed a two-step framework for determining
appropriate SP methods: The first uses a conceptual map to categorize the SP methods
based on the specified problem, followed by employing SP methods’ templates to guide
users to determine the most suitable SP methods from a particular group [9]. This approach
provides a useful guide for the users of SP methods, especially for the non-expert users of
SP. However, due to the complexity of application scenarios, summarizing all the specific
rules or metadata for the SP methods, under which each method exhibits an optimal per-
formance, is often challenging. Furthermore, a lack of consensus persists regarding model
selection guidelines [10].

The third group is the data-driven approaches that leverage field samples. In this
approach, two or more SP methods would be selected as a candidate set for predicting,
and then the SP method with the best performance with the users’ data can be selected as
the final SP method. For instance, Pourghasemi and Rahmati employed ten SP methods
for landslide susceptibility mapping in Iran and analyzed their performance [11]. Daviran
et al. proposed a hybrid genetic-based random forest (RF) which could determine the
hyperparameters of RF; their results affirmed the superiority of the automated way over
the conventional RF with a default value [12]. Williams et al. developed a multiple
objective optimization algorithm for model selection and successfully selected the suitable
model [13]. The data-driven method could determine an appropriate SP method directly
according to its predictive performance on the users’ data, which reduces dependence on
expert knowledge. However, the final effectiveness of each SP method is always related
to the data preprocessing and appropriate parameter settings of the SP method [14]. Data
preprocessing encompasses various techniques such as selecting covariates, rescaling
the data, encoding categorical covariates, imputation of the missing values and so on.
Taking the covariates selection as an example, it is difficult to select covariates due to
the multiple methods, each with advantages and disadvantages [15]. The SP methods
and the preprocessing methods usually have lots of parameters, and application users
must tune every parameter though cross-validation or domain knowledge. Moreover,
tuning all possible values of the parameters is impractical. Currently, these laborious and
knowledge-intensive operations often necessitate manual handling by users, which exceeds
the capabilities of many users. This challenge could become more pronounced as the
number of available SP methods continues to grow.

Automating these laborious and knowledge-intensive tasks could enhance the feasi-
bility of the data-driven approach, especially for novice users. Recently, in the machine
learning domain, automated machine learning (AutoML) has emerged to address the
challenge of determining an appropriate ML method from various competing alterna-
tives [16,17]. Can AutoML be utilized to aid users in automatically determining the best
SP method? In this study, we conducted a case study on the classification of soil sub-
groups in Heshan farm to explore the feasibility and effectiveness of employing AutoML
for determining SP methods.

2. The AutoML Approach

AutoML refers to a set of approaches that could automatically construct a proper
ML method by consolidating the corresponding raw data preprocessing methods into a
workflow, set the values of the parameters of methods used in the workflow and finally
provide the users with a determined workflow that has the best performance on the
application users’ data [16–20]. All processes involved in the workflow are based on the
application users’ data with a constrained computational budget.
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In AutoML, method selection and parameter setting are viewed as optimization
problems, and a detailed definition is provided in reference [16]. The goal is to find the
highest performing workflow with the corresponding parameter values based on the
application users’ data by using optimization methods. The commonly used optimization
methods include grid search [19], random search [21], Bayesian optimization [20] and so
on. Owing to extensive data preprocessing and the ML methods that could be grouped
into different workflows, coupled with the multitude of parameters within those methods,
random search or grid search usually takes a long time, and trying all potential values of the
parameters for all of the workflows is typically impractical [19–21]. Bayesian optimization
could track past evaluation results to build a probabilistic model that could represent
the probability score with the change in the parameters’ values [20]. Therefore, Bayesian
optimization could reduce the search space and find the appropriate workflow quickly.

When an initial workflow is not provided, optimization methods usually begin with
random initialization. However, experts eschew a random initialization but use the expe-
rience learned from previous tasks [22]. Consequently, many studies began to leverage
knowledge from prior datasets to initialize the search space to determine this workflow.
The knowledge pertains to the data preprocessing and ML methods with the best running
performance on prior datasets. The Meta-learning or case-based method represents an
effective use of the knowledge of prior datasets [23,24]. These methods could calculate
the similarity between a new dataset and the prior datasets, subsequently utilizing the
workflows of similar prior datasets as the initial search space.

Most optimization methods typically select one workflow with the best performance,
resulting in the loss of the methods that perform almost as well as the final selected method.
Some AutoML approaches are capable of storing those workflows and can automatically
construct an ensemble for the final prediction. A determined workflow includes an ML
method and the corresponding data preprocessing methods with determined parameter
values. The ML methods in each workflow could be the same kind of machine learning
method with different data preprocessing or different parameter values. Numerous studies
show that an ensemble usually outperforms the single best workflow [2,25]. When build-
ing the ensemble, an important issue is setting the weight of each workflow. Common
ensemble strategies include stacking, gradient-free numerical optimization and ensemble
selection [26–29].

3. Implementation of AutoML

Auto-sklearn, a Python package, automatically determines the workflow of ML and
data preprocessing methods [17]. Auto-sklearn encompasses numerous state-of-the-art ML
algorithms and a suite of data pre-processing and predictor selection methods [30]. In this
case study we employed the Auto-sklearn package to evaluate the explore the feasibility
and effectiveness of AutoML in predicting soil subgroups.

4. Experiment Design

The spatial distribution of soil subgroups is a very important geographic variable
and is usually the basic information for hydrological modeling, resource management and
other geographical/environmental studies [4,31]. Thus, in this paper, predicting the spatial
distribution of soil subgroups is taken as an example to evaluate the feasibility of AutoML
for SP.

4.1. The Heshan Study Area

The study area is Heshan farm, which is located in the Heilongjiang province of China,
with an elevation which ranges from 276 to 363 m (Figure 1). The area has a gentle slope
with an average slope of 2◦ and has been cultivated as crop areas for more than 40 years.
The main crops are wheat and soybean. Besides the valley bottom with fluvial deposits, the
whole area is covered by silt loam loess. Due to the small area (i.e., 60 km2) of the study area,
the macro climate conditions over the study area do not vary substantially [32]. The soil
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subgroups were classified at the subgroup level in the Chinese soil taxonomy system [33].
There are six main subgroups in total: Pachic Stagni-Udic Isohumosols (PSUI), Mollic
Bori-Udic Cambosols (MBUC), Typic Hapli-Udic Isohumosols (THUI), Typic Bori-Udic
Cambosols (TBUC), Lithic Udi-Orthic Primosols (LUOP) and Fibric Histic-Typic Haplic
Stagnic Gleyosols (FHTHSG) [32].
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Figure 1. The Heshan study area.

4.2. Dataset

The database used in this study consisted of 110 samples, which were collected through
four sampling strategies, including integrative hierarchical stepwise sampling, systematic
sampling, subjective sampling and transect sampling [32].

Due to the small study area and the generally homogeneous parent material, the
key environmental factors that influence the soil formation are the geomorphological
structures. Thus, only terrain covariates were used for mapping in this study area. The
Digital Elevation Model (DEM) with 10 m resolution was generated from a 1:10,000 scale
topographic map. The Simple Digital Terrain Analysis software (SimDTA, version 1.0.3)
was used to derive the other ten terrain covariates from the 10 m DEM [34]. These terrain
covariates included slope, profile curvature, planform curvature, topographic wetness
index, surface curvature index, landscape position index, relative position index, stream
power index, topographic position index, terrain ruggedness index (Table 1).

Table 1. Covariates used in Heshan study area.

Variables Scale/
Resolution Mean (Range)

Elevation 10 m 322 (276–363)
Slope 10 m 2 (0–17)

Profile curvature (ProCur) 10 m 0 (−0.01–0.01)
Planform curvature (PlanCur) 10 m 0 (−1.88–1.57)

Topographic wetness index (TWI) 10 m 9.38 (4.69–22)
Surface Curvature Index (CS) 10 m 0 (−0.023–0.016)

Landscape Position Index (LPos) 10 m 0 (−0.064–0.083)
Relative Position Index (RPI) 10 m 0.47 (0–1)

Stream Power Index (SPI) 10 m 32.4 (0–8281)
Topographic Position Index (TPI) 10 m 0 (−2.57–1.81)
Terrain Ruggedness Index (TRI) 10 m 0.31 (−0.001–2.75)

4.3. Experimental Environments

AutoML was implemented in Python using Auto-sklearn. The 13 classification meth-
ods and 17 data preprocessing methods which have been integrated into Auto-sklearn were
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used for this study (Table 2). The methods in Auto-sklearn are from Scikit-learn [30], which
are mostly used in SP [35].

Table 2. The ML and data preprocessing methods used for selection in this study.

Method Type Methods

Data preprocessing methods

Balancing class weight, Extremely Randomized Trees, Fast
Independent Component Analysis, Feature Agglomeration,
Imputation of missing values, Kernel principal component
analysis, Linear Support Vector Machines, No preprocessing,

Normalization, Nystroem Method for Kernel
Approximation, One hot encoding, Polynomial, Principal

component analysis, Random Forest, Random Kitchen
Sinks, Select percentile, Select rates

Classification methods

AdaBoost, Bernoulli Naive Bayes (Bernoulli NB), Decision
tree (DT), Extremely Randomized Trees (ERT), Gaussian

Naive Bayes (Gaussian NB), Gradient Boosting (GB), Kernel
SVM, K-Nearest Neighbors (KNN), Linear Discriminant
Analysis (LDA), Linear SVM, Multinomial Naive Bayes

(Multi NB), Quadratic Discriminant Analysis (QDA),
Random Forest (RF)

4.4. Evaluation Method
4.4.1. Evaluation Aspects

In this study we evaluated the performance of the AutoML from two perspectives:
(1) determining the workflow for each ML method individually; (2) assessing the perfor-
mance of AutoML for a set of potential ML methods.

In the first perspective, AutoML was employed to automatically ascertain the data
preprocessing methods for a specified ML method, subsequently configuring parameter
values within this workflow. To evaluate the effectiveness of this AutoML, two additional
approaches were designed. In the first approach, each ML method with default parameter
values and devoid of preprocessing was utilized to predict the spatial distribution of the soil
subgroups. In the second approach, the parameter values of the ML method were manually
determined according to expert knowledge. Owing to the established performance in the
digital soil mapping domain and the documented significant parameters that influence its
performance, random forest was selected for comparative analysis between the AutoML
and the expert knowledge. Considering the reported impact on the final performance of
random forest in most prior studies [36,37], only three key parameters of random forest
were used. Thus, we tuned those three parameters manually according to the previously
reported knowledge in the second approach. The parameters include the number of trees
to build the forest (ntree), the minimum number of samples used for the split at terminal
tree node (nmin) and the number of covariates considered when looking for the best split
(mtry). The parameter ntree was set to 1000 which is a large size of trees to make sure to
achieve a stable result [38]. Consistent with prior studies, the parameter nmin was set to
5 [37,38]. A total of 11 covariates were used in this study, thus, the parameter mtry was set
from 1 to 11, and the increment was set to 1.

In the second perspective, the objective was to assess the performance of AutoML in
scenarios where numerous potential ML methods exist. The highest performing workflow
constructed by AutoML was evaluated (“single workflow” for short). In addition, the
performance of the ensemble built from a number of workflows by AutoML was also
evaluated (“ensemble” for short). Both the single workflow and ensemble were then
compared to the performance of ML methods determined individually by AutoML.

4.4.2. Cross-Validation and Evaluation Index

To examine the effectiveness of the proposed method for the two perspectives, 3-fold
cross-validation was used. For the cross-validation, all the soil samples were randomly
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divided into 3 partitions. Two partitions were used to train the proposed method, and the
remaining partition was used to assess the performance of the proposed method. This
process was repeated 3 times, and each partition was treated as an evaluation set [39]. The
performance measured by 3-fold cross-validation is the average of the accuracy scores
computed in the 3 times loop. Due to the principles of optimization methods and the
random setting of the initial workflows, the final performance of AutoML could vary.
Therefore, we repeated the cross-validation process 30 times to illustrate the range of
different performances. The 3-fold cross-validation was also applied to ML methods as
default and expert approaches and repeated 30 times.

As a common evaluation index in multilabel classification, the overall accuracy score
was used as the evaluation index [32]. The value of accuracy score ranges from 0 (the entire
samples are predicted wrong) to 1 (the entire samples are predicted correctly).

Accuracy score =
1
n

n

∑
i=1

1(yi = ŷi) (1)

where n is the number of samples and yi and ŷi are the original value and the predicted
soil type for the ith sample, respectively.

5. Results
5.1. The Performance of the Determined ML Methods Using Different Ways When a Specified ML
Method Exists

Figure 2 depicts a boxplot of the accuracy scores for the 13 ML methods which were
determined through three different ways in the three-fold cross-validations with 30 repeats.
Since Multinomial NB could not work without preprocessing the original data, it lacked
accuracy scores with the default parameter values. The ML methods determined by
AutoML consistently yielded higher accuracy scores than those with default parameter
values (Figure 2). The performance of AutoML was 20% higher than the default for most of
the ML methods. The accuracy scores of each ML method varied across the 30 repeats of
three-fold cross-validation. The most important reason for this is that we randomly divided
the samples into each of the three-fold cross-validations, which could have led to different
training and evaluation samples across the 30 repeats.
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The relative performances of the ML methods determined by AutoML and default
had significant discrepancies (Figure 2). The performance of some ML methods was more
similar when using AutoML. For example, the accuracy scores of AdaBoost were 6% lower
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than ERT with the default parameter values, while the accuracy scores of AdaBoost be-
came almost as good as the ERT when the ML methods were determined using AutoML.
Conversely, certain ML methods, such as the KNN and LDA, exhibited an increased per-
formance gap under these conditions. Figure 3 shows the performance of RF determined
using the three different ways, indicating that AutoM selected RF as a better performer
compared to default and expert approaches.
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5.2. The Performance of AutoML When Multiple Potential ML Methods Exist

Figure 4 illustrates the performance of AutoML which extended the number of poten-
tial ML methods from one to all thirteen. Under these conditions, the accuracy scores of the
workflows determined by AutoML were very close to the highest performing workflows
determined by AutoML for each ML method individually. In total, four ML methods were
most selected by AutoML in the 30 repeated three-fold cross-validation, i.e., AdaBoost,
DT, ERT, RF (Figure 5). Among those ML methods, the most selected ML methods (i.e.,
RF, ERT, AdaBoost) are the three highest performing methods when each ML method was
determined by AutoML individually. However, other ML methods (e.g., DT) were also
potentially selected by AutoML. This contributed to the lower accuracy scores compared to
RF, ERT, AdaBoost which were determined by AutoML individually.
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Compared to using a single workflow to predict the spatial distribution of soil sub-
groups, the ensemble had a slightly higher score (Figure 4). Each ensemble is usually
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constructed by a number of determined workflows (each workflow includes a ML method),
ranged from 11 to 29 (Table 3). And the number of types of ML methods ranged from one
to seven. The most selected ML methods were RF, AdaBoost, ERT which account 93.3% of
all selected ML methods in the ensembles (Figure 6).
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30 repetitive 3-fold cross-validations.

5.3. The Spatial Distribution of Soil Subgroups Predicted by AutoML

Figure 7 illustrates four maps of soil subgroups predicted by AutoML as examples.
Notable differences can be seen between the maps predicted by the single workflow or the
ensemble, particularly the spatial distribution of PSUI, TBUC and THUI. AutoML, as a
data-driven approach, was significantly influenced by the soil samples. Consequently, the
determined workflow constructed by AutoML could be very different when soil samples
change. For instance, in the case of the two maps predicted by the single workflow, RF
as the ML method employed select rates for covariate selection (Figure 7a), whereas ERT
employed a polynomial (Figure 7b).
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6. Discussion
6.1. The Potential Reason for the High Performance of AutoML

AutoML usually had higher performance than the two alternative approaches (i.e.,
the ML method with default parameter values and the ML method with parameter values
manually determined according to expert knowledge). Although the performance of the
manual approach exhibits higher values than the RF with the default parameter values,
it still yields lower values than the AutoML approach (Figure 3). Two potential reasons
could explain these results: (1) the manual approach only tuned the three most important
parameters according to the expert knowledge while AutoML used all available parame-
ters; (2) AutoML selected the proper data preprocessing methods for RF according to the
original data from the users, including data normalization methods and the covariates
selection methods.

6.2. The Influence of the Ensemble on the Performance of AutoML

The ensemble of various workflows did not exhibit significantly greater improvement
than a single workflow with the best performance (Figure 4). However, as reported,
combining numerous workflows into an ensemble can usually reduce the single workflow’s
error and improve the final prediction result [2,17,40]. The possible reasons may be the
small sample size and the ensemble strategy. Data-driven approaches typically need a large
number of samples, particularly for highly complicated ML methods [41]. Additionally,
the ensemble strategy used in Auto-sklearn was designed with a training samples dataset
which exceeded 670 samples [17].
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6.3. The Advantages of AutoML

AutoML is a practical approach for SP users, especially for non-experts. AutoML
could help the SP users from two aspect: (1) it can automatically choose the best data
preprocessing methods and the parameter value for a specified ML method; (2) it can
determine the best ML methods and the corresponding data preprocessing parameters and
their values using the numerous available ML methods. Compared to the way based on the
users’ own domain knowledge, AutoML could reduce the burden to learn multiple domain
knowledge and be more objective because the ML method is determined based on the field
sampling data. Compared to the current guidelines or rules, AutoML could integrate more
of the newest ML methods quickly without awaiting the development of more accurate
and definite guidelines or rules. In addition, AutoML could tune all the parameters of the
predictive and preprocessing methods, while expert domain knowledge is usually only
concerned with some key parameters.

6.4. The Current Limitations and Future Work of the AutoML

The data-driven AutoML approach typically provides a black-box workflow which is
usually hard to interpret [2,4,41]. AutoML randomly selects ML methods from a method set,
then finds the best performing workflow based on optimization algorithms. In this process,
the initial ML methods and the parameter values can affect the results of optimization
algorithms. This is also the reason why some suboptimal predictive methods were also
selected in our study (e.g., the DT selected in the single workflow in Figure 5).

In our study, AutoML only integrated 13 ML methods and 17 data preprocessing
methods. However, many other powerful SP methods also exist, such as semi-supervised
method [42], cubist [43,44], fuzzy membership [41], Regression kriging [45], geographically
weighted regression [46] and so on. To make the AutoML more powerful in SP, it is neces-
sary to integrate more SP and data preprocessing methods into the AutoML framework.

7. Conclusions

Determining an appropriate SP method is a pivotal step in spatial prediction. As a
case study of AutoML, this paper used Auto-sklearn to determine the most appropriate ML
methods in predicting the spatial distribution of soil subgroups on Heshan farm. This study
assessed the feasibility and effectiveness of AutoML using a three-fold cross-validation
method. Additionally, two alternative approaches for determining ML were designed to
be compared with AutoML: (1) an ML method with default parameter values and (2) an
ML method with parameter values determined based on expert knowledge. The primary
findings of those experiments are outlined below:

(1) Each ML method determined by AutoML outperformed those with default parameter
values or determined by expert knowledge.

(2) In scenarios where numerous ML methods are available, AutoML could also identify the
highest performing ML method and implement the proper data preprocessing methods.

(3) The accuracy and spatial distribution of soil subgroups predicted by AutoML closely
depend on the sample database.

These findings demonstrate the practical utility of AutoML for SP users, particularly
for non-experts. However, AutoML’s further developments should extend beyond ML
methods to include other SP methods, such as the spatial statistics methods.
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