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Abstract: An interesting feature that appears in the thermoelastic interaction in an orthotropic
material containing cylindrical cavities is addressed in this study. For this purpose, the Finite
Element Method is applied to analyze a generalized thermoelasticity theory with a relaxation time.
For the development of the model, a thermal conductivity that is dependent on the temperature
of the orthotropic medium was considered. The boundary condition for the internal surface of
a cylindrical hollow is defined by the thermal shocks and the traction on the free surface. The
nonlinear formulations of thermoelastic based on thermal relaxation time in orthotropic mediums
are abbreviated using the Finite Element Method. The nonlinear equations without Kirchhoff’s
transformations are presented. The results are graphically represented to demonstrate how changing
thermal conductivity affects all physical values.
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1. Introduction

In solid mechanics and material science, an orthotropic media possesses material
properties at specified points that change along the three perpendicular axes, each having
twofold rotational symmetry. Over the last four decades, a number of mathematicians
and engineers have exhibited a great deal of interest in generalized thermoelastic theories
because of their remarkable realistic implications in a range of domains, such as acoustics,
continuum mechanic, nuclear engineering, aeronautic, high-energy particle accelerator,
and so on.

Biot [1] developed the coupled thermoelastic hypothesis to overcome the inconsis-
tency appearing by the uncoupled hypothesis. In this theory, the heat transport and
elasticity formulations are coupled. Lord and Shulman [2] proposed many extensions of
the thermoelastic theory. In 1980, Dhaliwal and Sherief [3] modified the Lord and Shul-
man model to include anisotropic cases. Singh [4] has explored the wave propagation in
porous materials using thermoelastic models in general. Alesemi [5] used the LS model
under the influence of centrifugal force and Coriolis to investigate the plane waves in
magneto-thermoelasticity anisotropic materials. Marin et al. [6] presented some results
in the Green and Lindsay model of thermoelastic structures. Aboueregal et al. [7] have
studied the effects of varying properties and rotations in visco-thermoelastic orthotropic
cylinders. Biswas [8] studied the surface waves in porous nonlocal orthotropic thermoe-
lastic materials. Abd-Alla et al. [9–11] have discussed the propagations of Rayleigh wave
in a generalized thermo-magneto-elasticity orthotropic medium under gravity field with
initial stresses. Biswas and Mukhopadhyay [12] have used the eigenfunction expansion
approach to analyze thermal shocks behaviors in thermoelastic orthotropic media by using
three thermoelastic models with a magnetic field. Demirdžić et al. [13] have applied the
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finite volumes method of stress and deformations in thermo-hygro-elastic orthotropic
materials. Biswas et al. [14] have applied the TPL model to investigate the Rayleigh surface
wave propagations in orthotropic thermoelastic solids. Ding et al. [15] have investigated
the solutions of an axisymmetric plane strain dynamics thermoelastic problem with a
non-homogeneous orthotropic cylindrical shell.

Green–Naghdi III was utilized by Kaur and Lata [16] to explore the axisymmetric
deformations in a transversely isotropic magneto-thermoelastic solid with inclined stress.
Biswas and Mukhopadhyay [17] have discussed the Rayleigh waves propagations in
orthotropic mediums with phase delays via the eigenfunction expansion technique. Abbas
and Zenkour [18] have applied the Green and Naghdi theorem to investigate the effects of
rotations and initial stresses in the fiber-reinforced anisotropic. Kar and Kanoria [19] have
discussed the three-phase lag (TPL) effect in a thermos-elastic FG orthotropic spheres. The
impact of thermal relaxation times on thermal interactions in an infinite orthotropic media
containing cylindrical holes was studied by Abbas and Abd-alla [20]. Biswas et al. [21]
examined the thermal shock responses in a magneto-thermal orthotropic medium by using
the TPL theory. Rayleigh wave in a porous non-local orthotropic layer resting over a porous
non-local orthotropic thermoelastic half-space was explored by Biswas [22]. Mondal and
Sur [23] have investigated photo-thermoelastic wave propagation and memory responses
in orthotropic semiconductors with spherical cavities. Hobiny and Abbas [24] investigated
the generalized thermoelasticity interactions generated by a pulse heating transfer in
a two-dimensional orthotropic material. Alzahrani et al. [25] applied the eigenvalue
method for two-dimension porous materials under weak, strong, and normal thermal
conductivity. Sharma et al. [26] discussed the diffusivity and thermal conductivity of
a two-temperature thermoelastic diffusions plate under varying thermal conductivity.
Abbas et al. [27] have studied the photothermal interaction in semiconductors medium
containing a cylindrical cavity and varying thermal conductivity. Said [28] compared
three theories using the eigenvalue technique to a problem of magneto-thermoelastic
spinning media with changing thermal conductivity. Abbas et al. [29] have applied the finite
element approach to study thermoelastic interactions in a polymeric orthotropic material.
Zenkour and Abbas [30] have studied the nonlinear transient’s thermal stresses analysis of
temperature-dependences cylinders by the finite element method. Abbas and Kumar [31]
have studied two-dimensional deformations in thermoelastic half-space with voids under
initially stress. Kaur and Lata [32] have investigated the impacts of variable thermal
conductivity in an isotropic thermoelastic material with modified couple stress under two
temperatures. Lata and Kaur [33] have studied the thermal and mechanical interaction in a
thermoelastic transversely isotropic solid under a magnetic field with two temperatures and
without energy dissipations. Lata et al. [34] have presented the plane waves in anisotropic
thermoelastic mediums. Othman et al. [35] have used the TPL model to investigate the
effects of rotation in micropolar thermoelastic mediums with voids. Lata and Singh [36]
have investigated the deformation in nonlocal magneto-thermoelastic mediums under hall
current due to normal forces. Sarkar et al. [37] investigated the effects of a laser pulse on
transient waves in thermoelastic material under non-local Green and Naghdi models. Abo-
Dahab and Abbas [38] studied the Lord and Shulman theory in thermal shock problems
of magneto-thermoelastic with varying thermal conductivity. Alzahrani [39] studied the
impact of variable thermal conductivity in semiconducting material. Zenkour et al. [40]
have investigated the magneto-thermoelastic responses in unbounded media with spherical
cavities under thermoelastic models. Abo-Dahab et al. [41] investigated the generalized
thermoelastic FG beam. Numerous researches have been conducted using the generalized
thermoelasticity models in the following kinds of literatures [42–51].

This work is devoted to the study of the impacts of varying thermal conductivity
in orthotropic medium with cylindrical cavities under thermal shock. Using the finite
element methods, numerical solutions for the investigated fields have been produced. The
outcomes are then shown visually. The findings of the numerical analysis show that the



Symmetry 2022, 14, 2387 3 of 12

variable thermal conductivity gives both mechanical waves and thermal waves a finite
velocity of propagation.

2. Basic Equations

Considering an orthotropic material, using the basic formulations under generalized
thermoelastic theory [3] without body force and heating source, the equations of motion
can be presented as:

σij,j = ρ
∂2ui
∂t2 (1)

where ui are the displacement components, σij are the stress components, and ρ is the
mass density. The stress–strain temperature equations are expressed as:

σij = cijklekl − γi(T − To)δij (2)

where γi are the thermal moduli, T is the temperature increment, To is the reference
temperature, cijkl are the elastic constants, and ekl are the strain tensor components. The
heat equation according generalized thermoelastic model can be expressed by:

∂T,ii

∂t
(
KjjT,j

)
j =

(
1 + τo

∂

∂t

)(
ρce

∂T
∂t

+ γjjTo
∂uj,j

∂t

)
(3)

where Kjj are the thermal conductive components, which are affected by temperature
and may be varied, and ce is the specific heat. Consider an elastic unbounded medium
containing a cylindrical hole occupying the area R ≤ r < ∞ as in Figure 1, whose state can
be defined in terms the time variable t and the space variable r. The one component that
does not vanish is the radial displacement component ur = u(r, t), which is associated to
the cylindrical coordinates (r, θ, z).
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The non-vanishing components of the strain tensor by:

err =
∂u
∂r

, eθθ =
u
r

(4)

Substituting for err, eθθ into the basic equations one obtains:[
σrr
σθθ

]
=

[
c11
c12

]
∂u
∂r

+

[
c12
c22

]
u
r
−
[

γ11
γ22

]
T (5)

∂σrr

∂r
+

1
r
(σrr − σθθ) = ρ

∂2u
∂t2 (6)

1
r

∂

∂r

(
rK(T)

∂T
∂r

)
=

(
∂

∂t
+ τo

∂2

∂t2

)(
ρceT + γ11To

∂u
∂r

+ γ22To
u
r

)
(7)

In this situation, the variable thermal conductivity for the orthotropic medium that
may be created can be selected as an exponential function of temperature [52].

K(T) = KoeKsT (8)

where Ko are the component of thermal conductivity when T = To and Ks ≤ 0 is the
negative parameter.

3. Application

The initial conditions are described by:

u(r, 0) = 0,
∂u(r, 0)

∂t
= 0, T(r, 0) = 0,

∂T(r, 0)
∂t

= 0 (9)

While the boundary conditions are expressed by following:

T(R, t) = T1H(t), u(R, t) = 0 (10)

where T1 is constant and H(t) denotes the Heaviside unit step function. The non-dimensional
parameters may be defined by:(

t
◦
, τ

◦
o

)
= ωc2(t, τo), T

◦
=

T − To

To
,
(

σ
◦
rr, σ

◦
θθ

)
=

(σrr, σθθ ,)
c11

,
(

r
◦
, u

◦
)
= ωc(r, u) (11)

where ω = ρce
Ko

and c2 = c11
ρ . The basic formulations for the non-dimensional parameters in

Equation (11) are (after removing the superscript ◦ for suitability):[
σrr
σθθ

]
=

[
1
f1

]
∂u
∂r

+

[
f1
f3

]
u
r
−
[

f2
f4

]
T (12)

∂2u
∂r2 +

1
r

∂u
∂r

− f3
u
r2 − f2

∂T
∂r

+
f4 − f2

r
T =

∂2u
∂t2 (13)

eKsT ∂2T
∂r2 + eKsT 1

r
∂T
∂r

+ KseKsT
(

∂T
∂r

)2
=

(
∂

∂t
+ τo

∂2

∂t2

)(
T + f5

∂u
∂r

+ f6
u
r

)
(14)

where:
f1 =

c12

c11
, f2 =

γ11To

c11
, f3 =

c22

c11
, f4 =

γ22To

c11
, f5 =

γ11

ωKo
, f6 =

γ22

ωKo
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4. Finite Element Technique

The finite element method (FEM) of nonlinear thermoelastic problem can be readily
obtained by the standard process. The temperature T and the component of displacement
u are connected to the respective nodal values in the finite element technique by:

u = ∑n
j=1 Njuj(t), T = ∑n

j=1 NjTj(t) (15)

where N represents the shape function and n is the nodes number per element. Using
Galerkin procedures, the unknown temperature T, the unknown displacement u, and the
accompanying test functions are approximated by the same form functions.

δu = ∑n
j=1 Njδuj, δT = ∑n

j=1 NjδTj (16)

We assume that the local coordinates of the master elements are within the range
[1,−1]. In this problem, the quadratic components in one dimension are written as follows:

N1 = 1
2
(
χ2 + χ

)
, N1 = 1 − χ2, N3 = 1

2
(
χ2 − χ

)
(17)

Following are the finite element weak formulations that correspond to Equations (13)
and (14):

∫ L

R

∂δu
∂r

(
∂u
∂r

)
dx +

∫ L

R
δu
(

∂2u
∂t2 − 1

r
∂u
∂r

+ f3
u
r2 + f2

∂T
∂r

− f4 − f2

r
T
)

dr = δu
(

∂u
∂r

)L

R
(18)

∫ L

R

∂δT
∂r

(
eKsT ∂T

∂r

)
dr +

∫ L

R
δT
((

∂

∂t
+ τo

∂2

∂t2

)(
T + f5

∂u
∂r

+ f6
u
r

)
− eKsT 1

r
∂T
∂r

)
dr = δT

(
eKsT ∂T

∂r

)L

R
(19)

and the unknown variables’ time derivatives should be calculated using implicit procedures,
in the end.

5. Results and Discussion

For a numerical example, the orthotropic materials can be used as numerical computa-
tions. To demonstrate the numerical findings acquired in the preceding sections, we may
use the values of the physical constants [53]:

c12 = 1.65 × 1011 (N)
(
m−2), ρ = 8836(kg)

(
m−3), c22 = 3.581 × 1011 (N)

(
m−2)

Ko = 100(W)
(
m−1)(k−1

)
, ce = 427 (J)

(
kg−1

) (
k−1

)
, c11 = 3.71 × 1011 (N)

(
m−2)

To = 298 (k), γ11 = 7.04 × 106(N)
(
m−2)(k−1

)
, τo = 0.05, t = 0.5, R = 1

γ22 = 6.9 × 106 (N)
(
m−2) (k−1

)
Based on the data above, Figures 2–9 depict the numerical computations of variables

over the radial distance r for the generalized thermoelastic model with one thermal relax-
ation time. The variation of temperature T, the displacement variation u, the variations of
stresses σrr, σθθ have been carried out by taking t = 0.5. There are considerable changes
in the values of all variables under the variable thermal conductivity, according to the
data. There are two groups of figures; in the first group, Figures 2–5 show the variation
of temperature T, the displacement variations u, and the variations of radial and hoop
stress components σrr, σθθ along the radial distances r under difference values of variable
thermal conductivity when the thermal relaxation time remains constant. In the second
group, Figures 6–9 show the temperature variation T, the variations of displacement u,
and the variations of radial and hoop stresses components σrr, σθθ via the radial distances
r with thermal relaxation time (the Lord and Shulman model LS) and without thermal
relaxation time (the coupled thermoelastic model CT) when the value of the variable ther-
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mal conductivity remains constant. Figure 2 displays the temperature variations along the
radial distances r. It is seen that it has maximum value T = 1 near the cavity’s interior
surface according to the problem’s boundary conditions, and then declines steadily as the
radial distance r approaches zero. Figure 3 shows the radial displacement variations via
the radial distance. The displacement achieves its largest negative values near the surface,
then gradually reaches maximum values close to the surface, and eventually drops to zero.
Figure 4 depicts the variation of radial stress σrr versus the radials distance r. It is clear that
it immediately begins from zero and drops to zero to comply with the problem boundary
conditions. Figure 5 explains the variation of sheer stress component σθθ along the radial
distances r. It is evident that the sheer stress begins with the greatest negative value at
the inner surface R = 1 and then declines progressively with increasing radial distance
r until reaching zero. As anticipated, the variable thermal conductivity has a significant
impact on the value of all physical quantities. Figure 6 shows the variation of temperature
via the radial distance r. It is clear that it has the same value T = 1 near the cavity’s
interior surface according to the problem’s boundary conditions, and the thermal relaxation
time reduces the value of temperature to finish quickly. Figure 7 displays the variations
of radial displacement along the radial distance r. It is seen that the peak values of radial
displacement are higher with thermal relaxation time than without thermal relaxation time.
Figure 8 displays the variations of radial stress σrr along the radial distance r. It is seen
that the thermal relaxation time has a great effect on the radial stress. Figure 9 shows the
variation of sheer stress component σθθ along the radial distance r. It is observed that the
thermal relaxation time also has a major impact on the values of sheer stress.
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6. Conclusions

In this work, the impact of varying thermal conductivity in an orthotropic medium with
a cylindrical cavity is mathematically analyzed. Using the thermoelastic model with only one
relaxation time, the temperature change, radial displacement, radial distribution, and shear
stress distribution in the thermoelastic polymeric orthotropic medium have been presented.
The finite element method was applied to get the numerical solution for nonlinear equations.
It was determined that the varying thermal conductivity has great impact and plays a role in
the behaviors of deformations of different physical field components. Also, the impacts of
thermal relaxation time are presented. It was discovered that the thermal relaxation time has
a major effect and plays an important role in the behaviors of elastic deformation of different
physical field components.
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