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Abstract: Machine learning (ML) is increasingly utilized in Landslide Susceptibility Mapping (LSM),
though challenges remain in interpreting the predictions of ML models. To reveal the response
relationship between landslide susceptibility and evaluation factors, an interpretability model was
constructed to analyze how the results of the ML model are realized. This study focuses on Zhenba
County in Shaanxi Province, China, employing both Random Forest (RF) and Support Vector Machine
(SVM) to develop LSM models optimized through Random Search (RS). To enhance interpretability,
the study incorporates techniques such as Partial Dependence Plot (PDP), Local Interpretable Model-
Agnostic Explanations (LIMEs), and Shapley Additive Explanations (SHAP). The RS-optimized RF
model demonstrated superior performance, achieving an Area Under the Curve (AUC) of 0.965.
The interpretability model identified the NDVI and distance from road as important factors influ-
encing landslides occurrence. NDVI plays a positive role in the occurrence of landslides in this
region, and the landslide-prone areas are within 500 m from the road. These analyses indicate the
importance of improved hyperparameter selection in enhancing model accuracy and performance.
The interpretability model provides valuable insights into LSM, facilitating a deeper understand-
ing of landslide formation mechanisms and guiding the formulation of effective prevention and
control strategies.

Keywords: landslide; Random Forest; Support Vector Machine; hyperparameter selection;
interpretability

1. Introduction

Landslides are a widespread and frequent natural disaster, causing substantial eco-
nomic damage and causing significant risks to human life and property safety [1–3]. The
ability to accurately predict landslide locations is critical for effective risk assessment and
for implementing mitigation strategies. To address this need, Landslide Susceptibility
Mapping (LSM) was developed as an important tool for the systematic identification of
areas prone to landslides [4]. LSM provides a foundation for decision-making in land use
planning and emergency management [5]. In recent years, the application of machine
learning (ML) in LSM has increased due to its ability to achieve high prediction accuracy
using various models [6], such as Logistic Regression (LR) [7], Artificial Neural Networks
(ANN) [8], Random Forest (RF) [9], and Support Vector Machines (SVM) [10], among others.
When using machine learning models, choosing the right combination of hyperparameters
is very important for LSM results. In some studies, a meta-heuristic optimization algorithm
was used to achieve better fitting and generalization of LSM in the study area, thus improv-
ing the model’s performance [11]. Among these algorithms, Random Search (RS) is notable
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for its ability to explore the search space more comprehensively, rather than just relying on
deterministic steps or fixed rules. However, in some studies, even though the accuracy of
the model is low, it is widely used because it is easy to explain [12]. Consequently, balancing
the model’s accuracy with its interpretability remains a central research challenge.

To enhance decision-making in tasks assisted by machine learning, it is crucial to
thoroughly understand the output capabilities of predictive models. This understanding
not only enhances the models themselves but also deepens our comprehension of the
modeling process [13,14]. Landslides, due to their complex genetic mechanisms, show
pronounced regional characteristics and heterogeneity influenced by various evaluation
factors. Analyzing these factors is thus vital for accurate landslide prediction [15]. In order
to further improve the interpretability of machine learning models and establish and build
trust among users and models, some researchers have proposed a series of interpretability
methods. Existing studies have demonstrated the effectiveness of interpretability models
in improving the interpretability and accuracy of models [16,17]. The introduction of
the post hoc interpretation algorithm offers a novel approach to explain the landslide
susceptibility model based on machine learning. The principle is to interpret a model
that has already been trained, rather than train the model directly with interpretability in
mind. Post hoc interpretation algorithms try to explain the prediction results of the model
through different methods to help people understand the decision-making process and
the laws behind the model [18,19]. This algorithm can improve the understanding of the
internal interpretation of the model, thus improving the fairness and robustness of the
decision and ensuring that the causality of the model’s reasoning is better guaranteed [20].
Common machine learning post hoc interpretation algorithms include Partial Dependence
Plot (PDP), Local Interpretable Model-Agnostic Explanations (LIME), Shapley Additive
Explanations (SHAP), etc.

Some studies have used post hoc interpretation algorithms to analyze the contribution
of individual predicted values, with remarkable results. Alqadhi et al. [21] used deep
learning and interpretable artificial intelligence (XAI) to predict landslides, in which the
PDP model accurately predicted rainfall, slope, soil texture, and river line density as key
parameters triggering landslides. Based on this, Chen [22] used the LIME algorithm to
make a localized interpretation of tunnel geothermal hazard susceptibility evaluation and
concluded that surface temperature, fault density, and peak seismic acceleration are the
most important factors in tunnel geothermal hazard susceptibility evaluation. The SHAP
model addresses this limitation by calculating the Shapley value of the feature in the sample
and showing the contribution of the feature to the predicted value [23]. Pradhan et al. [24]
introduced the SHAP algorithm for landslide susceptibility modeling and explained the
relationship between landslide and slope.

Many machine learning models lack the necessary transparency and interpretability for
decision-making, making LSM difficult to apply in real-world scenarios. Machine learning-
based interpretability not only provides an understanding of the model’s predictions, but
also provides decision-makers and community residents with insight into landslide risk
factors. By analyzing how various factors contribute to landslide predictions, a deeper
understanding of landslide triggers is achieved. This improves the accuracy of predictions
and allows for timely preventive actions. Wei et al. [25] used the machine learning model
to point out the potential correlation between elevation, land-cover type, and safety factor
and the occurrence of landslides, so as to help decision makers to better assess and manage
landslide risks. In addition, explainability helps community residents better understand
landslide risks and enhance their awareness and response capacity. Explaining the logic and
basis behind model predictions to residents promotes their participation and cooperation
in addressing landslides, providing effective technical support and decision-making for
prevention and mitigation. By enhancing the algorithm and the model’s interpretability,
and by focusing on improving performance, we can also boost the interpretability of
the machine learning model. This approach addresses the “black box” issue inherent in
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LSM, clarifying the model’s internal workings. Such improvements are of great practical
importance for the effective management and mitigation of landslides.

In view of this, Zhenba County of Shaanxi Province in China was selected as the study
area, with 15 evaluation factors identified for LSM. These factors encompass landform,
geological conditions, hydrological conditions, environmental conditions, and human
activities. To optimize the hyperparameters of the RF and SVM models, an RS approach
was employed, resulting in the development of the RS-RF and RS-SVM models. These
optimized models were then applied as the basis for landslide susceptibility evaluation
within the study area. Furthermore, a comparative analysis was conducted to assess the
predictive performance of these models. Finally, the interpretability model was used to
study the understandability of the landslide susceptibility model, and the correlation
between the evaluation factors and landslides was explored in order to provide reference
for the geological disaster prevention and control research in Zhenba County, Shaanxi
Province, China.

2. Study Area and Data
2.1. Study Area

Zhenba County, Hanzhong City, Shaanxi Province, China (Figure 1), with a total
area of 3437 km2, is located in the west of Bushang and the east section of Micangshan.
The main ridge of Bashan Mountain runs from east to west, forming two geographical
units, north and south, and acts as the watershed for the Jialing River and the Han River,
containing six major rivers. The geological composition is predominantly characterized by
folds and faults; karst landforms are well developed, featuring numerous karst caves and
underground rivers. The surface rocks are mostly sedimentary and metamorphic. Within
the deep gorges, the steep mountains exhibit a vertical height difference of 2118 m. The
terrain is mainly characterized by Zhongshan landform; with elevations being higher in
the northwest and lower in the southeast, featuring gentler southern slopes and steeper
northern slopes. The average annual rainfall in the region ranges from 1250 to 1350 mm,
with rainfall concentrated between June and September. The steep terrain, active geological
structures, and heavy rainfall make Zhenba County not only prone to landslides, but also a
region that is frequently affected by landslides.
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2.2. Data
2.2.1. Landslide Conditioning Factors

Given the complexity of landslide hazards and their evolution, selecting appropriate
evaluation factors for LSM is crucial [26]. Based on the current research on landslide
mechanisms [27,28], the availability of data [1], and the characteristics of landslides in
the study area, this study used five major indexes, namely terrain and geomorphology,
geological structure, meteorology and hydrology, human activities, and environmental
conditions, as the first-level factor indexes of LSM. It collects historical landslide records,
digital elevation model (DEM), geological data, administrative zoning, river network, road
source and description of network, normalized difference vegetation index (NDVI), and
land use data (Table 1). According to the data source, 15 evaluation factors were obtained
by different processing methods on the ArcGIS 10.5 platform, and the obtained factors
were reclassified. Factors include elevation, slope, topographic relief, curvature, aspect,
sediment transport index (STI), stream power index (SPI), topographic wetness index (TWI),
lithology, distance to faults, NDVI, distance to rivers, land use, distance to roads, and POI
kernel density (Figure 2).

Table 1. Data and data sources.

Data Name Data Name Type Accuracy

Historical
landslides Resources and Environmental Sciences and Data Center Vector

DEM Global digital elevation model (GDEM) Grid 30 m
Geological data National Data Center for Geological Information Grid 1:200,000

Administrative zoning Shaanxi Municipal Bureau of Land Vector 1:100,000
River network Resources and Environmental Sciences and Data Center Vector 1:100,000
Road network Resources and Environmental Sciences and Data Center Vector 1:100,000

NDVI Landsat 8 OLI Grid 30 m
Land use Shaanxi Municipal Bureau of Land Grid 10 m
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transport index (STI); (k) stream power index (SPI); (l) distance to faults; (m) distance to rivers;
(n) distance to roads; and (o) POI kernel density.

2.2.2. Prepare Training and Test Datasets

To enhance the data management and calculation efficiency, this study employed a
30 m × 30 m grid unit as the minimal evaluation unit. This decision was based on the
observation that the impact zones of most historical landslides are small, typically not
exceeding 30 × 30 m, and smaller pixel grid units could negatively impact calculation effi-
ciency [29,30]. For layers derived from raster data of varying resolutions, factor extraction
within the ArcGIS 10.5 platform involved initially converting vector data into raster format.
Subsequently, the resampling tool was utilized to standardize the raster data resolution of
each factor to 30 × 30 m, ensuring uniformity across all data resolutions.

According to Bui et al. [31], LSM is characterized as a binary classification task, in-
cluding landslide (value 1) and non-landslide (value 0), and the probability of landslide
susceptibility is 0 to 1. Using 14 evaluation factors as input variables, the model trans-
formed 510 landslide points from landslide areas into 4162 landslide grid units (labeled 1).
Similarly, 4162 non-landslide grid units (labeled 0) were generated from areas located
500 m away from landslide sites, ensuring a balanced representation of both landslide and
non-landslide conditions in the analysis [32]. Landslide raster units and non-landslide
raster units were combined in a 1:1 ratio [33] into a dataset of 8342 samples. The dataset was
randomly divided into the training set and the test set at a ratio of 7:3 [34]. The training set
was used to build the model, and the test set was used to evaluate the model’s performance
and generalization ability, together enabling effective machine learning tasks.

3. Materials and Methods
3.1. Landslide Susceptibility Model
3.1.1. Random Forest

RF selects feature variables through independent sampling and random sampling,
constructs multiple decision trees for each sample, and obtains the final prediction and
classification results according to the majority votes obtained from each tree [35,36]. Due to
the limited generalization error generated by setting up a set of decision trees for prediction,
the use of RF models can effectively avoid the problem of model overfitting and significantly
improve the effectiveness and superiority of the model. The node splitting of each decision
tree takes the Gini Index as the impurity function, and the expression is as follows:

Gini Index= 1 − ∑
c

p2(c|t ) (1)

where c is the number of classification categories, t is the decision tree node, and p is the
relative frequency of c. The growth process of the decision tree in RF involves randomly
extracting a specific number of characteristic variables for node splitting, and the number
of extracted variables is generally the square root of the total number.

3.1.2. Support Vector Machine

SVM is a supervised machine learning algorithm based on the statistical learning
theory and practical risk minimization principle [37]. The principle of SVM uses kernel
function to map data from low-dimensional nonlinearity to high-dimensional space and
transform nonlinear data into linear divisible, so as to find the optimal hyperplane. The
core of SVM is to construct the optimal hyperplane and kernel function. The optimal
hyperplane is derived as follows:

f (x) = sign

[
m

∑
i=1

aiLjK(X, Xi) + b

]
(2)
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where f (x) is SVM regression function; ai is a normal real number; Lj is the landslide
category vector, Lj = {1, −1}; m is the total number of samples; b is the offset term; and
K(X, Xj) is the kernel function.

The kernel function affects the mapping problem of samples. In this study, rbf kernel
function, which has significant advantages in LSM, was adopted [38], and the expression is
as follows:

K
(
xi, xj

)
= exp

(
−γ

∥∥xi − xj
∥∥2

)
(3)

where K(xi, xj) is the kernel function; γ is the parameter of the kernel function, γ > 0; and
∥xi − xj∥2 is the square Euclidean distance between two eigenvectors.

3.2. Hyperparameter Optimization Model

In the given hyperparameter search range, random search generates the selected
hyperparameters by random sampling and then combines them. The arrangement of the
combination points is random and non-repetitive, allowing for the identification of superior
model parameters by efficiently exploring a larger configuration space with fewer trials.
The number of computations in random search is a fixed value n, and the computational
complexity O(n) helps mitigate the issue of search times increasing exponentially with the
expansion of the hyperparameter range, thus preserving efficiency [39]. For parameters
that vary continuously, random search (RS) was used to samples from the distribution.

3.3. Model Evaluation and Comparison

The frequency ratio can be used to evaluate the validity and reliability of evaluation
results of the landslide sensitivity model [40]. The objective of the method is to divide the
proportion of landslide samples in each grade by the proportion of grid in the grade to
obtain the frequency ratio, so as to verify the accuracy of the model evaluation results. The
expression for the frequency ratio is as follows:

Frequency ratio =

Lj
L
Sj
S

(4)

where Lj is the number of landslides in the interval, L is the total number of landslides in
the study area, Sj is the number of interval grid areas, and S is the total grid area in the
study area. The greater the frequency ratio, the greater the influence of the interval on
landslide occurrence

After the model is trained, the performance of the model is reflected through the calcu-
lation results of each precision evaluation index on the test set. In this study, the accuracy
rate, recall rate, and FI-score based on confusion matrix are used as statistical evaluation
indicators of the model, and the calculation formula of each indicator is as follows:

Precision =
TP

TP + FP
(5)

Recall =
TP

TP+FN
(6)

F1 − score =
2Precision·Recall
Precision + Recall

(7)

where TP represents the number of samples in which both the actual value and the predicted
value are positive. FP indicates the number of samples with a negative actual value and a
positive predicted value. FN represents the number of samples for which the actual value
is positive but the predicted value is negative. TN represents the number of samples in
which both the actual and predicted values are negative [41,42]. The values of accuracy rate,
recall rate, and F1-score range are [0, 1]. The accuracy rate is the proportion of predicted
positive samples and true-positive samples in all predicted positive samples. The closer it is
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to 1, the smaller the probability of misjudgment is in the results predicted by the model as
landslides. The recall rate is the proportion of samples predicted by the model to be positive
and true to be positive in all samples, which is close to 1, indicating that the model has a
stronger ability to predict landslides. The F1-score can comprehensively reflect the model’s
recognition ability of positive and negative samples through the harmonic average of
accuracy rate and recall rate, and the larger the value, the better the prediction performance
of the model [43,44]. In addition, the effectiveness of the model was measured using the
Receiver Operator Characteristic (ROC) curve, an evaluation method that evaluates the
model’s ability to predict a specific probability threshold. The area under the ROC curve is
the AUC value, and the value range is [0.5, 1]. The larger the AUC value is, the better the
model performance is [45,46].

3.4. Interpretability Model of Landslide Susceptibility Mapping
3.4.1. Partial Dependence Plot

Partial Dependence Plots (PDPs) aim to modify the key features within a model,
while keeping all other features constant. This approach allows for the observation of how
changes in these key features impact the accuracy of the model’s predictions [47]. PDP can
also explain the relationship between characteristic variables and predicted results [48].
The expression is as follows:

f̂s(xs) = ExC

[
f̂s[(xs, xC)]

]
=

∫
f̂s(xs, xC)dP(xC) (8)

where xs is a characteristic variable, usually there are only 1 or 2 features in the set, s;
f̂s(xs) is the estimated label value corresponding to each value of xs; xC is the characteristic
variable other than xs; and E represents the mathematical expectation, which is to find
the average value of xC when the characteristic variable xs is fixed and its corresponding
marginal distribution changes. P(xC) =

∫
P(xall)dxs, where xall represents all characteristic

variables, and
∫

P(xall) is the joint probability density of all characteristic variables in
the model.

3.4.2. Local Interpretable Model-Agnostic Explanations

LIME is a model-independent, locally interpretable model that explains a single model
prediction by approximating the model locally around a given prediction [49]. For a
single sample, the local model is assumed to be a simple linear model, and the local data
points are explained. LIME makes small perturbations around local points to observe the
prediction behavior of the model and assigns weights according to the distance between the
disturbance points and the original data to obtain an interpretable model and prediction
results. For example, x’s interpretation model, model g; the approximation of model g; and
the original model, model f, are compared by minimizing the loss function, as follows:

Mexplanation(x) = argmin
g∈G

L( f , g,πx) + Ω(g) (9)

where Ω(g) represents the model complexity of the explanatory model g, G represents all
possible explanatory models, and πx defines the neighborhood of x and makes the model
interpretable by minimizing L.

3.4.3. Shapley Additive Explanations

SHAP, as an interpretive tool for machine learning model predictions, is a game theory
approach to interpret machine learning model predictions based on Shapley values [50].
Compared with traditional feature interpretation methods, SHAP effectively unifies the
global or local interpretation of models [51]. SHAP uses an additive feature attribution
method to produce interpretable models, where the output model is defined as a linear
addition of the input variables. SHAP simplifies input z by mapping x to z by x = hx(z).
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Based on z, the original model, f (x), can be expressed as a linear function of binary variables,
and the calculation formula is as follows [52,53]:

f (x)= g(z) = φ0 +
M

∑
i=1

φizi (10)

where z = {0, 1}M; M is the number of input features; φ0 = f (hx(0)); and φi is the feature
attribute value, and the formula is as follows:

φi = − ∑
S∈F\{i}

|S|!(M − |S|! − 1)!
M!

[ fx(S∪{i})− fx(s)] (11)

fx(s)= f
(

h−1
x (z)

)
= E[ f (x)|xs ] (12)

where F is the non-zero set input in z; S is a subset of F, and the i feature is not included in
F; and φi is the uniform measure of the additive feature attribute, called the SHAP value.

4. Results
4.1. Results of Landslide Susceptibility Mapping

Multicollinearity is a phenomenon in which the independent variables are closely
related. While multicollinearity does not affect the predictive power of the model as a whole,
it does affect the individual contribution of each variable [54]. In this study, the Variance
Inflation Factor (VIF) and Minimum Tolerance (TOL) were used to assess multicollinearity.
A VIF > 5 or TOL < 0.2 indicate significant multicollinearity between these factors [55]. The
study results showed (Table 2) that the TOL and VIF of topographic relief were 0.172 and
5.828, indicating a certain degree of collinearity with the other 15 factors. At the same time,
the TOL and VIF of the TWI were 0.142 and 7.039, indicating a strong collinearity between
TWI and other factors. After removing the TWI, the smallest TOL is 0.274, the largest VIF
is 3.651, and the remaining factors all have VIF values greater than 5 or TOL less than 0.2,
indicating that there is no multicollinearity between the factors used in the study. Therefore,
the remaining 14 evaluation factors were used as input factors of LSM for model training.

Table 2. Multicollinearity analysis of the evaluation factors.

Factor
Original Factor New Factor

Tolerances VIF Tolerances VIF

Elevation 0.596 1.679 0.596 1.678
Slope 0.241 4.150 0.241 4.141

Aspect 0.966 1.035 0.967 1.035
Topographic relief 0.172 5.828 0.237 4.213

Curvature 0.770 1.299 0.774 1.292
Lithology 0.947 1.055 0.948 1.055

NDVI 0.842 1.188 0.845 1.184
Land use 0.911 1.098 0.948 1.055

TWI 0.142 7.039 / /
STI 0.218 4.582 0.299 3.342
SPI 0.208 4.808 0.274 3.652
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Table 2. Cont.

Factor
Original Factor New Factor

Tolerances VIF Tolerances VIF

Distance to faults 0.887 1.127 0.888 1.127
Distance to rivers 0.972 1.028 0.972 1.028
Distance to roads 0.589 1.698 0.589 1.697

POI kernel density 0.894 1.119 0.895 1.118

In this study, both the RF and SVM models were optimized using random search. The
optimized parameters of the RF model are n_estimators and max_depth. The n_estimators
parameter is used to specify the number of decision trees in the forest, and max_depth is
used to control the maximum depth or number of layers per decision tree. The optimized
n_estimators of RF model are 267, and the max_depth is 16. The optimized parameters of
SVM model are c and γ: c is the penalty term or regularization parameter that controls the
model, and γ is mainly used to control the influence of the kernel function after the model
is optimized. The optimization c of the SVM model is 1.33, and γ is 0.43.

After model training is completed, a susceptibility index is assigned to each grid,
and the trained model is imported into ArcGIS 10.5 to obtain the landslide occurrence
index of each grid range. The index ranges from 0 to 1, indicating the probability of
landslide occurrence. The closer to 1, the higher the probability of landslide occurrence.
According to Hu et al.′s study [56], using the natural discontinuation method, the study
area was divided into five susceptibility levels: very low susceptibility levels (0–0.07), low
susceptibility levels (0.07–0.27), medium susceptibility levels (0.27–0.47), high suscepti-
bility levels (0.47–0.67), and very high susceptibility levels (0.67–1) (Figure 3). It can be
seen from the susceptibility zoning map that the evaluation results of the four models
are roughly similar, but there are some differences in the susceptibility classification re-
gion of each model. The RF model predicted that the extremely high area of the LSM
was 252.45 km2, followed by the high area (334.56 km2), the middle area (584.38 km2),
the low area (914.40 km2), and the very low area (1351.20 km2) (Figure 3a). The ex-
tremely high area of LSM predicted by the SVM model is 287.46 km2, followed by high area
(310.80 km2), middle area (427.55 km2), low area (778.99 km2), and very low area
(1632.20 km2) (Figure 3b). The extremely high area of LSM predicted by the RS-RF model
is 177.98 km2, followed by the high area (359.54 km2), the middle area (677.18 km2), the
low area (997.61 km2), and the very low area (1224.70 km2) (Figure 3c). The RF-SVM model
predicted that the extremely high area of LSM was 207.86 km2, followed by the high area
(258.84 km2), the middle area (439.09 km2), the low area (726.11 km2), and the very low
area (1805.10 km2) (Figure 3d). Among them, the RS-RF model predicts the smallest area of
the extremely high region of LSM, and the largest area of the very low region. The area of
the middle region and the low region are more detailed, indicating that the prediction area
of the RS-RF model is more accurate.

A reliable landslide susceptibility model should be able to accurately predict the prob-
ability or likelihood of landslide occurrence. If a model shows high reliability on validation
sets or historical data that are consistent with actual observations, landslides may occur
more frequently in areas or time periods predicted by the model. The calculated frequency
ratio results (Figure 4b) show that the four models range from very low susceptible areas
to very high susceptible areas, and the frequency ratio gradually increases with higher
susceptibility levels, indicating that the evaluation results of the models are reasonable and
reliable and can accurately identify landslide-susceptible areas. Among them, the RS-RF
model has the largest frequency ratio and reflects higher susceptibility in LSM overall,
which is significantly different from the other three models. The extremely high prone
area of the RS-RF model is the smallest, accounting for 5.18%, but 80.75% of the landslide
points in the study area are included, indicating that the RS-RF model has a better modeling
performance (Figure 4a).
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4.2. Model Performance Evaluation

The LSM model’s performance was evaluated using the precision, recall, and F1-score.
According to the obtained index results (Table 3), the precision of the RF model is 87.97%,
the recall is 87.91%, and the F1-score is 87.97%. The precision, recall, and F1-score of
SVM model were 84.43%, 84.40%, and 84.41%, respectively. The precision, recall, and
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F1-score of the RS-RF model were 90.49%, 90.47%, and 90.48%, respectively. The precision
of the RS-SVM model was 90.24%, and the recall and F1-score were 90.23% and 90.23%,
respectively. These results clearly show that the RS-RF model has the highest index values.
After hyperparameter optimization, the performance of the models was improved.

Table 3. Model evaluation indexes.

Model Precision Recall F1-Score

RF 87.97% 87.91% 87.94%
SVM 84.43% 84.40% 84.41%

RS-RF 90.49% 90.47% 90.48%
RS-SVM 90.24% 90.23% 90.23%

Use cross-validation techniques to evaluate the model’s performance on data other
than the training dataset. Reduce the possibility of overfitting and improve the model’s
ability to generalize on independent datasets. The following results were obtained by using
5-fold cross-validation (Table 4). The precision ranges from 90.33% to 90.94% in each fold,
indicating that the precision of the model in identifying positive class samples is quite high.
The recall in each fold is 90.57% to 91.17%, indicating that the model can capture positive
class samples well. F1-scores ranged from 90.39% to 90.99% across the folds, indicating that
the model performed well in maintaining a balance of precision and recall.

Table 4. Results of 5—fold cross-validation of RS-RF model.

Evaluation
Indexes Fold-1 Fold-2 Fold-3 Fold-4 Fold-5

Precision 90.82% 90.33% 90.63% 90.58% 90.94%
Recall 90.75% 90.57% 90.99% 90.63% 91.17%

F1-score 90.75% 90.45% 90.99% 90.39% 90.74%

In this study, four models were evaluated using the AUC-ROC curve pairs (Figure 5).
The AUC values of RF, SVM, and RS-SVM models were 0.943, 0.904, and 0.946, respectively,
indicating that the 12 evaluation factors were significantly correlated with the distribution
of landslide points, and the evaluation results were accurate. The AUC value for the
RS-SVM model is 0.965, indicating a strong correlation between the 12 evaluation factors
and the distribution of landslide points, resulting in highly accurate evaluation results. The
AUC values of all four models exceeded 0.9, demonstrating their effective performance in
LSM evaluation. Since the AUC value of the RS-SVM model surpassed the other models,
ranking RS-SVM > RS-SVM > RF > SVM, the RS-RF model was given priority for a more
in-depth evaluation.
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4.3. Interpretability of the Model
4.3.1. Partial Dependence Plot

To identify the influence of each evaluation factor on landslide prediction, Partial
Dependence Plots (PDPs) were used to detect the impact of each evaluation factor on
landslide prediction probability. The PDP shows a visualization of the average model
response as a function of the selected variable, revealing similarities or differences in
responses to the predicted model [57]. The horizontal axis represents the value range of the
evaluation factor, while the vertical axis represents the predicted value.

It can be seen from the Figure 6 that different factors have different effects on the model
prediction. Landslide probability increases with the increase in slope, topographic relief,
SPI, and STI, while it decreases with NDVI. The elevation, distance from fault, distance
from river, and distance from road were negatively correlated with the probability of
landslide occurrence. For land use type, forest has the highest probability of landslide,
while residential has the lowest probability of landslide. The PDP shows that, within a
distance of less than 1500 m from a river, the probability of a landslide decreases as the
distance increases. When the distance is greater than 1500 m, the probability of landslide
increases with the increase in distance. When the distance is greater than 2500 m, the
probability of landslide decreases again. In general, the POI kernel density shows a positive
correlation with landslide occurrence probability. When the POI kernel density is greater
than 0.07, landslide prediction probability increases significantly. However, in order to fully
understand the model, it is important to consider other factors and potential interactions.
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4.3.2. Local Interpretable Model-Agnostic Explanations

LIME uses a locally linear model, and the generated interpretive graph shows the
features that have the greatest impact on the model’s decisions in the local region, with
positive numbers in the middle indicating that the factor has a positive impact on the
outcome, and negative numbers indicating the opposite [58]. In this study, four groups of
samples were randomly selected, two groups were landslide occurrence samples, and two
groups were non-landslide samples. Each group contained 14 variables.

As shown in the figure (Figure 7a,b), the results show the contribution of various
factors to the prediction results of landslide hazards. The probability of landslide occurrence
predicted by the model is 88% and 91%, respectively. In terms of the probability of landslide
occurrence, the model predicts that the primary factors contributing to landslides include
low NDVI, proximity to roads, and a smaller degree of relief. In the samples without
landslides (Figure 7c,d), the model predicted a landslide probability of 94% and 91%,
respectively. The model’s mispredictions could be attributed to factors such as longer
distances from roads, high NDVI, low elevation, etc. Both sets of randomly sampled data,
during and without landslides, indicate that the stratigraphic lithology is Jurassic. The
LIME analysis may suggest that the Jurassic layer plays a significant role in the model’s
predictions for certain parts of these datasets. LIME explains that NDVI is the main driving
factor of landslide, which helps to understand the decision-making process of the model in
this local area.
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4.3.3. Shapley Additive Explanations

To understand the interaction and importance of variables in data-driven modeling,
the SHAP model’s importance ranking diagram and summary plot are used to interpret
the model globally [59], showing the magnitude and direction of each factor’s influence on
the landslide susceptibility.
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Each point in the SHAP summary diagram represents the magnitude of a factor value
for a landslide sample within an evaluation factor, along with the corresponding SHAP
value. The more intense the red color, the larger the factor value. Similarly, the closer a
point’s position is to the right, the larger the SHAP value, indicating a higher contribution
to landslide susceptibility; in other words, it signifies a greater likelihood of landslides. As
can be seen from the Figure 8a, the factors that have the greatest impact on the susceptibility
in the study area are NDVI, followed by the distance from the road. Analyzing the variation
in the SHAP value of the NDVI evaluation factor with its factor value reveals that the point
color for NDVI tends to be red, suggesting that a higher NDVI value contributes negatively
to landslide susceptibility, thereby indicating a reduced likelihood of landslides. Generally,
closer proximity to roads positively contributes to landslide occurrence, increasing the
likelihood of landslides. Elevation is the most influential factor in topography, while
lithology is the most significant factor in formation structure, and SPI dominates in terms of
meteorology and hydrology. By averaging the SHAP values for all samples of each factor,
the importance-ranking diagram of landslide hazard evaluation factors can be obtained.
This diagram quantitatively analyzes the contribution degree of each factor to landslide
hazard through SHAP values. It can be seen from the figure (Figure 8b) that SHAP values
of land use type, curvature, and distance from fault are all less than 0.025, indicating that
these factors have little influence on landslide hazards.
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5. Discussion
5.1. Regional Analysis of Landslide Susceptibility Based on Model Optimization

This study used machine learning to predict the probability of landslide occurrence
and evaluated the response of each model in landslide prediction. To achieve optimal
Landslide Susceptibility Mapping (LSM), some studies utilize between 9 and 15 evaluation
factors [60–62]. Through a collinearity diagnosis, it can be seen in this study that TWI has
the highest VIF, while both STI and SPI have a relatively high VIF. It is observed that TWI is
positively correlated with STI, while SPI is negatively correlated with SPI. The relationship
between SPI and STI reflects the interaction between topography and water flow in soil
erosion. Soil erosion compromises the stability of surface soil, potentially leading to
landslides [63–65]. The steep terrain in the study area may contribute to high VIF values
for slope and topographic relief, both derived from DEM data, thereby indicating potential
multicollinearity [66,67]. After considering the landslide characteristics of the study area
and conducting further extensive research, the remaining 14 evaluation factors were applied
to the study of Zhenba County, excluding TWI. The selection of factors for exclusion and
their impact on landslide occurrence differ across various regions. Therefore, selecting the
appropriate evaluation factors is helpful to improve the accuracy of the evaluation results
of susceptibility. The performance of the hyperparameter optimization method depends on
the nature of the learning task and data distribution, and the optimization effect will be
better when the search scope of hyperparameter is both extensive and detailed [68].
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In this study, the evaluation indexes were significantly improved through random
search, and the frequency ratio of the predicted results further proved that the RS-RF
model was superior to other models, which revealed that hyperparameter optimization
can effectively improve the accuracy of machine learning models and their performance
in LSM. Some studies have used machine learning models such as RF, SVM, and DNN
to predict landslide susceptibility [69–71]. However, these studies did not consider the
optimization of input features and parameters. In contrast, both the RS-RF model and
RS-SVM model considering the combination of features showed the best generalization
ability and prediction accuracy. From the perspective of evaluation indicators, the RS-
RF model and RS-SVM model are similar in performance, but significant variations are
observed in the LSM produced by each, which may be due to the difference in model
architecture caused by different combinations of hyperparameters, resulting in drivers
output results. This also confirms that the choice of hyperparameter combinations has
different effects on the effectiveness of the landslide susceptibility assessment based on
machine learning. Secondly, negative samples are selected through random sampling, and
the model’s performance is comprehensively evaluated using various evaluation metrics.
The results indicate that the model achieved a good predictive performance. However,
selecting non-landslide samples from low-sensitivity regions may further enhance the
model’s performance [56,72]. Given the uncertainties associated with this approach, it is
essential to fine-tune multiple machine learning models using more optimized algorithms
and establish specific methods for negative sample selection to thoroughly assess the
effectiveness of optimization algorithms in Landslide Susceptibility Mapping.

5.2. Interpretability of the Model and Constraints of Landslide Hazards

Previous studies on landslide susceptibility models have primarily focused on the
significance of factors and the spatial distribution of landslide susceptibility regions. How-
ever, these studies have often neglected the internal influence of each factor on landslide
prediction. Consequently, they have failed to address the complexity inherent in machine
learning. In this study, RF showed an excellent model performance, and some studies also
confirmed that RF has a better performance in LSM compared with other machine learning
models [73,74]. Although RF can explain the main disaster factors of landslide in the study
area to a certain extent through factor importance ranking [31], for a single landslide event,
the RF model is unable to detail the contribution of each evaluation factor to the occurrence
of the landslide. This limitation restricts the practical engineering application of LSM [75].
This study combines interpretability algorithms to explain the vulnerability of landslides
in the study area at both global and local levels, address how the model comes up with
prediction and potential decision criteria, and gain insight into the overall trend of the
model and the model’s behavior in some specific situations.

In this study, global interpretation helps to explain the model’s behavior on the dataset.
SHAP shows that NDVI is the most important leading factor of LSM in the study area,
and NDVI is a good indicator of vegetation growth and spatial distribution density of
vegetation [76], which is closely related to the occurrence of landslides. According to
the division of NDVI by previous studies [77], the study area is basically in the middle
and high vegetation cover area (0.6–1). Some studies have shown [78] that there is a close
relationship between the change in NDVI and human activities. Vegetation change is a long-
term and complex dynamic process, enhanced to some degree through the implementation
of projects aimed at converting farmland back to forest and grassland, along with natural
forest conservation efforts [79,80]. These measures can help mitigate the occurrence of
landslides in the study area [81,82]. The local interpretation focuses on the prediction
outcome for a single data point, and PDP shows that NDVI is negatively correlated with
the probability of landslide occurrence. LIME further indicates that low NDVI promotes
the occurrence of landslides, while high NDVI inhibits the occurrence of landslides. The
reason may be that human activities diminish the vegetation cover in some areas, thus
reducing the soil and water conservation ability and shear strength of the slope. The higher
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the vegetation coverage, the greater the resistance to water infiltration and the stability of
the slope, leading to a reduced likelihood of landslides. This observation aligns with the
actual distribution patterns of landslides observed [83]. The proximity to roads is identified
as the second most significant factor for LSM in the study area, with the highest incidence
of landslides occurring when the distance from a road is less than 500 m. This phenomenon
may be attributed to soil loosening during road construction, leading to the destruction
of vegetation and consequently increasing the likelihood of landslides. The construction
and maintenance of roads may also change the terrain, thus affecting the stability of the
surrounding land, which can lead to landslides.

The interpretability model of this study explains that human activities play an impor-
tant role in landslides in this region. In road construction, man-made activities introduce
new factors that can trigger landslide. To accommodate human transportation needs,
construction often involves cutting through mountains, tunneling, and filling valleys, dis-
rupting the original slope stability and, thereby, reducing it. Secondly, after the completion
of the road, the movement of vehicles will cause the vibration of the slope, and the slope
will then deform over time, which may lead to the occurrence of landslide geological disas-
ters. Quantifying the contribution of NDVI and human activities of different vegetation
types and their interactions is worthy of further research.

6. Conclusions

This study optimized the performance of RF and SVM models for landslide susceptibil-
ity in the study area and used interpretability models to reveal how the evaluation factors
respond to landslide susceptibility. Prior to modeling, a multicollinearity diagnosis was
employed to preprocess the data of landslide evaluation factors, followed by training RF
and SVM models in combination with random search to achieve the highest performance.
The landslide susceptibility prediction model was evaluated. Finally, an interpretability
model was constructed by a post hoc interpretation algorithm to reveal the relationship
between landslide evaluation factors and landslides.

The performance of RF, SVM, RS-RF, and RS-SVM models falls within a reasonable
range, with the RS-RF model exhibiting the best performance. This model demonstrates a
strong predictive capability for future landslides in the study area, offering comprehensive
insights for managing and mitigating future landslides. Furthermore, human activities
emerge as the primary factors contributing to landslides in the study area. Within this
context, NDVI has a positive influence on mitigating landslide occurrences, with areas
situated less than 500 m from roads being at a higher risk of landslides.
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