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Abstract: (1) Background: A simple approach to map irrigated landcover has been introduced by us-
ing measures derived from the optical spectral range as an alternative to the thermal range. It has been
demonstrated that substituting surface temperature (Ts, ‘thermal approach’) with SWIR-transformed
reflectance (STR, ‘optical approach’) to detect surface moisture is feasible with comparable results.
(2) Methods: Using an iterative thresholding procedure to minimize within-class variance, the bilevel
segmentation of variables derived from Landsat-8 representing surface moisture and vegetation
cover was achieved for the 2020–2021 summer for a key irrigation district in Australia. (3) Results:
The results of irrigated landcover by the optical approach were found to be comparable with those
obtained by the thermal approach. The classification accuracy was assessed using water delivery
records at the farm level. Although the overall accuracy was high in both cases, the optical approach
(97.6%) performed slightly better than the thermal approach (93.9%). (4) Conclusions: The feasibility
of using STR to map irrigated landcover has been confirmed by a high-level overall accuracy assess-
ment. This has broader implications in terms of irrigated landcover assessment, as the use of satellite
imagery in these applications may not necessarily be limited to microwave or thermal sensors.

Keywords: irrigated landcover; thresholding method; Central Goulburn District

1. Introduction

Irrigation is critical for agricultural production, and it plays an important role in food
security in many areas of the world [1–3]. Irrigation not only increases the crop yield by
overcoming climatic constraints, but it also modifies local climatic conditions and adds to
evapotranspiration [4,5]. In addition, irrigation can have some environmental impacts like
increased soil salinity [6], changes in the water table [7] and altered hydrological cycles [8].
The stated economic and ecological importance of irrigation warrants that the extent and
distribution of irrigation is mapped precisely and monitored regularly.

Soil moisture is a key indicator of surface irrigation and irrigated landcover. The
interaction of electromagnetic (EM) radiation with soil moisture and irrigated land has
shown a significant correlation at various wavelengths. As a result, several methods
have been developed to map surface irrigation in different EM regions, namely, optical,
thermal and microwave. These methods have been summarized in detail in several recent
studies [9–12]. As microwave sensors are particularly sensitive to the changes in ground
moisture, these have been used in mapping irrigated landcovers in many studies [13].
Though microwave sensors have provided promising results for the detection of irrigation
in many areas, the coarse spatial resolution and the confounding effects of topography and
vegetation created notable uncertainties in some regions [14]. However, the launch of the
Sentinel-1 satellites constellation (S1-A and S1-B) provided an unprecedented radar data
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coverage at a high spatial and temporal resolution. This has led to some new approaches
for mapping irrigation based on machine learning and empirical modelling, providing
improved results [15,16].

Thermal infrared (TIR) sensors are considered highly relevant for irrigation map-
ping [17,18]. To distinguish between ‘irrigated’ and ‘non-irrigated’ land, the TIR-derived
surface temperature (Ts) has been widely used [19,20]. Ts is invariably used in combination
with certain vegetation measures to map irrigated agriculture. There are very many vegeta-
tion indices which have been developed since the early attempts in the 1960s–1970s [21,22].
Vegetation indices frequently use a combination of spectral responses between visible and
the near- or mid-infrared range [23]. The most used vegetation measure is the normalized
difference vegetation index (NDVI), which is based on the near-infrared (NIR) and red
wavebands. Presently, there are many satellites with optical sensors onboard, which pro-
vide images suitable for vegetation indices at medium to high spatial resolution. However,
there is a lack of satellites that provide thermal images with acceptable resolution, except
for the Landsat series of satellites (presently Landsat-8/9), which continues to provide
concurrent thermal and optical observations at a nominal resolution of 30 m.

Although the thermal-based methods are powerful for irrigation mapping since they
have physical rationale for their application, most methods depend on local weather
conditions such as air temperature (Ta) close to the time of the satellite overpass. The
relationship between the Ts and soil moisture is highly influenced by the Ta and other
atmospheric conditions [24]. Without the calibration of the Ts, the results are likely to vary
spatially across different landcovers, confounding the distinction of irrigated landcover.
Considering this limitation, efforts have been made to find a robust substitute of Ts in the
optical range to adequately account for surface moisture. Several indices that utilize optical
observations have been proposed for the quantification of surface moisture or the lack of
it, as shown in Table 1. Some of these indices are based on triangular or trapezoidal pixel
distributions of optical observations in different spectral frequency ranges. It is notable
that these optical indices (Table 1) are mostly empirical and lack any physical foundation.
However, in a recent development, a method which is supported by both theory and
experimental data has been proposed by Sadeghi et al. [25]. This new method, which
has been designed to measure soil moisture, is based on a linear model in shortwave
infrared (SWIR) wavelengths, termed as ‘SWIR-transformed reflectance’ (STR). We chose
this measure to use in this study to explore its feasibility as a substitute of the TIR-derived
surface temperature for the mapping of irrigated land cover in the Central Goulburn
Irrigation District (CGID) of Victoria, Australia, during the peak irrigation season (i.e., the
summer) of 2020–2021.

Table 1. Soil moisture and drought indices based on reflectance in optical range.

Index Equation * Reference

Vegetation Condition Index, VCI VCI = 100 ∗ (NDVI−NDVImin)
(NDVI max−NDVImin )

Kogan, 1995 [26]

Normalized Difference Water Index, NDWI NDWI = RGreen−RNIR
RGreen+RNIR

McFeeters, 1996 [27]

Normalized Multiband Drought Index, NMDI NMDI = R860 nm−(R 1640 nm−R2130 nm)
R860 nm+(R 1640 nm−R2130 nm)

Wang and Qu, 2007 [28]

Perpendicular Drought Index, PDI PDI = 1√
M2+1

(RRed + MRNIR ) Ghulam et al., 2007a [29]

Modified Perpendicular Drought Index, MPDI MPDI = RRed+MRNIR− f v(Rv,Red+MRv,NIR )

(1− f v)
√

M2+1
Ghulam et al., 2007b, [30]

Modified Shortwave Infrared Perpendicular Water
Stress index, MSPSI MSPSI = 1√

1+M2 (Rs + MRd) Feng et al., 2013 [31]

Distance Drought Index, DDI DDI =
√

R2
Red+R2

NIR
1+NDVI

Yang et al., 2008 [32]

Visible and Shortwave Infrared Drought Index, VSDI VSDI = 1 − (RSWIR + RRed − 2RBlue) Zhang et al., 2013 [33]
Shortwave Infrared Water Stress Index, SIWSI SIWSI = RSWIR−RNIR

RSWIR+RNIR
Fensholt & Sandholt, 2003 [34]

* NDVI, NDVImin, NDVImax: smoothed weekly normalized difference vegetation index, its multi-year absolute
maximum and minimum, respectively; R: reflectance; RGreen and RNIR: reflectance of green and near-infrared
spectral bands; M: slope of the soil line on RRed and RNIR space; fv: estimated vegetation cover; Rv: coefficient
taken as 0.5; and RSWIR: reflectance of shortwave infrared spectral band.
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The objectives of this study were (1) to assess the feasibility of using STR for mapping
irrigated landcover and (2) to compare the TIR-based landcover classification (thermal
approach) with the STR-based landcover (optical approach).

Study Area

The CGID is located approximately between 36◦04′41′′ S and 36◦38′26′′ S latitude, and
between 144◦46′37′′ E and 145◦23′41′′ E longitude in the northern part of Victoria, Australia
(Figure 1). It is spread across the council jurisdiction of the Greater Shepparton City. It
covers an area of approximately 1,900 sq. km., of which a large part is irrigated. This area is
an alluvial plain, dominated by fluviatile sedimentation since the Early Tertiary period. The
sediment deposits vary from approximately 50 m to 125 m in depth. The well-drained soils
are red-brown, mainly fine-sandy loams. The poorly drained soils are grey heavy soils.

Figure 1. The study area. (a) CGID location in Australia, and (b) extent of CGID (in yellow) with the
background of Landsat-8 satellite image bands 5/4/3 (displayed as a false colour composite image).

The climate is temperate, and the region is relatively dry with an average annual
rainfall between 200 mm and 400 mm. In general, most of the rainfall is received during
winter (June to August). Summers (December to February) are usually dry. The average
maximum temperature ranges between 12◦ and 15 ◦C in winter, increasing to between
27◦ and 30 ◦C in summer (December to February). The average minimum temperature
varies from 3◦ to 6 ◦C in winter and from 12◦ to 15 ◦C in summer (Figure 2). Victoria’s
largest river, the Goulburn, flows on the eastern boundary before it joins Australia’s largest
river, the Murray, in the north. The flat terrain is covered by a network of irrigation
channels. The irrigation systems used in the region include micro-irrigation, conventional
sprinklers, flooding and furrowing. The main industries are dairying, horticulture, cropping
and grazing.
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Figure 2. Average monthly rainfall and minimum/maximum temperatures at the Tatura weather
station (latitude: 36.44◦ S; longitude: 145.27◦ E; elevation: 114 m), located within the study area.

2. Materials and Methods

This study was undertaken in three broad steps. First, the satellite images were
processed to generate the relevant measures for a representative date (8 January 2021)
for the summer season. Second, a thresholding process was adopted to identify relative
differences in surface temperature (Ts−Ta), surface moisture (STR) and vegetation status,
which were then used to identify irrigated pixels. As a third step, the classified pixels were
aggregated at farm scale so as to match the irrigation water supply information and to
measure the classification accuracy.

2.1. Satellite Data

A Landsat-8 Satellite Scene (Path 93/Row 85) covered the study area. The image of
this scene was taken from Landsat-8 Collection-2 Tier-1, which was calibrated as top-of-
atmosphere (TOA) reflectance as follows [35]:

ρλ =
π · Lλ · d2

ESUNλ · cos θs
(1)

where
ρλ = TOA reflectance [-];
π = Constant equal to ~3.14159 [-];
Lλ = Spectral radiance [W/(m2 sr µm)];
d = Earth-Sun distance [Astronomical units];
ESUNλ= Mean solar irradiance [W/(m2 µm)];
θs = Solar zenith angle [Degrees].
Pixels with clouds, cloud shadows and cirrus clouds were masked out in the selected image.

2.2. Calculation of Surface Temperature (Ts)

At-sensor brightness temperature (Ts) was calculated using the following formula [35]:

Ts =
K2

nl
(

K1
Lλ

+ 1
) (2)

where
Ts = Effective at-sensor brightness temperature [K];
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K2 = Calibration constant 2 [K];
K1 = Calibration constant 1 [W/(m2 sr µm)];
Lλ = Spectral radiance at the sensor’s aperture [W/(m2 sr µm)];
nl = Natural logarithm.
For this study, Band 11 TIR2 (11,500–12,510 nm) was used for Lλ.

2.3. Surface–Air Temperature Difference (Ts−Ta)

Surface temperature has long been used to understand vegetation water status [36]. As
plants transpire, water loss reduces leaf temperature due to evaporative cooling. The surface
temperature of vegetation often becomes much lower than that of the surrounding air in
situations of optimum water supply. Conversely, in water-stressed situations, vegetation
transpires less and vegetation surface temperature increases, usually rising above the
surrounding air temperature [37]. The difference between the surface and air temperatures
(Ts−Ta) is therefore considered a logical variable to assess vegetation water status.

The air temperature data, close to the time of the satellite overpass, were sourced
from the Bureau of Meteorology (www.bom.gov.au, accessed on 8 December 2023) and
the SILO website (www.longpaddock.qld.gov.au/silo/, accessed on 8 December 2023) for
multiple weather stations across and surrounding the study area. The point data of air
temperature (Ta) were rasterized, using inverse distance-weighted (IDW) method to match
the Ts from satellite.

2.4. Calculation of Shortwave Infrared-Transformed Reflectance (STR)

The concept of STR was proposed by Sadeghi et al. [25] in relation to soil moisture.
The derivation of STR is based on a simple model of Kubelka–Munk theory [38], which
describes radiative transfer with absorption (k) and scattering (s) in a soil layer, considering
a downward and an upward light propagation flux perpendicular to the layer. By analyti-
cal solution of the equations for absorption and scattering coefficients, reflectance (R) is
obtainable as the function of k and s [39]:

R = 1 +
k
s

√√√√( k
s

)2
+ 2

k
s

(3)

The rearrangement of Equation (3) gives ‘transformed reflectance’ (r) denoted by
r = k/s [25]:

r =
k
s
=

(1 − R)2

2R
(4)

Sadeghi et al. [25] tested Equation (4) for soil moisture using multiple spectral fre-
quencies in laboratory conditions for a range of soil types, and found that SWIR bands
(wavelength between 1100 and 3000 nm) are optimal for soil moisture detection. Therefore,
Equation (4) was qualified as ‘SWIR-transformed reflectance’ (STR) [40]:

STR =
(1 − SWIR)2

2(SWIR)
(5)

In the calculation of STR, commonly used spectral bands include Landsat-8 Band 7,
Sentinel-2 Band 12 and MODIS Band 7 [40–44]. For this study, SWIR in Equation (5) refers
to Landsat-8 Band 7 (2200 nm). High STR values indicate high soil moisture and vice versa.

2.5. Calculation of Vegetation and Water Indices

Normalized difference vegetation index (NDVI) was calculated as follows [22,45]:

NDVI =
NIR − Red
NIR + Red

(6)

www.bom.gov.au
www.longpaddock.qld.gov.au/silo/
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where NIR denotes Band 5 (865 nm) and Red Band 4 (655 nm). NDVI was one of two key
variables in land cover classification.

Normalized difference water index (NDWI) was calculated as follows [27]:

NDWI =
Green − NIR
Green + NIR

(7)

where Green denotes Band 3 (560 nm). NDWI was used to detect and mask out surface
water to ensure the STR estimates were confined to soil moisture.

2.6. Thresholding Process for Landcover Classification

An operational classification approach based on iterative thresholds was adopted for
this study. This approach, which generates bilevel classes of satellite-derived measures, has
been previously used for landcover classification in the irrigation regions [46,47]. Here, we
describe the process of both approaches: optical and thermal.

It is widely accepted that an ‘irrigated’ crop has high vegetation and high soil moisture
as compared to non-irrigated crops or other dry landcovers. On this basis, STR (soil mois-
ture indicator) and NDVI (vegetation status) were segmented into two classes each. STR
classes referred to ‘irrigated’ (relatively high soil moisture) and ‘non-irrigated’ (relatively
low soil moisture), and vegetation classes were ‘crop’ (relatively high NDVI) and ‘non-crop’
(relatively low NDVI). An iterative thresholding method was used to achieve the binary
classification by minimizing within-class variance, σ2

Within [48]:

σ2
Within(Ti) = ω0σ2

0 (Ti) + ω1σ2
1 (Ti) (8)

where (Ti) is the threshold which varies by iteration i; ω0 and ω1 are the weights of the
two classes; and σ2

0 and σ2
1 are the variance of the two classes.

For applying the thresholding procedure in operation, the relationship of σ2
Within with

between-class variance (σ2
Between) and total variance (σ2

Total) was used as follows [48]:

σ2
Within(Ti) = σ2

Total(Ti)− σ2
Between(Ti) (9)

Initial NDVI threshold (α) was taken as 0.4. All pixels ≥α were considered as ‘crop’.
Initial soil moisture threshold was the median value of STR (φ) or Ts−Ta (β). The iteration
interval was set at 0.005 within the limit of ±0.025 of the initial thresholds. Altogether, 11
iterations each for NDVI and STR/Ts−Ta were performed for the image. Thresholds with
minimum σ2

Within were used for binary classification.
In the context of the ‘optical approach’, each pixel was identified with the defined

binary classes of NDVI and STR. This resulted in four combinations, as shown in Figure 3A.
Pixels in sector (1) denote dry conditions with no or low vegetation. Pixels in sector (2) de-
note wet conditions with low or no vegetation. Pixels in sector (3) indicate some vegetation,
which may be crop or pasture but without irrigation. Sector (4) denotes vegetation with
wet condition indicating irrigated crop or pasture.

In the context of the ‘thermal approach’, the thresholding process for both NDVI and
Ts−Ta was the same as described earlier. As shown in Figure 3B, the four sectors define the
vegetation status and wet/dry conditions. Here, the pixels in Sector (4) indicate irrigated
crop or pasture.

Validation was carried out on the pixels aggregated to the extent of irrigation water
delivery licences. Water delivery for each license has been linked to spatial unit consisting
of one or more paddocks. These units hereinafter are referred to as farms. The mapped
results of irrigated landcover were compared with the actual irrigation deliveries to farms.
Information on irrigation water supplies at farm level was sourced from the Victorian Water
Register (VWR), a state-wide irrigation water database (https://waterregister.vic.gov.au/,
accessed on 8 December 2023). Figure 4 shows the location of farms which have been
included in the validation process. In this figure, the locations of farms have been shown
by farm centroids instead of farm boundaries due to privacy reasons.

https://waterregister.vic.gov.au/
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Figure 3. (A) Concept of thresholding classification (optical approach). α and φ are the thresholds
for NDVI and STR, respectively, determined by an iterative thresholding method by minimizing
within-class variance. Irrigated pixels are those with NDVI ≥ α and STR ≥ φ located within Sector 4.
(B) Concept of thresholding classification (thermal approach). α and β are the thresholds for NDVI
and Ts−Ta, respectively, determined by an iterative thresholding method by minimizing within-class
variance. Irrigated pixels are those with NDVI ≥ α and Ts−Ta ≤ β in Sector 4.

Figure 4. Centroids showing the location of the farms in CGID used in the validation process. The
background is the Landsat-8 images with bands 5/4/3 (displayed as a false colour composite image).

3. Results
3.1. Distribution of Input Measures

The classification process takes two variables as inputs in both approaches—‘optical’
and ‘thermal’. NDVI is one variable, which is a common measure used in both approaches,
as shown in Figure 5A. Although the NDVI ranges between 0 and ≥0.8 in CGID (Table 2),
the notable areas are those with NDVI ≥ 0.4, shown as shades of green (Figure 5A). These
areas are predominantly under perennial horticulture, perennial pastures or summer crops.
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The NDVI distribution appears patchy and irregular, mainly due to the widely varying
sizes of agricultural properties ranging between under 2 ha and over 1000 ha.

Figure 5. Maps of individual input measures in CGID. (A) NDVI, (B) STR, (C) NWDI, (D) Ta, (E) Ts
and (F) Ts−Ta.

Table 2. Statistics of individual input measures used in classification.

Statistics NDVI STR * NDWI Ta Ts Ts−Ta

Minimum 0.000 0.000 −0.776 −14.938 0.000 0.000
Mean 0.286 1.800 −0.379 22.963 38.304 15.125

Median 0.239 1.356 −0.355 22.923 38.754 15.562
Maximum 0.875 36.696 0.818 36.813 47.227 24.081

SD 0.126 1.457 0.101 0.917 2.7125 2.455
* Excluding pixels with ‘surface water’ (NDVI < 0.1 and NDWI > 0.1).

The values of STR in CGID range between 0 and ≥36 (Table 2). However, the notable
areas are those with STR values of 2 and over, indicating the presence of substantial surface
moisture (Figure 5B). Here, the distinction must be made between potential irrigation areas,
which are exclusively agricultural properties, and the riverine zone of native vegetation,
where the source of surface moisture is not irrigation.

Figure 5C shows the distribution of NDWI in CGID. All NDWI values above zero
indicate the presence of surface water (Table 2). In addition to a few large water bodies like
Waranga Basin in the south-central part, farm dams of varying sizes are shown across the
district. The areas with surface water were excluded while evaluating STR values.

The ‘Ts−Ta’ input variable for the thermal approach of classification is largely driven
by the satellite-derived surface temperature (Ts), moderated by air temperature (Ta). The
spatial variation of Ta in CGID was within 3◦–4 ◦C (Table 2). It ranged between under
21 ◦C and approximately 24 ◦C, increasing from the south-east to the north-west direction
(Figure 5D). On the other hand, the Ts ranged between 26◦ and over 40 ◦C (Table 2). Rela-
tively cooler surfaces were with <34 ◦C, roughly spread in patches but largely contiguous
in the riverine areas in the east (Figure 5E).

The distribution of Ts−Ta in CGID ranged between 0◦ and 24 ◦C (Table 2, Figure 5F).
Here, the relatively cooler areas appear more pronounced as compared to those in the Ts.
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A visual comparison of the Ts−Ta map (Figure 5F) with that of the STR (Figure 5B)
shows marked similarities. The locations of high surface moisture (i.e., high STR and
low Ts−Ta) appear to be the same. Similarly, the dry surface areas of the two maps
correspond well.

3.2. Thresholds for Pixel Classification

Figure 6A,B show the identification of pixels as per the optical and thermal approaches.
Using Equation 9, the iteration process provided the threshold for the NDVI at 0.425, for
the STR at 1.425 and for the Ts−Ta at 14.85 ◦C. In each case, the pixels were divided into
four classes. Pixels within Sector Four (refer to Figure 3A,B) were identified as ‘irrigated’
crop or pasture.

Figure 6. Pixel identification based on thresholds. (A) Optical approach and (B) thermal approach
of individual input measures in CGID. (Refer to Figure 3A,B for the descriptions of the four sectors,
labelled here as 1–4.)

3.3. Irrigated Landcover Classification

Figure 7 shows the results of the irrigated landcover classification for the optical
approach. Figure 7A shows the four classes as identified in Figure 6A. Figure 7B is the map
of the irrigated landcover class only. Figure 8 shows the results of the irrigated landcover
classification based on the thermal approach, where Figure 8A shows the four classes as
identified in Figure 6B. Figure 8B is the map of the irrigated landcover class only.

A visual comparison of the two maps of irrigated landcover (Figures 7B and 8B) shows
minor differences. The map of the optical approach (Figure 7B) shows slightly more pixels
(13.86% of the total area) as irrigated in comparison to the map of the thermal approach
(12.43% area) (Figure 8B, Table 3).

Table 3. Area of landcover classes in CGID.

Classes
Thermal Approach Optical Approach

Hectares % Area Hectares % Area

Irrigated:
Wet Vegetation 23,651 12.43 26,370 13.86

Dry Vegetation 2835 1.49 116 0.06
Wet No Vegetation 29,118 15.30 60,512 31.80
Dry No Vegetation 134,684 70.78 103,289 54.28
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Figure 7. Maps of irrigated landcover classes (optical approach). (A) Pixel classes, (B) irrigated
landcover.

Figure 8. Maps of irrigated landcover classes (thermal approach). (A) Pixel classes, (B) irrigated
landcover.

3.4. Validation of Irrigated Landcover

As stated earlier, validation of the irrigated land cover classification was carried out at
the farm level. Farms ≥ 10 ha in size were selected for validation. A farm was considered
as ‘irrigated’ (‘Reference’) based on a substantive amount of water delivery (≥0.1 ML per
ha) to that farm during the timeframe of the summer season (December to February). No
or a negligible amount of water delivery (<0.1 ML per ha) was taken as the absence of
irrigation on a farm. These reference farms were compared with the classification results
for accuracy.

As per the classification, a farm was considered ‘irrigated’ provided a substantial pro-
portion of pixels (≥25%) within that farm belonged to Sector 4 (wet and active vegetation;
refer to Figures 3 and 6). This criterion was uniformly applied to both the optical and
thermal approaches.

Tables 4 and 5 provide the classification accuracy for the two approaches. The calcu-
lation of the confusion matrix resulting in the producer’s and user’s accuracies followed
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the standard procedure [49,50]. Although the overall accuracy was high in both cases, the
optical approach (97.6%) performed slightly better than the thermal approach (93.9%). The
user’s accuracy for irrigated landcover was noticeably higher in the case of the optical
approach (98.3%) as compared to that of the thermal approach (88%). However, there
was very little difference between the two approaches as per the producer’s accuracy for
irrigated landcover (96.2% for the optical and 97.1 for the thermal approach).

Table 4. Evaluation of irrigated landcover classification (Optical approach).

(a) Occurrence (Optical approach)

Classification
Reference *

Total
Irrigated Non-Irrigated

Irrigated 451 8 459
Non-Irrigated 18 624 642

Total 469 632 1101

* Classification according to water delivery records

(b) Accuracy (Optical approach)

Producer’s Accuracy % User’s Accuracy %

Irrigated 96.2 98.3
Non-Irrigated 98.7 97.2

Overall accuracy = 97.6%

Table 5. Evaluation of irrigated landcover classification (Thermal approach).

(a) Occurrence (Thermal approach)

Classification
Reference *

Total
Irrigated Non-Irrigated

Irrigated 404 55 459
Non-Irrigated 12 630 642

Total 416 685 1101

* Classification according to water delivery records

(b) Accuracy (Thermal approach)

Producer’s Accuracy % User’s Accuracy %

Irrigated 97.1 88.0
Non-Irrigated 92.0 98.12

Overall accuracy = 93.9%

4. Discussion

The feasibility of using the STR along with the NDVI (optical approach) to map
irrigated landcover has been confirmed by a high-level overall accuracy assessment (97.6%).
These results of irrigated landcover by an optical approach were found to be comparable
with those of a parallel process that used the Ts−Ta along with the NDVI (thermal approach).
However, there was a noticeable difference in the user’s accuracy for the ‘irrigated’ class
between the two approaches (88% thermal to 98.3% optical). This could have occurred
due to the difference in the spatial resolution of a variable for surface moisture. The STR
is based on Band 7 of Landsat 8 which has a 30 m resolution, whereas Band 11, which is
used in the Ts−Ta, is at 100 m resolution, though it is resampled to 30 m [51]. For the same
reason, the ‘wet no vegetation’ areas were estimated higher by the optical approach than
by the thermal approach (Table 3).

The STR is expected to work in all ground conditions, since it has been tested by
Sadeghi et al. [25] for a range of soil types, and was used in this study successfully.
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The overriding objective of our paper was to assess the feasibility of using the STR
as a soil moisture measure, in place of the TIR-based measure. We attempted to do that
by using a simple but effective method of classification which has been used previously.
Our iterative thresholding procedure was based on minimizing the within-class variance
for bilevel segmentation. This step is like Otsu’s method [48]. However, our approach
did not include an automatic optimization process unlike Otsu’s method. Otsu’s method,
with an automatic optimization process, performs well to find a single threshold only
when the histogram has a distinct bimodal distribution. In other situations, it does not
deliver an optimal result. The variables for our study area were not bimodal. Therefore, we
introduced certain constraints to the method, i.e., an initial threshold and iteration limits,
as described earlier in Section 2.6.

The initial threshold for the NDVI (0.4) was on the assumption that, in an agriculture
enterprise, vegetation with NDVI < 0.4 is unlikely to be a managed crop or pasture. In
the case of the STR and the Ts−Ta, the initial threshold taken was the median pixel value
of the variable, which was based on the experience from the previous studies in the
region [46,47,52]. These initial thresholds and the related assumptions should be field
tested further to ascertain the strengths and weaknesses of this approach in different
landscapes and at different times.

This study used a simple threshold method for classification. However, for future stud-
ies, it is desirable to employ other approaches such as machine learning over larger areas.

The classification method used in this study assumed that the main source of surface
moisture was irrigation and that rainfall did not have any significant impact. As stated
earlier, the summers in the study area are generally dry. The long-term average of rainfall
during the three months of summer is 101.8 mm (Figure 2). The study period (December
2020 to February 2021) was, however, drier, with a total of 80.6 mm. In cases of high rainfall
situations, there will be a requirement for season-wide vegetation as well as STR analysis
of the known irrigated and dryland farms vis-à-vis rainfall records to make the desired
adjustments to the thresholding method.

This study used a single image as a representative of the summer season. This is in
accordance with a previous study in the irrigation regions of Victoria, Australia, which
found the use of a single ‘mid-season’ image adequate to assess maximum crop cover
because of the strong temporal stability in NDVI response [53]. However, for further
studies, there is scope to test temporal aggregates of image-based variables from multiple
sources including Landsat-8/9 and Sentinel-2.

This study is a formal affirmation of using the STR as a substitute for Ts-based measures
for irrigated landcover classification. The basis of this affirmation is the formal comparison
of the optical approach with the thermal approach implemented in a key irrigation district.
This opens the opportunity of utilizing the widely available optical sensors for irrigated
landcover investigations.

5. Conclusions

The satellite-derived surface moisture (STR, Ts) and vegetation status (NDVI) are
appropriate measures to distinguish between irrigated and non-irrigated pixels within
farmlands. The use of the STR, which is based on Band 7 of Landsat-8 (the optical spectral
range), with the NDVI, demonstrated successful mapping of irrigated landcover for the
summer season of 2020–2021 in CGID. The results of this optical approach of classification
were found to be comparable with those of the thermal approach, where Ts−Ta is used
with the NDVI for classification. These results have broader implications in terms of
irrigated landcover assessment, as the use of satellite imagery in these applications may
not necessarily be limited to sensors with either microwave or thermal bands. The impact
of this is a greater freedom, both spatially and temporally, to develop this information.
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