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Abstract: The Internet of things (IoT) extends the Internet space by allowing smart things to sense
and/or interact with the physical environment and communicate with other physical objects (or
things) around us. In IoT, sensors, actuators, smart devices, cameras, protocols, and cloud services are
used to support many intelligent applications such as environmental monitoring, traffic monitoring,
remote monitoring of patients, security surveillance, and smart home automation. To optimize the
usage of an IoT network, certain challenges must be addressed such as energy constraints, scalability,
reliability, heterogeneity, security, privacy, routing, quality of service (QoS), and congestion. To
avoid congestion in IoT, efficient load balancing (LB) is needed for distributing traffic loads among
different routes. To this end, this survey presents the IoT architectures and the networking paradigms
(i.e., edge–fog–cloud paradigms) adopted in these architectures. Then, it analyzes and compares
previous related surveys on LB in the IoT. It reviews and classifies dynamic LB techniques in the IoT
for cloud and edge/fog networks. Lastly, it presents some lessons learned and open research issues.

Keywords: IoT; load balancing; resource allocation; workload management; optimization

1. Introduction

More and more low-cost and tiny network devices are incessantly being connected
to the Internet. Excluding conventional machines, billions of smart ‘things’ interact and
communicate without any human interference and form the Internet of things (IoT) [1–3].
Smart things (objects) are constrained devices such as low-power wireless sensor nodes
with minimal processing and memory capacities. In IoT, end-users may ignore the available
resources, services, and capabilities. The IoT brings plentiful benefits to human life through
the environment where intelligent services are provided to utilize every activity anytime
and anywhere. Typically, the low-power wireless sensor devices in IoT acquire the physical
environment information (e.g., temperature, pressure, and motion) to provide intelligent
services. IoT applications are monitoring and, consequently, making immediate decisions
for efficient management. The things are also reporting their conditions, such as their
battery status and fault reporting for predictive maintenance. It is noteworthy that the
above environmental information is scalar and periodic, requiring less memory and fewer
computational resources.

Acquiring multimedia content such as video from the physical environment leads to
a specialized subset of IoT, referred to as the ‘Internet of multimedia things’ (IoMT) [4,5].
Video in IoMT is massive, and its transmission is more bandwidth-hungry than the con-
ventional scalar data traffic in IoT. Higher processing and memory resources are required
for real-time communication. Moreover, the delivery of multimedia data should be within
the bounds of quality-of-service (QoS) constraints (i.e., delay and jitter). Multimedia de-
vices require additional functionalities such as higher processing and memory resources to
process the sensed multimedia information. The inherited characteristics of multimedia
information impose several restrictions on the design of IoT. For example, certain QoS
requirements such as end-to-end delay, jitter, and error rate must be bounded to ensure
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acceptable delivery of multimedia content. IoMT applications also pose a new set of
strict requirements on video codecs. An IoT device has limited energy and processing
capability. Thus, it is desirable to have a video codec with low-complexity encoding. As
a result, the complexity of encoding must be shifted to the cloud [4]. In addition, re-
silience to transmission errors, high data rate with low power, and delay bound for video
streaming are preferable [5]. Integrating multimedia content in IoMT leads to narrative
applications [6,7]. Typical examples are intelligent multimedia surveillance systems for
habitat monitoring, traffic monitoring systems for road management, multimedia-based
industrial monitoring systems, and remote multimedia-based monitoring of an ecological
system. IoT covers wide-ranging application fields such as healthcare [8], industrial [9],
smart city [10], environmental [10], infrastructural, and commercial [11].

The usage of an IoT network can be optimized when well-defined problems are
addressed, such as scalability, heterogeneity, reliability, security, privacy, routing, energy
constraints, QoS metrics, and congestion [4]. These problems must be addressed when IoT
applications are deployed into real-time scenarios.

Load balancing (LB) [12] plays a crucial role in IoT as it allocates suitable resources to
user tasks for optimizing the use of resources. In an IoT network, there are two types of
resources: (1) nodes’ (things’) resources, including the computational resources, storage
capacity, and energy resources, and (2) network resources, including bandwidth, load
balancer, and traffic analyzer. An efficient LB technique prevents overload and improves
the performance of a large-scale IoT network [12]. It improves the QoS metrics, including
response time, cost, throughput, performance, and resource utilization. IoT devices are
generating many events that may cause heavy traffic (bottleneck) on some data paths.
Imbalanced traffic load across the network causes high latency (delay) in some routes
and loss of data packets, as well as decreases the packet delivery ratio (PDR). To avoid
congestion in IoT, an efficient LB method can distribute loads among different routes. Such
load distribution is accomplished using local network information, such as the network
topology. An LB mechanism distributes the load among different resources. Thus, optimal
network resource utilization is feasible while the performance of IoT applications can be
improved. An efficient LB technique can reduce the response time [13], overload [12],
packet loss ratio (PLR), etc. PLR indicates the percentage of data packets lost with respect
to data packets sent [14]. An efficient LB scheme can increase scalability [15], reliability, and
network lifetime. Scalability shows how well an IoT system can perform the LB procedure
with a limited number of hosts or servers [16]. Reliability shows how well an IoT network
performs its required requests in a defined time if some host failure happens [17]. In
addition, the network lifetime can be prolonged if energy consumption is minimized. To
this end, an efficient LB technique can improve energy consumption [18,19].

An LB technique can be implemented either in physical devices or software. It can be
centralized or distributed. In a centralized technique, a central control node (object) monitors
the IoT network and makes accurate decisions regarding LB. For this reason, this node
stores the knowledge based on the entire network. If a failure occurs, this node must
be repaired quickly. In a distributed technique, every node transfers the load to adjacent
underloaded nodes. Each node must maintain a ‘local knowledge base’ to guarantee the
efficient distribution of loads. Moreover, it makes a decision about the distribution of
load based on its own observed information about the system. If all nodes in the system
cooperate to attain a common goal or decision making, then it is called a cooperative LB;
otherwise, it is a non-cooperative LB. An LB technique can be static, dynamic, or both. In a
static balancing technique, the current state of the system is not considered during decision
making. Thus, the user’s behavior is not predictable. The rule (for LB) is programmed
in the load balancer by only considering preliminary information about the IoT system.
Static techniques are inappropriate for distributed systems that change state dynamically.
These techniques only work well if lower load fluctuation occurs in the nodes. In contrast,
a dynamic LB technique is flexible and improves system performance. It dynamically
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distributes the load by taking into account the pattern that is programmed in the load
balancer. As a result, dynamic techniques are better than static techniques.

More effective LB algorithms for IoT must be designed in the future. This survey
paper focuses on dynamic LB techniques for IoT. This survey does not provide a systematic
literature review (SLR) methodology as it covers many different viewpoints of LB. How-
ever, many different research questions have been proposed in dealing with the critical
issues of LB for IoT. We selected the latest published LB techniques by searching popular
academic databases such as IEEE explorer, Science Direct, SAGE, Google Scholar, ACM,
Wiley, Emerald, and Springer. To the best of our knowledge, this is the first survey that
comprehensively reviews the latest LB schemes for IoT considering cutting-edge computing
and networking paradigms (cloud, edge/fog networks) adopted in IoT. It also presents
LB from different viewpoints. For example, it presents LB solutions for multipath com-
munication in IoT, while it discusses LB problems that emerge in an MQTT cluster-based
environment. The Message Queuing Telemetry Transport (MQTT) standard is used for IoT
messaging while a load balancer is set up in front of a cluster of MQTT brokers to distribute
MQTT connections and device traffic among clusters of MQTT brokers. The paper aims to
survey the existing techniques, describe their properties, and clarify their pros and cons.
The paper’s contributions are as follows:

1. It considers the recent LB techniques in IoT.
2. It provides a classification of LB mechanisms.
3. It presents the advantages and disadvantages of the LB algorithms in each class.
4. It outlines future research directions to improve the LB algorithms.

The remainder of this paper is structured as follows: Section 2 discusses well-known
IoT architectures in which LB methods have been proposed; Section 3 presents the leading
computing and networking paradigms adopted in IoT environments; Section 4 presents
related surveys on LB techniques in IoT; Section 5 presents recent LB techniques in IoT,
while Section 6 presents some lessons learned; Section 7 provides future research directions;
lastly, Section 8 concludes the paper.

2. IoT Architectures

The deployment of IoT applications is associated with the development of a standard
reference architecture that refers to the significant IoT features and supports probable
future extensions. A classic IoT architecture must be well-defined, designed, scalable,
interoperable, backward-compatible, and secure, making the exclusive IoT perception
deployable in the real sense [1]. As per the current scenario, commercial or cost-effective
architecture still needs to be standardized. IoT devices can be [3] resource-well-equipped
(Rwe) or resource-constrained (Rc) devices. Rwe devices have the software and hardware
competence to support the Transmission Control Protocol/Internet Protocol (TCP/IP)
protocol suite. IoT applications control the IoT devices that support the TCP/IP protocol
suite. Such applications have been implemented on top of frameworks and application
protocols comprising Constrained Application Protocol (CoAP) [20], Representational State
Transfer (REST) [20], Advanced Message Queuing Protocol (AMQP) [21], and others. The
devices that do not support the TCP/IP protocol suite cannot interoperate straightforwardly
with the Rwe devices. This interoperability problem limits the potential of IoT applications.
For this problem, numerous efforts [22–26] have been made in the literature.

An IoT-based communication system should be competent to interconnect millions of
homogeneous and heterogeneous devices via the Internet. Hence, there is a dire necessity
for a simple layered architecture [3].

Figure 1 shows three well-established IoT architectures [3]: (a) the three-layer IoT
architecture, (b) the middleware-based IoT architecture, and (c) the service-oriented archi-
tecture (SOA)-based IoT architecture and the five-layer IoT architecture. The three-layer IoT
architecture [27] is the most elementary model among the proposed architectures. Other
architectures complement extra notions of the IoT models [3].
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2.1. The Three-Tier IoT Architecture

The key model [27] of the three-tier IoT architecture (Figure 1a) includes the perception
layer, the network layer, and the application layer.

− Perception Layer: This layer contains sensing hardware, scalar or multimedia sensors,
and actuators. These devices sense, acquire, and preprocess data from the physical en-
vironment. They often send the environmental data to the centralized servers through
gateways using various access network technologies. A variety of environmental
sensors can be deployed in the monitoring area. Sensors create a network topology
in the structure of self-organizing and multiple hops. This network system contains
sensor nodes, sink nodes, and management nodes that perform monitoring tasks
(initiated by the end-users). The captured data are transmitted through sink nodes
by multi-hop. However, the network topology often changes because a few nodes
are more prone to failure due to energy consumption and environmental impact. The
needless links must be detached by energy control and backbone node selection to
achieve an efficient network topology for data forwarding and, thus, ensure network
connectivity and coverage.

− Network Layer: This layer constructs an efficient network topology for data forwarding.
It decides on the power-efficient optimum route to transmit the data to the IoT servers,
devices, and applications via the Internet. Various networks, such as WiFi, Ethernet,
3G, Long-Term Evolution (LTE), and 5G, can be used. The Access Network sublayer
interconnects various devices and applications through interfaces or gateways using
numerous communication protocols. The networking models (included in this layer)
can provide high data transmission capacity for nodes. For example, they can transmit
the data to the cloud server through sink nodes, super nodes, and other relay units.
High data transmission capacity is often required to forward the big data to cloud
servers. In addition, self-organizing routing protocols can be used to enhance the
robustness of networking models.

− Application Layer: This layer contains various IoT applications, such as WiFi appli-
cations, wireless sensor network (WSN) applications, and vehicular network appli-
cations. WiFi networks support different protocols and have been widely adopted
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in homes, cities, and healthcare systems. Users can control the smart devices which
connect to WiFi networks. A vehicular network application can monitor emergency
traffic events and make traffic predictions on the basis of real-time traffic data. A WSN
application can monitor environmental data such as humidity and temperature. The
application layer consists of two sublayers: (1) the service sublayer, and (2) the applica-
tion sublayer. The service sublayer provides data analytics, information management,
data mining, and decision-making services. The application sublayer provides the
required IoT services to the end users or machines. It delivers the services demanded
by clients. Furthermore, this layer can offer decent QoS and quality of experience
(QoE) to satisfy the client’s needs.

2.2. Middleware-Based IoT Architecture

A middleware-based IoT architecture [28] (shown in Figure 1b) has two extra layers:
(1) the middleware layer, and (2) the management layer. Middleware can shield the dif-
ferences between different operating systems (e.g., TinyOS, Contiki, and LiteOS) in IoT
and different network protocols to provide a high QoS for different applications. The
management layer coordinates various functionalities (subsystems) such as query manager,
storage, event processing, and networking. Notably, most of the popular middleware ser-
vices use a proprietary protocol, which is difficult to achieve interoperability. Furthermore,
middleware services have a time delay and memory overhead due to the incompatible
protocols of subsystems. However, one advantage of a middleware-based architecture is
that the concepts of the IoT can be integrated with autonomous control by applying deep
reinforcement learning (DRL) in the middleware layer. Thus, IoT systems can provide
a dynamic and interactive environment. Typically, a software agent (i.e., an IoT device)
can be trained to behave smartly. For example, it can (1) sense the environment’s state
(e.g., home temperature), (2) perform actions, such as turning HVAC on or off, (3) and learn
through the maximizing accumulated rewards it receives in the long term.

2.3. The 5-Tier IoT Architecture

The 5-tier IoT model (Figure 1c) is often considered with the service-oriented architec-
ture (SOA) (Figure 1c). In such SOA architecture, the services use protocols that illustrate
how they pass and parse messages through description metadata (i.e., the functional and
QoS characteristics of the service). The 5-layer IoT model includes the following layers:
(1) the perception (object) layer, (2) the things (objects) abstraction layer, (3) the service
management layer, (4) the application layer, and (5) the business layer. In this model, the
perception layer transfers data to the things abstraction layer via safe channels [3].

− Things Abstraction Layer: This layer transfers data generated from the perception layer
to the service management layer via some safe channels. Such data transfer can be
achieved via technologies such as 3G/4G, GSM, WiFi, and RFID. Many advanced
computing paradigms and functionalities, such as cloud computing (CC) and edge
computing (EC), and data managing procedures can be implemented in the things
abstraction layer [3]. For example, the CC paradigm can be implemented in this layer
to enable large-scale IoT systems to handle massive amounts of data with increasing
heterogeneity levels [29]. Cloud servers have powerful analytical computing capacity
and data storage capabilities. They can also make decisions on the basis of analyti-
cal results. Smarter decision making is feasible using effective cloud computing. A
cloud server can flawlessly implement communication for heterogeneous systems.
Compared to middleware, CC has better heterogeneity capacity in IoT because of its
powerful data analytical feature. Fog computing (or ‘clouds at the edge’) is a technol-
ogy that allocates services near the devices to improve the QoS. It is a geographically
distributed paradigm that complements CC to provide services. Fog computing (FC)
can also be incorporated into the things abstraction layer. The fog system can extend
storing and computing to the edge of the network. This can solve the difficulty of
service computing in delay-sensitive IoT applications and enable location awareness
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as well as mobility support [30]. FC operates on ‘instant data’, i.e., real-time data
generated by sensors or users. Generally, IoT intelligence can be offered at three
levels: (1) in CC infrastructures, (2) in edge/fog nodes, and (3) in IoT software-defined
networking (SDN) devices [31]. The need for intelligent control and decision at each
level depends on the time sensitivity of the IoT application. For instance, a camera
on an autonomous car must detect obstacles in real-time to prevent accidents. This
quick decision making is impossible by transferring data instances from the vehicle to
the cloud and returning the predictions back to the vehicle. Instead, all the operations
should be performed locally in the vehicle. Such a real-time IoT scenario cannot be
implemented within a cloud-based IoT environment.

− The Service Management Layer: This layer is mainly accountable for order handling,
grievance handling, and billing. Furthermore, this layer is responsible for providing
interaction among services and service providers [32].

− The Business Layer: This layer suggests the management of IoT services and system
actions. Furthermore, this layer can assist in building charts, graphs, models, etc.,
using the incoming data from the Application Layer [3].

3. Computing and Networking Paradigms Adopted in IoT Environments

IoT devices demand the handling of massive generated data, efficient networking, and
intelligent management of storage and computing resources. Recent computing paradigms
strive to satisfy these requirements to provide resource-effective and timely services. The
evolution of these paradigms has gone through the phases of the single computing ma-
chine, a cluster of computing machines (cluster computing), network computing, and the
CC paradigm.

3.1. The Cloud Computing Paradigm

CC providers offer cloud services to IoT clients/users on a pay-per-use basis anytime,
anywhere. CC [33] provides centralized storage and computation facilities. It allows the
distribution of resources (servers, storage, network, etc.) to perform user tasks in dedicated
data centers. In this way, faster service is provided to IoT clients. This activity requires
excellent control and management of user workloads and resources. CC works sufficiently
for non-real-time IoT applications running over conventional IP-based networks. However,
delay-sensitive IoT applications impose delay requirements, and CC could no longer satisfy
the needs of such applications. The CC paradigm unsuccessfully struggled to solve the
problem of the wide area network (WAN)’s latency and its limited traffic transfer capacity.
In IoT, this traffic transfer capacity depends on the huge amount of generated IoT data
transmitted on it. Figure 2 shows the CC paradigm architecture that offers two viewpoints,
i.e., (i) front-end and (ii) back-end.
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The first (i) viewpoint includes the clients/consumers/users and is utilized by con-
sumers. This comprises various applications and user-level interfaces through which users
can access the CC-based platform [35]. The second viewpoint (ii) includes the service
suppliers who utilize the back-end support and manage all the necessary resources to
provide CC services. The second viewpoint (ii) comprises massive storage capability,
deploying models, virtual machines (VMs), physical machines (servers), and traffic moni-
toring/control schemes. The clients’ requests are obtained from the IoT application, and the
required resources are allocated through the notion of virtualization. Virtualization allows
some VMs to be created on a single physical machine. These VMs are independent and
have different configurations. Virtualization assists in managing the allocation/utilization
of resources and scheduling in the cloud and maintaining the workload balance in the
complete system [34].

Initially, three service models were deployed for the cloud: (1) software as a service
(SaaS), (2) platform as a service (PaaS), and (3) infrastructure as a service (IaaS) [36]. Notably,
IaaS offers excellent QoS to consumers.

LB in a Cloud-Based Network Environment

A client sends its request through the Internet, and all requests come in the manner
of VMs. The IaaS service model assists clients by providing a virtualization platform by
extensively constructing VMs. These VMs support clients in completing their assignments
within an acceptable deadline. Subsequently, computing resources must be efficiently
managed and utilized. Furthermore, the workload scheduling policies must be competent
enough to schedule the tasks judiciously, reducing the makespan [36].

Figure 3 shows the common planning for workload scheduling via VMs in the CC
paradigm. W1, W2, . . . , WN are the independent workloads that need to be scheduled.
For instance, this cloud environment is well-supported by the deployed physical servers
(PSs) (i.e., PS1, PS2, . . . , PSN). On top of PSs, VMs are hosted and maintained through
VM monitoring. The resource managers (RMs) are deployed and executed in PSs that
monitor the availability (and nonavailability) of PS resources. At point A (Figure 3),
the workload scheduler receives incoming requests from clients/users. At point B, the
workload scheduler accumulates all the useful resource utilization information from an
already deployed RM module to get and sustain the environment’s precise or up-to-date
current status. Then, the workload scheduler schedules the requested assignment on an
appropriate VM on the basis of the accumulated information about the request (from the
service supplier) and feedback data from RMs (point C)). Lastly, the workload scheduler
assigns the selected VMs to PSs (point D) [37].
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Two problems are actively being considered: (1) LB or efficient load scheduling among
VMs, and (2) reducing the makespan of the workloads. Workload scheduling struggles to
maintain an appropriate balance of load amongst VMs, which further assists in reducing the
completion time of a workload. Nonetheless, inappropriate workload scheduling leads to
the problem of an unbalanced load on the VMs, which ultimately increases the completion
time of a workload and thus reduces the system’s performance.

3.2. The SDN Paradigm

SDN enables the softwarization of networks by separating the data and control
planes [38]. Figure 4 shows SDN’s general architecture having three planes: application
plane, control plane, and data plane. This model displays how the networking components
in the data plane interact with those in the control plane via the southbound application
programming interface (SB-API) or the SB-API’s protocol (i.e., OpenFlow [39]). The data
plane consists of physical networking components which act as forwarding elements. It
makes routing commands and information transfer more efficient. The control plane
includes at least a single SDN controller, which acts as a centralized entity for routing
packets. Another interface, northbound API (NB-API), acts as an intermediate between the
application and control planes. SDN applications are located and implemented inside the
application plane [39–42]. By utilizing the OpenFlow protocol, SDN allows network policy
designers and administrators to get a global network topological view which assists them
in dynamically monitoring, adapting employed policies, and reconfiguring the network set-
tings. Moreover, the OpenFlow protocol assists in managing the communication between
the SDN central controller and other network components (i.e., OpenFlow switches).
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Conventional IP-based networks are highly restrictive while a little flexibility is pro-
vided to network designers for implementing a new LB policy. These networks are based
on static routing policies and use link state routing protocols, such as the intermediate
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system to intermediate system (IS–IS) and open shortest path first (OSPF), which attempt
to obtain link quality dynamically. Initially, the idea of routing through the shortest path
was perfect. As the IP-based network evolved and stricter user requirements emerged,
this impression collapsed. The usage of shortest path routing (i.e., static routing) leads to
the problem of multiple bottleneck creations, which degrades the network performance
altogether. Various load distribution policies [44–47] were automatically adapted on the
basis of various link quality metrics while relying on static routing. However, in intelligent
IoT networks, effective LB is needed. All the load distribution policies are inefficient as they
are designed for the traditional IP-based network only. Moreover, these policies failed in the
conventional IP-based network themselves. The reason is simple: the routers often receive
packets (traffic) at any time, and their receiving times can significantly vary. Subsequently,
this generates an inconsistent global view of the current network state from the viewpoint
of all the available routers in the system. It is very problematic to acquire the global view
of the IoT network in conventional IP-based networks. It is impossible to estimate the
optimality of the current version of the LB mechanism implemented in such networks [43].

Conventional LB techniques are hard to change due to their nonprogrammable design
implemented by the vendors. SDN-based load balancers are programmable and offer
a platform to the protocol developers on which they can implement their LB schemes.
Further, there is no requirement for additional special hardware in SDN which can act as a
load balancer. Instead of relying upon a traditional routing protocol, an SDN controller
(using the OpenFlow protocol) with an already in-built LB mechanism takes data path
control decisions [43]. An SDN controller can utilize network resources efficiently, reduce
the network overhead smartly, and eventually get minimum response time by efficiently
dispensing the load on IoT devices. An SDN controller can collect information from
the upper layers (networking protocols) along with the lower layers/sublayers (critical
knowledge of the Physical and Media Access Control (MAC) layers)) together with the
current network infrastructure conditions to make an intelligent routing decision. The
gathered dynamic information, such as the current status of network links, the average
number of packet retransmissions, and the congestion information at routers can assist in
improving LB decisions. An SDN controller can have a global view of the network topology
and its parameters through which it can decide about LB. Therefore, it can dynamically
determine and assess all the feasible flow (data) routes between each pair of nodes in
the network by updating the global network topological information. Furthermore, this
information assists in making intelligent routing decisions by assessing every available
global route’s traffic/load situation.

3.3. The Edge Computing Paradigm

EC brings storage and computational resources nearer to the data sources. Thus, the
response time is improved. At the same time, EC assists in reducing avoidable dependence
on unreliable Internet connections [48–51]. EC can act as an alternate for the CC paradigm
for IoT applications that necessitate high accessibility and speed. This happens because IoT
applications suffer from the issues of unreliable Internet connectivity somewhere or the
other. Whenever the Internet speed goes down (or any connectivity failure occurs), this
leads to higher response times, reducing the application’s performance as the application
availability is decreased. For this reason, EC eliminates or minimizes this Internet depen-
dency by locating the computation and storage services nearer to where it is required. This
concept improves the response time (or speeds up the application’s response time).

Figure 5 displays the architecture of EC. It comprises three planes: Device plane, EC
plane, and Cloud infrastructure plane. The device plane contains intelligent IoT devices
such as tablets, smartphones, actuators, and sensors that aim to accumulate and communi-
cate data. In the device plane, the sensing competence of these smart devices is prioritized,
regardless of their computing capability. Moreover, the EC plane has distributed edge
devices (nodes) that act as an interface between the cloud infrastructure and device plane.
These edge devices may act as smart devices themselves or can utilize for making connec-



Symmetry 2022, 14, 2554 10 of 58

tions (i.e., gateways and routers). The cloud infrastructure plane receives the data conveyed
by the EC plane, which stores it for a longer time in those clouds. The storage and logical
processing, which may not be accomplished via the local EC plane, must only be performed
in clouds. Furthermore, the cloud infrastructure plane can robustly regulate the scheme
of EC plane concerning network resources’ distribution [52]. The computing competence-
enabled edge devices and nodes execute a large amount of computing workload such
as data processing, device supervision, provisionally storing, and decision building to
ultimately reduce Internet dependence.
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3.4. The Fog Computing Paradigm

Fog computing (FC) is an extended paradigm initially motivated by the CC paradigm
from moving the core to the edge of the network. FC brings computational resources
closer to the IoT/device plane so that the main computation can be achieved locally. This
leads to the advantage of having lower network latency and faster application availability.
However, there is a requirement with FC; it cannot work standalone without a cloud
system. FC follows the concept of multitier architecture which provides great flexibility to
the system [53–55].

Figure 6 depicts the architecture of FC, which comprises three planes: IoT/device
plane, fog infrastructure plane, and cloud infrastructure plane. The fog infrastructure plane
includes single or multiple fog domains with compound heterogeneous fog devices/nodes
such as edge gateways, switches, access points, PCs, routers, tablets, smartwatches, smart-
phones, and set-top boxes. The IoT/device plane consists of IoT and end-user devices.
Furthermore, the fog infrastructure and the IoT/device plane communicate through a local
area network (LAN). At the same time, the IoT/device plane can be connected to the cloud
infrastructure plane via a WAN [53].
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Task Offloading in the Fog and EC Paradigms

In a fog architecture (Figure 6), the sensed data in the IoT/device plane through IoT
and end-user devices are communicated to the fog domain(s) (specifically to fog nodes).
As soon as the volume of sensed data increases, many of the available fog nodes in fog
domain(s) are overburdened. Subsequently, this leads to the problem of higher response
and delivery time due to a rapid increase in data processing time caused by an increase
in computational load at fog nodes [56]. To avoid these issues, proper coordination or
synchronization between the fog nodes is required. An appropriate task offloading policy is
needed amongst these nodes to dynamically transfer the load from an overloaded fog node
to the underloaded nodes. This causes appropriate resource utilization, proper resource
availability balance amongst fog nodes, and smaller power consumption.

3.5. Performance Evaluation Metrics for LB Schemes

This section describes the performance metrics adopted to evaluate LB schemes im-
plemented on the computing paradigms. The selection of the performance evaluation
metrics depends on the computing paradigm wherein an IoT application and LB scheme
are deployed. As FC and EC inherit the features of the CC paradigm, common perfor-
mance evaluation metrics can be adopted in the context of these paradigms. However, the
evaluation of some metrics can be very complicated in some contexts. For example, when
considering the response time in the cloud, its evaluation is a complex procedure for a
policy designer [57].

Table 1 presents the fundamental performance evaluation metrics for LB.
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Table 1. Performance evaluation metrics for LB.

Metric Description
Throughput It states the number of workloads served when LB obtains efficiency in a unit of time.

Response time

It is the aggregate period it takes for a user to get responses from the IoT application. It
comprises the transmission, propagation, processing at middle-boxes (waiting), and service
time. It mainly depends on the available bandwidth, the number of users contending for
resources simultaneously, and processing time. A larger number of workloads (per unit
time) must be served to obtain a faster response time.

Scalability
The LB algorithm must be adaptable (scalable) when the number of receiving requests is
increasing. The algorithm should be scalable enough to handle the increasing load and
workload requests during its lifetime.

Fault tolerance

Any element can fail when the IoT system does its tasks flawlessly if a VM fails (i.e., low or
no available resources) while performing a task. In that case, there must be some way so
that the task has to be offloaded from the overburdened VM to a lesser-loaded VM, which
ultimately executes the job completely. The failure element(s) perspective can assess the
degree of fault tolerance.

Migration time
It is an aggregate period required to transfer a workload from an overloaded VM to an
underloaded VM. This offloading procedure should happen without influencing the
system’s or application’s availability. An efficient LB policy has low migration times.

Resource utilization

It is the degree of resource (i.e., CPU and memory) usage in the computing system. Due to
the incoming workload requests, the demands for resources have increased. Thus, the
policy must utilize the available resources efficiently to accommodate almost all incoming
requests. In a decent LB policy, resource utilization is as maximum as possible.

Overhead

It describes the extra operational cost after deploying an LB scheme. This overhead can be
due to the huge transmission of control packets (i.e., communication overhead [19,58–60],
massive migrations, or high offloading amongst VMs). Any extra resource usage in
handling and completing requests is treated as an overhead. There are other types of
overhead that influence the overall performance of an LB scheme, such as flow stealing [61],
flow statistics collection [62], and synchronization overhead [63].

Makespan
It is an aggregate period taken to complete an assigned workload and designate required
resources to the consumers in the system. A shorter time leads to the consideration of a
better LB policy.

Power consumption/management

It is the power consumed by each node while maintaining the system’s connectivity, task
assignment, task migration/offloading, and complete execution [64]. It does not matter
whether the task is fully accomplished or not; the energy is consumed somewhere. Power
consumption should be as minimum as possible.

Carbon emission
It is the carbon produced by all the system’s resources. The LB schemes are highly
applicable to reduce this metric by migrating the tasks from the underloaded VMs to other
VMs and shutting down their whole system [65].

Transmission hop count

It specifies the network system’s degree of congestion level and packet loss probability. In a
higher hop count path, the intermediate devices are more likely to be congested, or the links
are more likely to be the bottleneck. Thus, we have a higher packet loss probability and
transmission delay. In a lower hop count path, the opposite happens. On the basis of this
metric, along with overhead, end-to-end delay, PLR, and resources availability, an LB policy
designer can design an optimized function for effectively balancing the system.

Flow completion time (FCT) This metric describes the flow transmission efficacy in a system’s long-lived traffic flows. It
is an aggregate period taken by a flow to transfer a file completely.

Types of traffic

In data center systems, the traffic can be characterized as short-lived (i.e., web browsing or
web queries) or long-lived (VMs migration and data transfer) flows. The short-lived flows
have a shorter lifetime (duration), which must be transmitted before FCT. The long-lived
flows (generated by applications) have a higher lifetime and usually require better
throughput [66]. These two types of traffic flow run in a single network whose basic
requirements are opposite. The short-lived flows require faster FCT, and the longer-lived
flows require higher throughput. Hence, an LB mechanism must adapt its procedure when
differentiating traffic types.
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Table 1. Cont.

Metric Description

Workload balance
Concerning SDN controllers, workload balancing is very much required. Here, the term
‘workload’ itself suggests the number of tasks to be completed by an SDN controller.

Peak load ratio
This metric can be assessed by estimating the traffic load of each link at a given time [62].
Any LB policy should consider this metric while performing workload and traffic
scheduling in the system.

Re-association time This metric [67] states the time taken to associate a client’s device to the underloaded access
point to ensure appropriate LB amongst access points.

Matched deadline flows
This metric defines the total proportion of flows sustaining its time delay deadline
constraints. For instance, some flows running may need to arrive at the destination within a
time constraint. Otherwise, the received information could be more beneficial [68].

Cumulative frequency This metric suggests the precise traffic load information in the queue, which assists in
maintaining an efficient LB in the system [68].

Percentage of all VMs to be positioned
in host

This metric applies to VM LB mechanisms in data centers. It indicates the percentage
distribution of VMs of multiple data centers as restraints. This metric’s assessment has been
done by utilizing the maximum and minimum percentage values of all VMs positioned in
each cloud. That is how the allocation of these VMs is balanced amongst clouds [15].

Number of migrations

It is the number of tasks switching between multiple VMs. If a VM is overloaded, the tasks
performed by it can be switched to other VMs with a lesser workload. If this switching is
significant, the system’s performance (i.e., migration and scheduling time overhead) will
degrade significantly [15].

4. Related Surveys
4.1. LB in CC

An effective LB scheme solves many problems inherent in the structure and usage of
the cloud. LB is aimed at two objectives: (1) task scheduling, and (2) resource provision
in a distributed environment. The concept of effective task scheduling and resource
provisioning leads to the following advantages:

1. Resource availability whenever required.
2. Efficient resource utilization during less and heavy load.
3. Controlled power consumption.
4. Reduction in resource utilization cost [69].

Due to extreme variations in nodes’ available resources and capability, controlling the
workload (and its efficient distribution amongst available nodes) is vital for maintaining
the system’s performance. A solution is an LB algorithm that forecasts the pattern of the
arrival of users’ tasks in the cloud. In such a dynamic distributed environment, dynamic LB
algorithms perform far better than static algorithms. This occurs because the workload is
dynamically transferred from a heavily loaded node to a lightly loaded one. As a result, the
dynamic LB schemes assist in maintaining scalability and resource utilization in the cloud
system [70]. Dynamic schemes are far more flexible and dynamically adaptive as these
schemes consider various system attributes both preceding and during runtime. These
schemes’ operational behavior depends on the previously collected information about the
working nodes in the cloud setup and their runtime attribute properties. Dynamic schemes
need continuous monitoring of IoT nodes and their attribute properties. Thus, these
schemes are much more complicated to implement [71]. In contrast, static LB schemes are
steady while their implementation is relatively straightforward. This brings less complexity
and overhead to the system. However, static LB policies fail to adapt and do not perform
satisfactorily in a dynamic heterogeneous environment [70].

Katyal and Mishra [69] investigated LB mechanisms in static and dynamic cloud
setups. They classified LB techniques concerning task dependencies and spatial node
distribution, and then discussed their relative merits and demerits. Furthermore, they
categorized spatial node distribution-based LB techniques into distributed, centralized,



Symmetry 2022, 14, 2554 14 of 58

and hierarchical schemes. Randles et al. [72] presented some distributed LB schemes for
the large-scale cloud environment. They discovered that (1) a nature-instigated scheme
can be utilized for attaining a comprehensive LB through local server actions, and (2)
self-regulation may be planned via arbitrary system sampling. The authors also revealed
that there is a possibility to reorganize the system’s structure to optimize task scheduling at
the server end. Sreenivas et al. [73] surveyed sender-initiated, receiver-initiated, symmetric,
static, and dynamic LB schemes. In a sender-initiated LB scheme, the sender initiates the
process to find the under-loaded nodes when nodes get congested. In a receiver-initiated
LB scheme, receiver or lightly loaded nodes look for heavily loaded nodes to share the
workload. In symmetric LB, both sender-initiated process and receiver-initiated process
techniques are combined. The authors discussed various LB metrics such as scalability,
allied overhead, throughput, fault tolerance, response period, resource utilization, and
performance. However, an analytical study could have been performed considering these
metrics, which are missing in the abovementioned surveys. Furthermore, the authors
discussed service provisioning, VM migration, server consolidation, power, and stored
data management.

Raghava and Singh [74] reviewed LB techniques in the cloud. They discussed key
parameters affecting LB, such as (1) geographical dissemination of nodes, (2) static versus
dynamic behavior and complexity of schemes, (3) and traffic assessment over the different
locations (geographical). Furthermore, they compared the schemes using various criteria
such as scalability, complexity, resource utilization, response period, and fault tolerance.
Milani and Navimipour [12] investigated hybrid and dynamic cloud-based LB techniques
considering scalability, resource utilization, migration time, response time, throughput,
and makespan metrics. This survey states that no unique LB scheme considers all the
involved parameters (i.e., QoS, consistency, and scalability) during LB. Furthermore, the
authors proved that the research in LB is ongoing toward the novel concept of decentralized
LB. However, the authors did not consider task relocation and failure management in the
design of an LB mechanism. Moreover, they could have discussed workload scheduling
and LB schemes for IoT and MapReduce Hadoop more.

A load balancer allocates the user tasks to VMs according to their QoS requirements.
When a physical machine gets overloaded, a few VMs can be shifted to a distant loca-
tion (VMs migration). In the case of an overburdened node in the cloud, the additional
workload on a system can be shifted onto some other available underburdened system
(depending on that system’s operational attributes). In the case of an underburdened
node, its current workload can also be shifted to some other resource-full machine and
can shift that underburdened node to an energy-saving mode. Such resource scheduling,
rescheduling, or workload migration or shifting is realized through VM migration [75–77].

In the context of VM migration, Xu et al. [15] investigated surveys by examining
the diverse characteristics such as scheduling situation, resource category, management
methods, VM style distribution dynamicity, and consistency for LB in VMs. The authors
presented various scheduling metrics to assess the performance of VM’s LB techniques,
such as standard deviation and load variance of utilization, overburdened hosts, makespan,
throughput, connections, imbalance level/score, residual resources, and the number of
migrations. They discussed various simulation tools and realistic platforms for testing VM’s
LB schemes. The authors also showed that metaheuristic approaches perform better than
heuristic approaches. Nevertheless, so far, metaheuristic techniques have only been tested
with simulation software. Hence, these approaches need to be tested in a realistic real-time
environment, which ultimately suggests their possible future in a real cloud setup. An LB
technique based on VM migration must optimize LB and curtail cost. There is a need to
evaluate the tradeoff (if any) and maintain consistency across these multi-objective criteria.
The authors also noted that knowing which technique is suitable for which environment
is essential. Considering the variety of available surveys and the existing techniques, this
problem is still open. There is also a serious need to test these techniques under a similar
cloud setup. Here, the authors outlined that a relative performance assessment for these
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VM’s LB techniques under a matching and real cloud setup needs to be accomplished. The
authors focused on various other issues, such as the organization of the scheduling model
(i.e., future load prediction, analysis-based LB schemes, and communication overhead
analysis) and VM models (i.e., self-regulatory VM LB techniques and integration of heuristic
and metaheuristic methods).

Ghomi et al. [65] discussed LB and workload scheduling mechanisms. They catego-
rized these proposals, i.e., Hadoop MapReduce, agent-based, natural phenomenon-based,
application-oriented, network-conscious, workflow explicit, and general LB approaches.
They addressed vital challenges in current LB technique design principles and outlined
future research directions. The authors investigated their classified categories using various
QoS-based metrics. Their survey gave deep insights into and an analysis of power man-
agement and Hadoop MapReduce schemes. Unfortunately, this survey lacks cluster-based
and workload-based LB mechanisms that are needed to accomplish workload on limited
available resources. Moreover, a better analysis is required concerning the communication
overhead issue, which is also missing in this survey.

The surveys [78–80] considered cloud-based LB. Ahmad and Khan [79] investigated
LB techniques and tools/platforms for their implementation. They also evaluated and shed
light on their performances by considering metrics such as resource utilization, scalability,
transfer time, fault tolerance, overhead, reaction period, and throughput. The authors
shed light on the methodologies for fair load distribution amongst nodes for better re-
source utilization. Kumar and Kumar [78] addressed a state-of-the-art survey for vital
LB schemes’ concerns and challenges that must be taken care of while developing and
implementing any LB algorithm. The authors discussed various challenges that researchers
must consider while designing any LB policy, such as geographically distributed systems,
single-point breakdown, VM migration, heterogeneous systems, scheme complexity (al-
gorithmic), scalability of a load balancer, and storage management. They stated that the
primary motivation of any scheme is to efficiently distribute load amongst all the available
network links on systems clusters or devices to maximize their utilization of resources to
improve the response period. Hence, it subsequently lessens the waiting time for a device.
Lastly, the authors presented potential directions (i.e., appropriate resources distribution to
workload, sustaining a proper balance between functional and nonfunctional requirements)
in which much work is needed. Nevertheless, a deeper analysis of extra performance
(i.e., communication overhead) and operational attributes is required, which is missing in
these surveys [78,79].

4.2. LB in Software-Defined IoT

The conventional IP-based network architectures are highly rigid, and it is difficult for
network engineers to make them adaptive to dynamic network conditions. The already in-
stalled conventional devices do not support potential improvements to these basic network
architectures. Recently, the SDN networking model [39] was delved into. LB methods in
software-defined IoT can be classified into two main categories including deterministic and
non-deterministic approaches.

• A deterministic approach always produces the same output for specific input. Differ-
ential equations often describe its processes. Furthermore, the output of the model is
completely specified by the values of the parameters and the primary situations. Deter-
ministic approaches have used both distributed controllers and centralized controllers.
Migration and rerouting are deterministic approaches that can reduce response time
and overhead. They can also improve the system throughput and the degree of LB.
However, these approaches may generate unacceptable energy consumption, unac-
ceptable latency, unacceptable packet loss, and low availability. The determinist LB
schemes do not evaluate many QoS parameters.

• Non-deterministic approaches: LB is an NP-complete problem and can be solved using
a nondeterministic approach that can find a solution to the NP-complete problem
in polynomial time. A nondeterministic LB approach may have different behaviors
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on different runs for the same input. It is often applied to acquire approximate
solutions when an exact solution is difficult (or costly) to acquire using a deterministic
algorithm. These approaches use various methods such as greedy, metaheuristic,
approximation, genetic algorithm, multi-objective particle swarm, and particle swarm.
These methods can improve utilization and the degree of LB. Moreover, latency can be
reduced. However, these approaches have high computational time and can generate
unacceptable energy consumption, throughput, packet loss, and overhead. Notably,
non-determinist LB schemes need to consider all the LB metrics.

Neghabi et al. [19] considered most SDNs’ deterministic and nondeterministic LB
schemes. Their study considered qualitative LB metrics such as synchronizations per
minute, degree of LB, power consumption, throughput, delay, execution period, resource
utilization, forwarding information, migration price, assured bit rate, overhead, peak load
ratio, workload, and PLR. The authors showed that the existing techniques do not have a
particular system to ascertain almost all the QoS parameters for LB judgments. Their survey
stated that nearly all the initial efforts in LB had yet to discuss traffic shaping/patterns
and data/control packet priorities. Additionally, planning a more poised LB-based QoS
metric is still an open issue. This study revealed that the researchers should have inves-
tigated various problems such as power saving, cost of resource utilization, and carbon
emissions. Hamdan et al. [66] and Belgaum et al. [81] suggested the latest LB schemes
for the SDN environment. Neghabi et al. [19] reviewed SDN-based LB techniques pub-
lished between 2013 and 2017. The authors improved their survey by depicting another
perspective to readers by publishing another nature-inspired SDN-based LB survey [82]
in 2019. However, their survey [82] considered only SDN-based LB techniques between
2013 and 2017. Hamdan et al. [66] and Belgaum et al. [81] suggested deep insights into
SDN-based LB. Moreover, Belgaum et al. [81] indicated that a significant number of LB
policies were published after the year 2017, and none of the surveys [19,82] discussed the
techniques published after that. A few years ago, some survey papers [43,81,83,84] were
published. Li et al. [83] and Zhang et al. [84] addressed several issues regarding LB in an
SDN environment. They gave a new perspective to the reader on SDN-based LB for data
centers. Nonetheless, these surveys did not consider the facet of LB in the case of the SDN
networking environment. Hamdan et al. [66] suggested their deep insights compared to
earlier surveys. Their study suggested an appropriate taxonomy for classifying available
LB techniques in an SDN environment. This taxonomy covers multiple perspectives and
aspects for the concerned area, such as the data plane, control plane, and objectives of LB
mechanisms. Furthermore, the authors shed light on the performance and operational
metrics utilized for LB techniques in the SDN environment. The authors discussed the
challenges which need to be studied. These challenges are (1) managing heavier controller
load in data plane schemes, (2) active LB practices in case of more than a single controller,
(3) LB methods in case of hierarchical controller, (4) network virtualization inside con-
trollers, (5) controller assignment methods, (6) flow regulation arrangement delay, and
(7) network management.

4.3. LB in the IoT Environment

IoT permits the orchestration and coordination of physical web-enabled intelligent
objects. These smart objects (e.g., sensors) may be in an isolated locale where human
intervention is not possible; there may be a chance that these devices may be part of an
unstable network environment. Moreover, they may work on their limited capability due
to power constraints issues. One of those devices can also act as an IoT gateway. An
excessive load on the links (network) directly/indirectly associated with such a gateway
or extreme load-induced failure at the gateway itself ultimately results in temporary or
even permanent unavailability of the IoT service [85]. Since these gateways act as an
intermediary between exceptional sensing infrastructure-based networks and data centers,
the LB policy should first ensure that such gateways are not overloaded. Otherwise, the
network could get detached or partitioned. An extensive survey is needed to recognize the
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available LB procedures. These procedures should be assessed through performance and
operational metrics.

IoT objects have restricted computing power and storage. Many researchers con-
sidered these restrictions while designing an LB strategy in low-power and lossy networks
(LPLNs) [86–89]. The researchers concentrated on enhancing scalability and lessening
the power consumption in LPLNs. The preliminary routing protocol for LPLNs (called
rp-LPLN) is commonly accepted. The research community accepted the rp-LPLN proto-
col as a revolution, while some researchers argued that it had many major flaws. Many
weaknesses were revealed, such as propensity concerning load imbalance, instability, and a
lesser emphasis on mobility, which needs to be emphasized.

Load imbalance is the major drawback of rp-LPLN [90]; the rp-LPLN protocol deals
with uneven traffic distribution in dense LPLN environments. Generally, rp-LPLN adopts
a proactive distance vector routing mechanism in which nodes are positioned and build a
destination-oriented directed acyclic graph (DoDAG). rp-LPLN builds a routing topology
(i.e., DoDAG) rooted at a single or multiple LPLN border router (LPLN-BR) [89,91]. rp-
LPLN also provides IPv6-based communication (bidirectional) between devices. Moreover,
the rank associated with a node indicates its concrete position from the root of DoDAG and
in the LPLN. During DoDAG construction, the newly arrived nodes (i.e., those not yet part
of the graph or LPLN) choose the parent on the basis of their ranking parameter. However,
there is a dilemma; all the nodes (leaves in DoDAG) may choose the same parent and stay
away from other available parent nodes. This problem in such a network environment
is termed ‘the thundering herd’ [92]. Hence, the idea of DoDAG construction via parent
selection notion in the rp-LPLNs leads to the issue of imbalance. Furthermore, these parent
nodes are also low-powered constrained devices, which may assist in the network as a
forwarder. Therefore, there is a high probability of a parent node’s resources depleting
more rapidly than leaf nodes. These issues are characterized as hotspots and bottlenecks. The
authors [81] focused on rp-LPLNs-based LB mechanisms and revealed vital topics such
as hotspot, thundering herd, bottleneck, congestion-induced unbalanced load on nodes
(leaves and roots), instability, and poor delivery ratio.

Ghaleb et al. [88] analyzed LPLNs/rp-LPLNs-based schemes. They discussed neces-
sary details regarding the environment, the technology utilized for communication, and
particular forwarding requirements in LPLNs. They also pointed out several shortcomings
in such procedures. The authors discussed limitations regarding rp-LPLN, such as route
selection/maintenance procedure and downward forwarding. This survey gave readers
in-depth insight into numerous studies suggested to improve rp-LPLNs performance. It re-
vealed an exhaustive comprehension of multiple forwarding necessities based on rp-LPLNs.
It shed light on issues such as downward traffic patterns, single- versus multiple-instance
optimization, metric composition, LB, real-time testbed implementation, and deployment
that can be worked upon in the future.

The surveys [88,91,93] discussed LB issues. Nevertheless, their focus (especially [88,93])
was partially on LB. Furthermore, there are other surveys [94–97] whose focus was not on
LB at all. Some of these surveys discussed other issues, such as mobility extensions [94],
resource management [95], and security [97] in the context of rp-LPLN environment.
Kim et al. [91] analyzed numerous research attempts focused on rp-LPLNs. They suggested
a topic-oriented survey for multiple research attempts to improve rp-LPLNs performance.
Moreover, they emphasized the issue of rapid power depletion when the load distribution
on the network becomes imbalanced. They highlighted that the rp-LPLN protocol must
be energy-efficient as the nodes in the LPLNs operate on very-low-powered batteries.
Maximizing a node’s lifetime in such a scenario is essential. Hence, rp-LPLNs must
stabilize the amount of traffic load that needs to transfer on each node to provide proper
power management amongst nodes. Kim et al. [91] further stated that in the case of across-
the-board applications such as smart grids and home automation, there is a high chance
that devices/nodes nearest to LPLN-BR have to transfer huge amounts of data even if
other devices/nodes generate a lesser amount of data. The ultimate objective of rp-LPLN
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design standard is to provide the interconnection of many devices, which generate massive
network traffic. Hence, there is a dire need to assess the LB procedures under severe
congested situations. Initially, RFC 6550 [89] favors the exploitation of reactive approaches
(rather than proactive approaches), justified the context of power efficiency behind favoring
this procedure. Kim et al. [91,98] shed light on the design and implementation of a standard
followed in RFC 6550. LB is dissociated from this original standard. Later, two more new
companion standards (namely, OF0 [99] and MRHOF [100]) were suggested, which were
aimed at handling this issue. Nonetheless, various studies stated that these rp-LPLN-
based companion standards tend to create a load imbalance in the network. Precisely,
the conventional rp-LPLN with companion standards (mentioned earlier), along with the
expected transmission count (ETX) parameter for parent node selection and the hop count
parameter (for ranking), generates load imbalance since such metrics are only focused
on identifying a parent node with adequate link quality. Subsequently, this leads to
unbalanced power depletion among nodes and the creation of bottlenecks at some portion
of the network.

Kharrufa et al. [101] emphasized the prominence of rp-LPLN and suggested a system-
atic review in the context of IoT. They presented deep insights into the proposed procedures
that improve rp-LPLN performance. They assessed each approach’s efficiency concerning
applicability, scalability, throughput, flexibility, power efficiency, and end-to-end latency.
The reviewed policies were categorized according to the field of improvement, such as QoS,
mobility, congestion control, security, and power consumption. Pancaroglu and Sen [87]
surveyed rp-LPLN-based LB mechanisms by categorizing them into two clusters:

1. Mechanisms utilizing objective function and routing parameters to improve the load
balance procedure.

2. Studies (in the concerned area) based on heuristic schemes.

The authors categorized the first cluster into two subclusters: attempts based on
conventional parameters and attempts based on customized parameters. They assessed the
considered attempts by shedding light on critical parameters such as ETX, remaining power,
hop count, and novel routing parameters as suggested in considered heuristic procedures.
The authors explained some shortcomings of the related studies. Such shortcomings are the
limited assessment in real-time testbeds/platforms. In most cases, the considered network
size was small (limited number of devices/nodes), and many studies need to elaborate
much in the context of network reliability through evaluation results. They also lacked
standardized processes while selecting performance metrics, selected inferior quality paths,
and presented smaller or no exploitation of multiple examples.

4.4. LB in Heterogeneous (IoT/Fog/Edge) Environment

Data generated by IoT devices can be directly transferred to the data centers using
cloud-based services. However, as the size of the data increases, so will the complexity of
sending those data from the IoT device to the cloud. Such transfer may become infeasible in
a limited bandwidth network environment or due to security apprehensions. Meanwhile,
location-aware and delay-sensitive IoT applications must receive location-related data
well on time. A remote cloud setup cannot satisfy such delay constraints. A specialized
computing paradigm is needed that can run more closely to the connected devices, which
can address issues such as limited bandwidth in a network environment, geographically
detached, delay-sensitive, and security subtle applications.

Fog computing (FC) encompasses the CC paradigm to the system’s edge. FC conveys
computing and networking supremacy into the system’s edge, nearer to intelligent IoT de-
vices/nodes and end-users, because of being sustained by prevalent fog nodes. FC extends
the computing procedure to the system’s edge instead of accomplishing the IoT services in
the cloud platform [102–104]. FC is a virtualized platform that bridges the gap between IoT
devices and the cloud by offering storage, computational services, decision making, data
management, and network communication facilities between conventional CC-based data
centers and end-users. Hence, as data move from IoT devices to the cloud, these features
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happen along the path between the cloud and the IoT devices. In an FC environment,
the routers can act as specialized servers. These routers can augment performance in
terms of storage and computing, which can act as computing nodes [104,105]. Nonetheless,
Al-khafajiy et al. [106] showed that the notion of fog in the FC paradigm is also insufficient
to manage these smart IoT devices’ temporal and spatial dissemination. This leads to an
unbalanced LB amongst fog nodes. Furthermore, VMs become overburdened on the fog
layer with a steady increase in user requests. Thus, an LB mechanism is required to handle
such a scenario on the fog layer.

Dynamic resource scheduling and resource allocation policies must be introduced
while managing data centers. Such efficient policies assist in improving the overall resource
utilization and attaining appropriate LB in the data centers. In the case of the CC paradigm,
the ultimate objective of any resource allocation mechanism is to maximize the figure of
active devices. The policy of resource allocation should be so effective that the maximum
number of devices can work on limited resources. Another aim of such an approach
is to maintain workload stabilization among all the actively working devices to evade
overloaded/underloaded resource usage and bottleneck formation.

Memon et al. [107] suggested a multilevel dynamic traffic LB protocol (MDTLB) for
data centers. MDTLB addresses the problem of constantly varying network parameters
(i.e., continuously varying bandwidth, rapidly changing delay, middlebox failures, and
topological changes) that data centers face. The authors proposed the adaption of imper-
ative networking parameters while performing LB. Typically, MDTLB utilizes roundtrip
time (RTT) to define the network link’s state clearly. However, Carlucci et al. [108] proved
that, when the RTT estimations are utilized as a network congestion metric, a lesser channel
utilization may be attained in the existence of reverse traffic. Xu et al. [105] showed issues
related to the design challenges of resource scheduling and resource allocation mechanisms
in an FC environment. They shed light on the operational-level complexity of these mecha-
nisms in the FC environment since there may be a chance that the computing nodes could
answer an application both in the case of clouds and fog. The computing nodes are well
distributed on the network’s edge when we consider the perspective of the FC environment.
However, these nodes are distributed in a unified data center in the cloud. Xu et al. [105]
stated that the IoT services/application resource demands could diverge for the computing
nodes. These services may have different storage capability requirements, bandwidth, and
computing power requirements. Therefore, there is a dire requirement to undergo resource
allocation and resource scheduling mechanisms for dynamically resource-demanding IoT
services and applications to accomplish LB.

Vaquero and Rodero-Merino [109] offered an explanation and formal definition of fog
and related technologies in the context of the FC paradigm. Their attempt covered the
challenges allied with the FC paradigm that need to be addressed so that investigators,
implementers, and designers can disclose its full potential. Yi et al. [104] deliberated further
on the formal definition of FC, presented demonstrative application situations, and shed
light on challenges and concerns concerning the design and implementation of the FC
system. Chiang et al. [110] discussed the differences between CC, FC, and EC, the exclusive
features offered by fog, and fog’s role in the context of security and privacy. However,
the authors discussed these issues very abstractly. Chiang et al. [111] initially presented
emerging challenges in IoT. They explained how difficult it is for the current networking
and computing paradigms to address those emerging challenges. They discussed why
there is a need for new networking and computing paradigms such as FC. However, there
is a critical requirement for the performance analysis of reviewed technologies, algorithms,
architectures, models, and schemes from the perspective of definite and well-motivated
parameters, which is missing in the above surveys altogether. Mouradian et al. [53] stated
that these surveys did not ponder algorithmic perspectives much, although they play a
serious role in the FC environment. Furthermore, they surveyed numerous architectural
and algorithmic-based works. They discussed the algorithmic and architectural point-of-
view in the fog system design. They also highlighted challenges and concerns concerning
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fog-based architectures and algorithms. Nevertheless, a deeper analysis of some more
performance (i.e., communication overhead) and operational attributes is required, which
is missing in these surveys [105,109–112].

Aazam et al. [112] reviewed the task offloading mechanisms in CC, IoT, and FC en-
vironments. The idea of offloading can be implemented via various aspects such as LB,
computational needs of an application, delay, and power management. The authors pre-
sented a taxonomy concerning such techniques and highlighted the types (e.g., cloudlet
and mobile EC) and middleware technologies’ requirements for task offloading. They
deeply analyzed numerous criteria such as power consumption, LB, and delay utilized in
offloading. However, a separate study on LB is missing in this survey. Fricker et al. [113]
utilized the idea of LB to activate task offloading within fog data centers. The authors
considered a basic scenario where data centers are installed at the network’s edge. The
authors presumed the case of an overburdened data center receiving a request, which
is then forwarded to a comparatively lesser loaded neighboring data center with some
possibility. That is how a lesser-loaded adjacent data center can handle a rejected request
from an overloaded data center. They assessed the achieved gain when neighboring data
centers collaborate in a fog context. Mukherjee et al. [114] highlighted that the terminal
devices/nodes in an FC environment might dynamically perform transitions from one state
to another (e.g., active or inactive). These devices/nodes often join or leave any FC instance
dynamically. Due to vigorous requirements of resource distribution and high communica-
tion overhead, achieving LB in such an environment is challenging. Moreover, the authors
initially gave in-depth insights into FC architecture. They abridged various resource and
service allocation mechanisms intending to address critical concerns such as bandwidth,
delay, and power consumption in the FC context. They also highlighted challenges and
problems such as application offloading, resource management, heterogeneity, fog radio-
access networks, SDN-based FC paradigm, and standardization. Ghobaei-Arani et al. [115]
reviewed FC-based resource management policies. They presented a standard taxonomy
using metrics such as workload offloading, application placement, LB, resource allocation,
scheduling, and managing. They showed a comparison analysis of the resource manage-
ment policies using specialized schemes, performance metrics, case studies, and evaluation
tools involved.

Hong and Varghese [116] addressed FC-based resource management requirements and
their implementation challenges. The resources at the network’s edge are constrained in
terms of computational resources since edge-based intelligent devices have lesser process-
ing capability due to smaller-size processors and limited power. Moreover, the processors’
architecture difference amongst edge devices, the high application-level contentions for
limited resources, and dynamic workload variations make resource management a complex
task that policy designers consider while dealing with FC and EC scenarios. Consequently,
the authors gave deep insights into architectures, algorithms, and schemes based on FC and
EC. The authors also highlighted the types of techniques (i.e., cooperative, graph-based,
optimization schemes, and breadth-first search) utilized by LB mechanisms at the edge of
the network.

Table 2 presents important surveys that summarize LB research in IoT.
Figure 7 presents LB performance metrics in the discussed computing and networking

paradigms.
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Table 2. A comparison of surveys that summarize LB research in IoT.

Year/Ref. Techniques Presented LB Metrics
Discussed 1 Suggested Future Directions Tool(s)/Testbed(s) Discussed Weakness Coverage

Surveys on CC-based LB

2019 [78] Static and dynamic
LB techniques.

(i), (iii), (iv), (v), (vi), (vii), (viii),
and (xiii)

Power saving, resource utilization cost, and
carbon emissions.

Cloud Simulators
(simulation tool) An analysis of some extra performance (i.e.,

communication overhead) and operational
attributes is missing.

2010–2018

2018 [79]
Fair load distribution for
better resource
utilization methodologies.

(i), (ii), (iii), (iv), (v), (vi), and (x) CloudAnalyst, GroudSim,
GreenCloud 2008–2016

2017 [15]
Centralized and distributed
load schedulers for
VMs placements.

(iii), (ix), (xiii), (xxxi), (xxxii),
(xxxiii), (xxxiv), (xxxv),
and (xxxvi)

Realistic implementation of
metaheuristic approaches.

Realistic Platforms:
ElasticHosts, OpenNebula,
Amazon EC2 (web service)
Simulation toolkits: FlexCloud,
CloudSched, CloudSim.

These attempts do not discuss much
regarding workload scheduling and LB
schemes for IoT.

2008–2016

2017 [77] Statistics-based and
nature-inspired LB techniques. (i), (iii), (v), (vi), (ix), and (xii)

Refinement in algorithms to ascertain
migration cost, active thresholding, and
communication overhead to accomplish
LB efficiently.
Efficient workload prediction schemes.
Current schemes do not address and focus on
the effective usage of available limited
network resources.
Algorithms should be tested over real-time
testbeds and a cloud scenario.

×
The issue of high communication overhead
needs to be discussed in detail, which is
missing from this survey.

2007–2017

2017 [65]

Task scheduling and LB
(schedulers in Hadoop,
MapReduce optimization,
agent-based, natural
phenomenon-based, and
general schemes).

(i), (iii), (iv), (v), (vii), (viii), (ix),
(xii), (xiii), and (xiv)

A tradeoff between various LB metrics.
Proposing an LB scheme that could improve
as many parameters/metrics as possible.
Resource utilization for processing from
multiple clouds (providers). Power
consumption and carbon emissions.

×
This attempt lacks cluster-based and
workload-based LB mechanisms, for
accomplishing workload on limited available
resources.

2008–2017

2016 [12] Hybrid and dynamic
cloud-based LB. (i), (iii), (v), (vi), (viii), and (ix) Decentralized LB, task relocation, and failure

management features. × It superficially discusses workload
scheduling and LB schemes for IoT. 2010–2015

2014 [73]

Sender-initiated,
receiver-initiated, symmetric,
static, and dynamic
LB techniques.

(i), (ii), (iii), (iv), (v), (vi), and
(vii)

Power and stored data management, server
association, programmed service
provisioning, VMs migration, and carbon
emission rate.

× This survey does not identify or consider the
shortcomings of the assessed LB techniques. 2010–2012

2014 [69]

Task dependencies and spatial
node distribution (distributed,
centralized, and hierarchical
schemes) in LB schemes.

× × CloudSim [68] An analysis of QoS performance metrics and
operational attributes is missing. 2007–2012
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Table 2. Cont.

Year/Ref. Techniques Presented LB Metrics
Discussed 1 Suggested Future Directions Tool(s)/Testbed(s) Discussed Weakness Coverage

2014 [74]

Issues (i.e., spatial nodes’
geographical distribution and
their traffic pattern analysis,
dynamic/static behavior, and
complexity of algorithms)
affecting LB mechanisms.

(i), (ii), (iii), (iv), (v), (vi),
and (viii) × ×

An analysis of some more performance (i.e.,
communication overhead) and operational
attributes is missing.

2000–2011

2012 [71] Static and dynamic
LB mechanisms × × × An analysis of QoS performance metrics and

operational attributes is missing. 2008–2012

Surveys on SDN-based LB

2021 [66] Control plane and data
plane-based LB methodologies.

(ii), (iii), (v), (vi), (xv), (xvi),
(xvii), (xviii), (xix), and (xx)

Managing heavier controller load in data
plane schemes.
Active LB practices in case of more than a
single and hierarchical controller.
Network virtualization inside controllers,
controller assignment methods, flow
regulation arrangement delay, and
network management.

×

The specific comments regarding tools,
testbeds, and simulation platforms
are missing.

2008–2020

2020 [81] Conventional and artificial
intelligence-based schemes.

(ii), (iii), (v), (vi), (viii), (xii),
(xiii) (xv), (xvi), (xxii), (xxv),
(xxviii), (xxix), and (xxx)

Traffic-aware LB mechanisms, reduction in
communication latency when the center
controller becomes congested, power-efficient
LB schemes, and network function
virtualization assistance to cloud users.

× 2015–2019

2020 [43]
LB in controller, server, and
wireless links. Communication
path selection and AI-based LB.

(iii), (xvi), (xxxvii), (xxxviii),
(xxxix), (xl),and (xli)

Energy preservation issue while designing LB
scheme for SDN.
Smart LB schemes (in SDN) require node and
link failure consideration.
Adaptations of such schemes in
5G environment.

Mininet, OMNET++, IPerf,
MATLAB, Python, .Net,
Maxinet (tools and emulators)

This survey lacks in discussing fast adaptive
rerouting and multipath solutions, which are
also important areas of concern, especially
when the network’s links fail rapidly.
Moreover, in [48], the authors do not discuss
much regarding tools, testbeds, and
simulation platforms.

2007–2020

2019 [82] Nature-stimulated
metaheuristic techniques.

(ii), (iii), (v), (vi) (xiii), (xv),
(xvi), and (xxii)

Traffic shaping, its pattern, and packet
priorities can be utilized in the future. Power
consumption and carbon emission should be
addressed in future nature-inspired
metaheuristic load-balancing proposals.

× 2013–2017

2018 [19]
Deterministic and
nondeterministic LB techniques
in SDN.

(ii), (iii), (vi), (viii), (xii), (xiii),
(xvi), (xv), (xxi), (xxii), (xxiii),
(xix), (xxiv), (xxv), (xxvi),
and (xxvii)

Planning a more poised LB-based QoS metric,
power saving, resource utilization cost, and
carbon emissions.

×
The issue of communication overhead needs
to be discussed in the context of SDN in
detail, which is missing from this survey.

2013–2017

2017 [83] Centralized and distributed
SDN-based LB schemes. × × ×

This survey does not consider the
shortcomings of the assessed LB techniques.
It does not present specific comments
regarding tools, testbeds, and simulation
platforms. No performance and operational
metrics-based comparison is made in
this survey.

2009–2017
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Table 2. Cont.

Year/Ref. Techniques Presented LB Metrics
Discussed 1 Suggested Future Directions Tool(s)/Testbed(s) Discussed Weakness Coverage

Surveys on LB in LPLNs-based IoT

2021 [87] LB mechanisms for
rp-LPLNs-based IoT.

(iii), (xii), (xv), (xvi), (xvii), (xlii),
(xliii), and (xliv)

Concerning LB, the following are the
challenges and open issues allied
with rp-LPLNs:
power consumption, stability, reliability,
mobility, objective function, and congestion.

×
This survey lacks in discussing fast adaptive
rerouting and multipath solutions, which are
also important areas of concern, especially
when the network’s links fail rapidly.

2009–2020

2019 [101]

Significant attributes of
rp-LPLN and various pros and
cons of rp-LPLN in numerous
IoT applications are discussed.
rp-LPLN improvement for
power efficiency, mobility
management, QoS, and
congestion control.

×

There is not a variant of rp-LPLN which
succeeds optimality in all IoT applications.
Thus, in the future, rp-LPLN’s functionality
must be improved so that it will work and
provide optimum performance for most IoT
applications. The original rp-LPLN standard
ignored mobility management and
congestion control completely. Thus,
researchers must consider them while
designing improved algorithms for rp-LPLN.

×

This survey systematically discusses the
rp-LPLN-based routing protocol’s
performance-enhanced mechanisms.
However, a detailed discussion on LB
mechanisms is missing.

2010–2017

2019 [117]

LB and congestion control
schemes in the wireless sensor
networks context. Schemes
were classified on the basis of
several criteria, e.g., routing
metrics, cross-layer design, and
path variety.

×

To design a more efficient scheme considering
how to reduce resource overutilization.
Real-time/testbed implementations
and deployment.
Contemplation of numerous rp-LPLN. More
solid experimental conclusions are required
when integrating TCP with rp-LPLN.
Cross-layering-based schemes must
be proposed.

×

Since this attempt addresses congestion as an
essential factor concerning deprived
rp-LPLN’s performance, there is a need to
specifically evaluate the communication
overhead in terms of normalized routing and
MAC load, which is missing from the survey.

2009–2019

2020 [118] Centralized and distributed
load scheduling.

(i), (ii), (iv), (xii), (xv),(xvi),
(xlix), (l), and (li)

Considering traffic shaping/patterns and
data/control packet priorities, QoS parameter
investigation for LB, and power saving,
resource utilization cost, and carbon
emissions is required.

×

The specific comments regarding tools,
testbeds, and simulation platforms are
missing. The issue of communication
overhead needs to be discussed in the context
of IoT in detail, which is missing from this
survey. This survey does not discuss
rp-LPLN’s performance issues.

2009–2019

2018 [88]
Routing optimization, routing
maintenance procedures, and
downward routing.

(xii), (xvii), (xliii), (xliv), (xlv),
and (xlvi)

Downward traffic forms, LB, single vs.
multi-instance optimization, metric
composition, real-time assessment via
testbeds, and RPL deployment.

×

Although this attempt provides deep insight
into the shortcomings of rp-LPLN, the focus
is still not on LB schemes. Instead, the
authors concentrated on routing procedures’
(path selection and maintenance)
optimization, which indirectly affects LB.

2011–2017

2018 [90]

LB problems in rp-LPLN such
as hotspot, bottleneck,
thundering-herd, instability,
increased load on nodes, and
low PDR.

(xlvii), and (xlviii)
Designing a more composed LB metric is still
an open issue in RPL-based
IoT-based networks.

×

It does not consider the shortcomings of the
LB techniques. Specific analysis regarding
tools, testbeds, and simulation platforms is
missing. No performance metrics-based
comparison is made.

2012–2018
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Table 2. Cont.

Year/Ref. Techniques Presented LB Metrics
Discussed 1 Suggested Future Directions Tool(s)/Testbed(s) Discussed Weakness Coverage

Surveys on LB in heterogeneous (IoT/Fog/Edge) environment

2022 [119]

LB in advanced heterogeneous
networks (HetNets) and
machine learning (ML)-based
LB methodologies.

(iii), (xxxviii), (lii), (liii),
and (liv)

Incorporation of next-level ML procedures
for planning LB schemes.
Deep and transfer learning-based LB schemes.
NFV/SDN, unmanned aerial vehicle (UAV)
base station’s (BS) dynamic deployment to
improve LB performance in HetNets.

×

The specific comments regarding tools,
testbeds, and simulation platforms are
missing. This survey does not consider
optimization and computational complexity
for ML approaches.

2013–2021

2022 [102]

LB in fog computing
environment.
hybrid, precise, fundamental,
and approximate
LB methodologies.

(i), (iii), (v), (vi), (xii),(xxvii), (li),
(lv), (lvi) and (lvii)

Systematic study of the problems such as
power saving, multi-objective optimization,
context-aware computing, green Fog,
NFV/SDN, social networks analytics, and
interoperability.

Mininet, CloudSim, MATLAB,
iFogSim, CustomSimulator,
Java platform, Work-robots,
NS-2/3, Jmeter, CloudAnalyst,
CPLEX/AMPL, and Scyther

Although the authors give a percentage of
tools utilized so far in the literature, their
relative analysis is missing in the survey. The
issue of communication overhead needs to be
discussed in the context of fog in detail,
which is missing from this survey.

2013–2021

2021 [120]
LB and resource management
in the fog
computing environment.

(v), (vi), (vii) (xii), (xvi), (lv),
and (lvi)

Load scheduling in fog. Testing of fog-based
load balancers in a real-time environment.
Power-aware resource utilization-based load
balancers’ design.

× 2013–2020

2020 [121]

The performance demands of
ad hoc IoT networks. The
authors contemplated the
impetus for clustering as
follows: LB, reducing power
depletion, and
refining connectivity.

(i), (iii), (iv), (xii), (xi), (xv),
(xvi), (xlviii),(li),(lviii), and (lix)

Big challenges ahead when assimilating
clustering with edge and fog such as resource
provision improvement, and computational
offloading. Challenges allied when
combining clustering with 5G. Heterogeneity,
interference, dynamicity, and scalability.
Hierarchical management.

×

Since clustering was the main point of
consideration in the context of WSNs, this
attempt does not talk much about
rp-LPLNs-based proposals, which is essential
while dealing with LB in an IoT system.
However, those internal details are missing
from this survey.

2000–2019

2020 [113]

Resource management in the
fog context: application
placement, resource scheduling,
task offloading, LB, and
resource allocation.

(i), (iii), (vi), (xii), (xvi), and (lvi)

Resource management in the FC paradigm
(open issues): power consumption,
interoperability, scheduling and offloading,
mobility, and scalability.

×

Although this survey gives a percentage of
tools utilized so far in the literature, its
relative analysis is missing. The issue of
communication overhead is not discussed in
the context of fog.

2014–2019
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Table 2. Cont.

Year/Ref. Techniques Presented LB Metrics
Discussed 1 Suggested Future Directions Tool(s)/Testbed(s) Discussed Weakness Coverage

This survey

It covers several LB issues from
different perspectives: (1)
dynamic LB and resources
management in the cloud,
edge/fog computing
environments, (2) LB solutions
for multipath communication
in IoT, and (3) LB for
distributing incoming traffic
across a cluster of brokers. This
survey has an advantage over
the previous surveys.

It discuses many LB parameters

Traffic-aware LB, data prioritization,
multi-objective optimization in LB decisions,
optimal LB solutions, LB based on
context-aware computing, interoperability,
and efficient load management in vehicular
fog computing

×
This comprehensive survey does not identify
and review all the existing LB schemes for
clusters of MQTT brokers.

2016–2022

1 Explanations: (i) scalability, (ii) overhead, (iii) throughput, (iv) fault tolerance, (v) response time, (vi) resource utilization/resource utilization ratio, (vii) performance, (viii) migration
time/price, (ix) makespan/capacity makespan, (x) transfer time, (xi) multi-sink support, (xii) power management/consumption, (xiii) degree of imbalance/LB, (xiv) carbon emission,
(xv) packet loss/rate/delivery ratio, (xvi) end-to-end delay/delay/latency, (xvii) transmission hop count, (xviii) flow completion, (xix) servers root-mean-squared error, (xx) type of traffic,
(xxi) synchronization/min, (xxii) execution time, (xxiii) forwarding information, (xxiv) guaranteed bit rate, (xxv) peak load ratio, (xxvi) the workload was performed by the controller,
(xxvii) matched deadline flows/deadline, (xxviii) downlink/uplink rate, (xxix) reassociation period, (xxx) concurrency, (xxxi) standard deviation (stdev) and load variance of utilization,
(xxxii) number of overburdened hosts, (xxxiii) percentage of all VMs to be positioned in host, (xxxiv) stdev of connections, (xxxv) stdev of outstanding resource, (xxxvi) number of
migrations, (xxxvii) fairness, (xxxviii) QoS, (xxxix) congestion control, (xl) complexity, (xli) interference mitigation, (xlii) link quality level, (xliii) expected transmissions, (xliv) link
color, (xlv) packet forwarding indication, (xlvi) stability index, (xlvii) network efficacy and stability, (xlviii) LB parameters, (xlix) heterogeneity, (l) network lifetime, (li) reliability,
(lii) signal-to-interference noise ratio, (liii) physical resource block utilization, (liv) call drop/call block/outage, (lv) processing time, (lvi) cost, (lvii) availability, (lviii) physical layer
support, and (lix) coverage, connectivity, and mobility management.
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5. Dynamic LB Techniques in IoT

A dynamic LB algorithm continuously monitors a node’s load and estimates its work-
load by exchanging load and status information between nodes at regular time intervals.
Then, the workload is redistributed across the nodes. In a distributed LB algorithm, all
nodes participate in LB and maintain an information base (for sharing) to distribute and
redistribute tasks efficiently. Furthermore, distributed algorithms can be cooperative or
non-cooperative. A distributed cooperative LB algorithm allows all nodes to work together
to achieve a common LB decision. In a non-distributed LB algorithm, a single node often
decides on load distribution. Moreover, the behavior of non-distributed algorithms can
be either centralized or semi-distributed. In centralized approaches, LB and all load distri-
bution tasks are carried out by a single node. With centralized algorithms, fault tolerance
is a problem. In the event of a single-node failure, node information may be lost. In the
semi-distributed LB approaches, node clusters are formed, and each cluster functions as a
centralized technique.

5.1. Classification of Load-Balancing Techniques

From the above discussion, the classification in Figure 8 emerges.
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Table 3 also classifies dynamic LB methods depending on the computing paradigm
adopted in IoT. As shown in Table 3, dynamic LB techniques for CC are classified into
(1) general LB, (2) natural phenomenon-based LB, (3) agent-based LB, (4) task-based LB, and
(5) cluster-based LB. Dynamic LB schemes for the fog are classified into (1) approximation
algorithms, (2) exact algorithms, (3) fundamental algorithms, and (4) hybrid algorithms.
This table is a comprehensive reference for researchers toward further and future work.



Symmetry 2022, 14, 2554 27 of 58

Table 3. Classification of dynamic LB techniques.

Classification Descriptor

Dynamic LB techniques for CC

General LB

Natural phenomenon-based LB

Agent-based LB

Task-based LB

Cluster-based LB

Dynamic LB in the Fog

Approximation algorithms

Exact algorithms

Fundamental algorithms

Hybrid algorithms

Some LB algorithms are agent-based LB [122], honeybee behavior-inspired LB [123,124],
ant colony optimization [125], and throttled [126].

5.2. Load-Balancing Policies for CC, EC, and FC

Dynamic LB algorithms adopt four basic policies for executing user tasks [127]:

• Task Selection Policy: This policy identifies and selects the tasks that should be moved
from one node to another. Such selection is based on the time needed to complete
the task, the number of nonlocal system calls, and the amount of overhead required
for migration.

• Location Policy: With this policy, tasks are transferred to underutilized (or free) comput-
ing nodes so they can process them. This policy selects the destination node via one
of the three accessible methods (randomness, negotiation, and probing) and assesses
the availability of necessary services for task transfer. The location policy selects the
destination at random and transfers the task in the random approach. The destina-
tion is chosen by a node querying other system nodes in the probing strategy. The
negotiation strategy involves nodes negotiating LB with one another.

• The Transfer Policy: This policy describes the conditions under which tasks must be
transferred from one local node to another local or remote node. To determine the tasks
that need to be transferred, two approaches, ‘all current tasks’ and ‘latest received task’,
are used. In the ‘last received task’ approach, the task that arrives last is transferred
once all incoming tasks have entered the transfer policy. Depending on the workload
of each node, a transfer policy, based on a rule, determines whether a task has to
migrate (task migration) or be processed locally (task rescheduling) in all existing
task methods.

• Information Policy: This dynamic LB policy maintains all resource information in the
system so that other policies can use it when making choices. It selects when to
gather information. Agent, broadcasting, and centralized polling are three different
techniques for gathering data from the nodes. In the broadcasting method, every
node broadcasts its data, making it available to other nodes. Nodes now gather
information using the agent approach. The demand-driven policy, periodic policy, and
state change-driven policy are some examples of information policies.

All of these dynamic LB policies relate to the first processing of tasks by the transfer
policy as they enter a system. After processing, a policy determines whether or not the tasks
need to be moved to a remote node. The location policy determines the destination node
that is idle or underloaded for the tasks that need to be transferred. The task is added to a
queue and executed locally if a distant node is not available for execution. The information
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needed to make the selection is gathered via the location and transfer policies from the
information policy.

5.3. The Function-as-a-Service(FaaS) Paradigm

A cloud function is a microservice that can only execute one action in response to
an event. Such a function is a compact, stateless, on-demand service with just one func-
tional duty. Depending on the application’s objectives, the function implements particular
business logic. There are three key aspects of cloud functions [128]:

1. Cloud functions are short-lived; each function usually only requires tiny inputs and
delivers outputs after a brief period of time, making them simple to automate (for
example, they can be easily auto-scaled).

2. A cloud function lacks operational logic since all operational concerns are transferred
to the platform layer (operational and cloud-managed), enabling platform indepen-
dence for the cloud function.

3. A cloud function has no regard for the context in which it is employed.

The function-as-a-service (FaaS) paradigm [129] is a cloud computing model that
makes it possible for developers to construct, monitor, and call cloud functions even if they
have little to no operational logic experience. Employing an FaaS model at the edge, the
application can be decomposed into functions invoked individually or in a chain. FaaS is
suitable for many IoT applications of practical interest with respect to the programming
model (functional event-based), an efficient utilization of resources (both at the device and at
the edge-node level), and the promises of high scalability. Current FaaS platforms (including
AWS Lambda, Google Cloud Functions, Fission, and OpenWhisk) install, manage, and
monitor cloud functions while attending to operational issues such as resource auto-scaling,
traffic routing, and log aggregation. Notably, the problem of supporting stateful workflows
following a FaaS model in edge networks was addressed in [130]. The authors [130]
focused on the problem of data transfer, which can be a performance bottleneck due to
the limited speed of communication links in some edge scenarios. Distributed algorithms
that implement scheduling and LB solutions must be designed and tested in edge and FC
environments. The operation paradigm that usually fits the context demands that users
make calls to the closer node for executing a task. As the service must be distributed among
a set of nodes, the serverless computing paradigm with the FaaS is the most promising
approach to use. Serverless computing [131] allows us to build and run applications and
services without considering servers. Proietti and Beraldi [132] implemented a framework
(called P2PFaaS) that allows the implementation of fully decentralized scheduling or
LB algorithms among a set of nodes. P2FaaS is based on three basic services: (1) the
scheduling service, (2) the discovery service, and (3) the learner service. P2FaaS allows the
implementation of any scheduling solution, even if based on reinforcement learning (RL).

5.4. Dynamic LB Techniques in the Cloud

The cloud provides ad hoc access to shared resources such as storage, computing
service, and networking facilities. This requires the involvement of optimal resource
scheduling and LB policies that manage the user’s load and resources [78]. Any resource
scheduling and LB policies require the design of a scheduler or balancer (load), which
should be able to schedule or balance the shared limited resources fairly amongst all the
incoming users’ requests. To manage the incoming user requests, an optimal scheduling
policy comprising a scheduler should be competent enough to efficiently allocate the tasks
among available VMs according to their QoS requirements (Figure 3). Static LB techniques
utilize stringent policies without considering the current condition or the system’s state.
For their optimal implementation, these policies must know the required resources, such
as the computing resources (i.e., memory, storage, and processing power capability of
nodes), network parameters, communication time, the database used, etc., in advance.
Although these policies are very limited, their implementation and management require
low complexity from designers’ and administrators’ perspectives. Static policies fail to
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detect the load on the servers dynamically (or during the execution period). This results
in unbalanced load scheduling amongst servers. This ultimately leads to unbalanced
resource utilization, higher processing time, lesser availability, unnecessary offloading,
migration times and cost, lower throughput, high overhead, etc. Another major problem
of static policies is that they cannot dynamically adapt the load scheduling policies or
guidelines since they cannot detect the most recent system’s state. Therefore, static policies
are unfit in distributed CC environments where the load fluctuates. Initially, static policies
were implemented as optimal [78] and suboptimal [78] schemes. These schemes maintain
and keep track of workload-related operations statistics in advance to reduce the waiting
period of workloads. They retain the information base for all the inbound workloads and
assess their execution period. Afterward, they implement the shortest workload first (SWF)
scheduling criteria and execute the workloads accordingly. Nevertheless, there may be a
high possibility that the system would get into starvation for some of the workloads during
the SWF scheduling procedure. Many static LB schemes utilize the notion of round robin
(RR) criteria where the incoming workloads have to be executed for a time slice and then
put back into the task queue to execute another workload. Although the RR procedure is
successful for web services (where the incoming requests are of identical type), it fails in CC
environments, where the incoming requests are of different types altogether [78]. Dynamic
policies examine the most recent system’s state and make active load scheduling decisions.
Furthermore, these policies allow the idea of workload migration from an overburdened
VM to other underloaded VMs. Dynamic policies show flexibility considering the current
condition or the system’s state, which assists in maintaining adequate system performance.
These policies persistently keep track of the load level of the nodes. They also monitor
the resource utilization level of the nodes over a period of time, on the basis of which
they decide whether the migration should be performed or not. Notably, dynamic policies
interchange state and load information between nodes to estimate their workload levels.
On the basis of this estimation, these policies take steps to redistribute the load among
the nodes. In distributed dynamic LB schemes, all the nodes in the system participate in
workload scheduling and resource provisioning. Nodes implement the notion of dispensing
and reorganizing workload proficiently via an information base through which these nodes
can communicate.

The dynamic LB schemes can be classified [78] on the basis of their implemented
load balancer conditions: (1) general, (2) natural phenomenon-based, (3) agent-based,
(4) cluster-based, and (5) workload-based.

5.4.1. General LB Schemes

The simplest way to design any LB policy for the cloud is to estimate and migrate a
load of VMs. According to this concept, Ren et al. [133] introduced a generalized LB scheme
for the CC environment. Their technique predicts the dynamic VM migration timing via the
load assessment mechanism. This scheme utilizes a thresholding mechanism to initiate LB
decisions that can prevent the issue of peak instantaneous load triggering (PILT). Traditionally,
the trigger approach (implemented in conventional LB schemes) tends to generate excessive
overhead in the system by generating frequent VM load migrations because of the PILT
problem. Hence, Ren et al. [133], via their suggested scheme (load prediction), avoided
such unnecessary VM migrations by identifying small PILT in the system. When the load
reaches or surpasses a specified threshold, this policy predicts the future load by assessing
its historical load information instead of doing a quick VM migration. This policy will only
make VM migrations when at least ‘k’ values exceed the threshold.

The customary VM migration techniques can be categorized as one-threshold (1-Th) and
dual-threshold (du-Th) methods [133–135]. In 1-Th method-based policies, VM migration
decisions are based on the upper bound threshold specified for the workloads of machines.
However, two such thresholds (i.e., upper and lower bound) are specified for workloads
of devices in the case of du-Th methods in which VM migrations are executed when the
load surpasses the upper bound or gets below the lower bound. Similarly, power-aware
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resource management schemes were reported in [136,137], which utilize the notion of VM
migration regulation by actively observing the level of resource utilization. Unfortunately,
these threshold-based VM migration policies failed to predict the trend of arriving load
and subsequently led to the issue of redundant VM migrations during the PILT problem.
Liu et al. [134] considered the same issue while designing a VM migration policy by utiliz-
ing a timeseries-based workload forecasting mechanism. Their scheme utilizes the method
of du-Th in which they adjusted both the upper and lower bounds (indicated for load) for
reducing unnecessary VM migrations during the PILT issue and subsequently anticipated
the trend of approaching loads in the cloud. However, Wang et al. [138] revealed some
further issues in VM migration. They rethought the VM migration mechanisms consider-
ing migration price and latency as LB metrics. They formulated a joint optimization VM
migration considering the above metrics to control the spatial deviation in the mentioned
migration issue for price and latency optimization. Similar schemes [139,140] were sug-
gested in the literature. Their strong motivation was to augment the cloud resources by
considering the migration price and latency metrics. Mann [139] showed the vitality of
essential factors such as the computational capacity of physical machines and the computa-
tional load of VMs during VM allocation on physical machines (PMs). The authors shed
light on conventional LB methods and stated that these methods modeled these factors as
single-dimensional capacities. These factors are apprehended by one number per machine.
This defines VM migration as a single-dimensional issue in which a group of VMs can
only be migrated or allocated on a PM when their total CPU loads are lesser than the CPU
capacity of the PM. In advanced computer architecture, a VM and a PM can have many
CPU cores (i.e., PM-CPUCore and VM-CPUCore) [139]. Each VM-CPUCore can be mapped or
allocated to one of the available PM-CPUCore during the process of VM-to-PM mapping.
CPU core-level mapping information is critical in various scenarios to attain decent perfor-
mance [139]. Zhao et al. [141] suggested an energy consumption and QoS guaranteed-based
VM arrangement viewpoint concerning cloud setup. Notably, the energy consumption of
PM should be considered when VMs are executed over them. The authors highlighted that
these VMs usually share the critical physical resources of a PM when all of them execute
on it. This further generates high contention among them concerning the limited sharing
of physical resources, ultimately resulting in VM performance issues. Considering these
issues, Zhao et al. [141] suggested an optimal VM placement procedure that handles such
performance issues and the energy consumption of the PM. For this reason, they initially
examined the relationship between CPU utilization and energy consumption to design a
nonlinear energy model. Then, the authors developed a VM performance model to assess
the performance trends of currently running VMs on a PM. Their mechanism utilizes these
designed models to formulate the VM placement, effectively balancing the tradeoff between
energy consumption and VM performance. Other energy-aware methodologies [142,143]
aim to reduce energy consumption in clouds concerning the service providers’ viewpoint.
Several network (traffic) optimization mechanisms [144–146] have also been suggested to
improve cloud resource utilization in compound aspects from the viewpoint of service
providers. Nevertheless, Zhao et al. [141] proved that these techniques [139,140,142–147]
did not consider the users’ QoS viewpoint while designing VM placement schemes which
may adversely affect the QoE for the user.

5.4.2. Natural Phenomenon-based LB Schemes

Workload scheduling and its balancing are NP-hard problems that cannot be solved
entirely with conventional and dynamic advanced deterministic methods. Because of this,
many nondeterministic methods (i.e., natural phenomenon-based metaheuristic mech-
anisms) have been proposed. Such methods aim to solve this NP-hard problem [148].
Hota et al. [149] reviewed LB algorithms for the CC environment. They categorized these
nondeterministic techniques as metaheuristic, heuristic, and hybrid algorithms. Their
survey discusses the advantages and disadvantages of these techniques (published be-
tween 2011 and 2016). However, a systematic and comprehensive review of the classified
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metaheuristic techniques needs to be included. Later, Milan et al. [150] classified meta-
heuristic techniques such as ant colony optimization (ACO), particle swarm optimization
(PSO), artificial bee colony (ABC), genetic algorithm (GA), firefly optimization (FO), cuckoo
search algorithm (CSA), and many others. Houssein et al. [151] classified these algorithms
into swarm algorithms (i.e., ACO, PSO, and ABC) and GA algorithms and evaluated the
scheduling mechanisms accordingly.

− Swarm Algorithms: In the case of ACO-based scheduling mechanisms, the workloads
are depicted via ants. Pheromone intensity can denote the knowledge of commonly
used resources and the load on each available resource. Moreover, the required critical
resources in a cloud setup, i.e., VMs, can be depicted by food sources. In the case of
ABC-based cloud scheduling schemes, the workloads can be demonstrated via each
ABC. A beehive can be depicted as a cloud setup (environment), and VMs can be
understandable as food sources. If we map the analogy of finding food for bees with
cloud scheduling, this analogy can be analogous to workload scheduling on VMs in
the cloud. However, assessing superior food sources can be explained as discovering
and evaluating the underloaded VMs in the cloud to which all the newly arrived
workloads can be scheduled. Then, PSO is adapted and mapped to handle scheduling
issues in clouds. Especially in the case of PSO-based scheduling mechanisms, the
number of workloads can be explained as the viewpoint of the potential solution. Each
position can be depicted as a collection of candidate VMs analogous to the scheduling
procedure [151].

− Evolutionary algorithms: The chromosomes play an essential role when dealing with
GA-based mechanisms. A chromosome consists of a sequence of genes that depicts a
possible solution. In such a mechanism, a basic factor, called fitness function, is utilized
to verify whether the available chromosome is appropriate for the environment or not.
Furthermore, concerning the fitness value, best-suited chromosomes are identified.
Afterward, complex mutation and crossover computations are accomplished, generat-
ing more probable solutions (offspring), further creating a new population. However,
the suitability of newly created possible solutions (offspring) is further verified via the
fitness function in such a mechanism. This process continues until an ample number
of probable solutions is found. In GA-based scheduling mechanisms, the workloads
(scheduled on VMs) are depicted via the offspring computation process [151].

− Swarm and Evolutionary Algorithms-based Load Scheduling and Balancing Schemes: Many
authors explored and revealed interesting insights into smart swarm algorithms
such as ACO. By utilizing the notion of ACO, Tawfeek et al. [152] showed that the
considered adapts well and suggests improved performance compared to the GA
notion suggested by Dasgupta et al. [153]. Nonetheless, ACO suffers from the issue
of high network overhead, and it may fall into the local optimum as revealed by
Farrag et al. [154]. Considering ACO as a nature-inspired scheme, Tawfeek et al. [152]
considered makespan minimization as the objective function. Their suggested mecha-
nism utilizes a random optimization exploration method to allocate and manage the
arrival workloads on VMs. Nevertheless, this technique does not address the fault
tolerance factor in the system.

Fu et al. [155] highlighted the requirement of improving QoS and the competence
of multidomain networks (cooperative). According to this motivation, they revealed a
strict need to address the unbalanced traffic load of multi-controllers in such networks. For
this reason, the authors suggested an improved ACO (IACO) scheme to handle this issue.
IACO effectively addressed the controller overload and scalability issue of the control plane.
IACO is a multiple-controller-based distributed architecture implemented on top of the
SDN-based multi-controller architecture, which utilizes the selection probability. In IACO,
such a probability is assessed through the collected topological information.

By considering the utilization of ACO to explain scheduling issues in a cloud scenario,
Tsai and Rodrigues [156] insisted that numerous computational resources (e.g., CPU usage,
available bandwidth, storage, and memory) can be taken into consideration at an equal time
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on the convergence procedure. Li et al. [157] insisted on considering the usage of processor
counts on a VM, the million instructions per second (MIPS) of each processor of a VM,
the estimated completion time of a workload in a VM, the network available bandwidth,
and the execution time of a VM in probability estimation for the assessment of potential
solutions of ACO. Moon et al. [158] proposed a novel ACO-based workload scheduling
scheme utilizing the concept of ‘slave ants’ (i.e., SACO) in a cloud setup. SACO schedules
the workloads of cloud users to VMs with an optimized factor mapping idea. The ultimate
motivation of SACO is to handle the global optimization issue using the concept of slave
ant. SACO utilizes dual pheromones, such as global and local, to reach the global optimum
despite packing at local optima. Muteeh et al. [159] suggested a LB and scheduling-based
framework (called MrLBA) for the CC environment. Their framework works on dual
phases of preprocessing and optimization. Initially, MrLBA preprocesses and creates the
sorted list of workloads corresponding to the available parameter information such as
the completion time, dependence level amongst workloads, and amount of data to be
transferred amongst workloads.

Earlier, several authors explored and revealed interesting insights into the use of the
ABC notion for addressing LB issues in the cloud. The ABC notion works with three distinct
categories of bees (onlooker, working, and scout) to reach the probable solutions. The
working bees randomly search for solutions, and then onlooker bees utilize the optimum
available solutions. Lastly, scout bees investigate the novel area in search space [160].
The authors of [161] illustrated the idea of utilizing the ABC mechanism for workload
scheduling in distributed grid environment. They applied the notion of the foraging
action of bees for workload scheduling on available critical limited resources. Various
ABC-based LB mechanisms [123,162] schedule non-preemptive individual workloads. LD
and Krishna [123] suggested an ABC-based scheme for scheduling and balancing non-
preemptive independent workloads between overloaded and underloaded VMs, which
aims to augment the throughput performance. This scheme manages the workloads’
priorities on VMs to reduce their queuing time. Nonetheless, this scheme may suffer
from the issue of scalability and single-point failures (since bees are generated from a
single source). Furthermore, in this scheme, the workloads with lower priorities may
suffer from starvation, resulting in more queuing time. Pan et al. [162] proposed an
interaction ABC-based LB (IABC-LB) mechanism to improve production and efficiently
balance the system’s load. Nonetheless, their scheme does not consider the inequality
of numerous load resources in a single physical machine. Hashem et al. [163] suggested
another ABC-based LB mechanism that aims to disperse the task load of numerous network
links to circumvent over and underusage of critically limited resources. Kruekaew and
Kimpan [164] suggested an ABC-based VM scheduling strategy for the CC environment.
Their objective was to reduce the makespan of processing time. The authors [165] evaluated
and assessed the performance of ABC compared to GA and stated that ABC performs better
than GA in some specific scenarios. Yakhchi et al. [166] proposed another CSOA-based LB
scheme for efficient power management in the CC environment. Their scheme’s objective
is to minimize energy utilization in datacenters by blending the lowest migration time
notion and server consolidation methodology. Considering the same objective, Kansal and
Chana [167] suggested a firefly optimization (FO)-based power-aware VM migration policy
for the cloud.

Elmagzoub et al. [168] surveyed swarm intelligence-based LB techniques in a cloud
environment, while Bhargavi et al. [169] modeled the performance of some competitive
swarm intelligence-based LB techniques in the cloud. Many researchers implemented new
LB plans regarding the PSO mechanism. Particles’ arbitrary movement is an imperative
factor whenever considering PSO in the implementation of LB for any computing paradigm.
The locus for every particle is recognized in every step, and the optimal particle is selected
accordingly. The overall idea of this scheme is modest and has low overhead (network).
Moreover, this scheme sometimes falls into a local optimum [168]. Yuan et al. [170] pro-
posed an improved PSO (i-PSO) scheme to achieve the probable (optimal) solution within
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time. They offered a nature-inspired solution for optimizing VM resource scheduling by
restraining particle speed in the CC environment. Subsequently, the authors revealed
better results regarding the shortest average completion time and average service-level
agreement (SLA) than GA. Aslanzadeh and Chaczko [171] shed light on the utilization of
the endocrine scheme in designing an LB scheme for the CC environment. This scheme
comprehends the concept of LB by employing the self-organization mechanism amongst
overburdened VMs by enabling communication amongst them. Their method utilizes
feedback in managing and transferring loads between overloaded VMs to available lightly
loaded VMs. However, PSO is utilized to identify the optimal (available) lightly loaded
VMs to which extra workload is assigned.

Pan and Chen [172] utilized the available LB features and proposed an improved
PSO (iPSO). iPSO suggests readapting the notion of the particle’s speed and position
and procedures for modernizing fitness values. With the common objective of reducing
makespan and augmenting resource utilization, Ebadifard and Babamir [173] suggested
a static LB scheme that considers the workload as self-regulating and non-preemptive.
The authors of [174] improved resource utilization and reduced makespan by considering
binary version PSO, some LB, service placement, and workload assignment schemes.
Miao et al. [160] focused on static assignments of VMs and dynamically postponed the LB
to the arrived load. Their scheme, called adaptive Pbest discrete PSO (APDPSO), addresses
the problem of conventional PSO’s random particles’ movement because of inadequate
discretization approaches. Additionally, APDPSO addresses the issue in the pbest updating
factor. The authors shed light that this factor in conventional techniques gets updated only
bearing in mind the experience of the particles. This subsequently results in the selection of
a suboptimal particle as the leader. The authors [160] suggested the constraint of sorting
every particle in the presently available swarm, which ultimately assists in computing the
next step of the non-dominated particle set where the particles decide their pbest position.
Subsequently, this idea helps to estimate pbest more appropriately and stops the strategy
from falling into local optimum.

Wang and Li [175] presented a multi-population GA (mpGA) scheme considering
LB to address the workload scheduling problem in the CC environment. The mpGA’s
ultimate objective is to effectively address the task scheduling problem by avoiding the
untimely convergence issue associated with GA. The authors insisted on using max–min
and min–min algorithms for population initialization which subsequently assists mpGA
in boosting search efficiency in the system. They also presented and highlighted the
requirement of standardizing metropolis to screen the offspring. The motive behind such
standardization was that poor individuals should not be completely ruled out; instead, they
should be accepted with some probability, which consequently assists in maintaining the
population diversity and dodging local optimum in the system. Their performance analysis
showed that mpGA offers lower processing costs, better LB, and minimum completion
time compared to the adaptive GA technique.

Cho et al. [176] suggested a hybrid technique called ACOPS by merging PSO and
ACO techniques to improve VMs’ LB and subsequently aimed to decrease overhead by
augmenting convergence hustle. The ACOPS highlighted the requirement of adding PSO’s
operator to the ACO scheme to raise the effectiveness of resource scheduling. ACOPS
utilizes the historical workload (request) information to estimate the incoming requests
for workload dynamically and rapidly. Their performance analysis of ACOPS showed
better results than the state-of-the-art approaches in terms of completion time, makespan,
and response time. Their analysis also indicated that ACOPS could suggest optimum LB
in a dynamic environment. Nonetheless, the presented scheme does not address fault
tolerance, power consumption, and scalability. Shojafar et al. [177] suggested another
hybrid LB scheme (called FUGE) that aims to accomplish optimal LB by considering cost
and execution time as essential factors. FUGE indicates the fusion of GA and fuzzy theory
to achieve such objectives. FUGE recommends improving the conventional GA proce-
dure and utilizing fuzzy perceptions to augment the performance concerning makespan.
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Nevertheless, FUGE may suffer from the problem of unnecessary power depletion and
migration costs. Wei et al. [178] suggested another hybrid approach for workload schedul-
ing for the cloud called simulated annealing mpGA (SAmpGA) technique. SAmpGA is
the amalgamation of mpGA and the simulated annealing algorithm (SAA). The authors
highlighted the requirement of standardizing metropolis for screening the offspring. They
insisted on using max–min and min–min algorithms for population initialization, which
subsequently assists the method in boosting search efficiency in the system. The main aim
of employing SAA in the presented method is to dodge the local optimum and enhance the
performance of the global optimum. The authors insisted on utilizing a family evolution
mechanism based on adaptive mpGA to obtain optimal solutions and improve conver-
gence speed. Similarly, many other hybrid algorithms [179–181] have been developed and
tested over heterogeneous CC environments which suggest encouraging results regarding
improvements in some essential parameters (i.e., low execution time, low makespan, better
resource utilization, better LB, improved scalability, etc.). Unfortunately, until now, these
policies have not been able to meet all the essential parameters. For this reason, the research
community is continuously proposing changes in such algorithms.

5.4.3. Agent-Based LB Schemes

A cloud-based emergent task allocation method was created by Chen et al. [182].
The authors used the fair competitive concept and the dynamic adjustment principle to
balance the load while accommodating new responsibilities. The method uses a buffer pool
mechanism to improve the efficiency of the approach and a roulette wheel mechanism in
which the bidder participates in the bidding process to assign the assignment to a resource.
The strategies efficiently utilize resources, according to experimental findings, but they
increase processing and transmission times.

Automatic resource provisioning is made easier by an application-aware LB architec-
ture based on several software agents. Tasquier [183] introduced such an architecture that
employs three agents: (1) the executor agent, (2) the provisioner agent, and (3) the monitor
agent, in charge of representing running applications, managing resource scaling in and
out, and keeping tabs on resource overload and underload conditions, respectively. This
LB technique can assess the current level of resources and cloud elasticity. However, the
author did not test the viability of his technique in a cloud setting and did not consider
QoS. Gutierrez-Garcia and Ramirez-Nafarrate [184] described a collaborative agent-based
LB method that uses the live VM migration concept to distribute the load among hetero-
geneous servers. They also suggested an agent-based LB system, which comprises an LB
program to choose the initial host for VMs, strategies for VM migration, acceptance policies
for VMs, and a program that recognizes the VMs that need to be migrated along with
the destination. Their approach outperformed centralized LB techniques and improved
task response time and resource utilization, but increased migration overhead. Keshvadi
and Faghih [185] proposed a multiagent-based LB architecture that aids in maximizing
resource consumption. To reduce waiting times and maintain a service-level agreement
(SLA), it employs both sender- and receiver-originated approaches. The VM monitor agent
(VMM agent), datacenter monitor agent (DcM agent), and negotiator ant agent (NA Agent)
structure the model. The VMM agent maintains data on memory, CPU, and bandwidth
utilization by VMs to track load across all supported VMs in the system. The DcM agent
executes information policy utilizing data provided by the VMM agent and classifies VMs
on the basis of various attributes. To learn the status of the VMs that are available in other
data centers, it additionally launches NA agents.

Sangulagi and Sutagundar [186] proposed an agent-based LB technique in the sensor
cloud using a neuro-fuzzy approach to achieve LB between physical nodes. Using their
neuro-fuzzy approach, the redundant information is removed, and the essential information
is stored in a cloud server with greater accuracy. Agents are triggered at the physical sensor
network to collect the sensed information and submit it to the Cluster Head, saving the
node’s energy. Their neuro-fuzzy approach balances the overall network load by rejecting
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redundant information generated from multiple sensor nodes and decides on the collected
information. The accuracy of the decision is improved by adding weights to the decision
output, which further improves system accuracy. Moreover, the network lifetime increases
as a small amount information with great accuracy is saved on the cloud server. In this
manner, the overall system stability through the LB approach is improved. Saini et al. [187]
proposed a real-time agent-based LB algorithm for the Internet of drones in the cloud. Their
algorithm decreases the communication cost of nodes/drones, speeds up the pace of LB,
and improves the response and throughput of the cloud. Existing LB plans rely on the data
transfer capacity or traffic condition to move the load from one node to the next. In this
algorithm, a lightweight operator can move effectively starting with one node onto the next
without influencing the system’s load excessively.

5.4.4. Task-Based LB Schemes

Kim et al. [188] presented an LB system to process large-scale tasks using only mobile
resources and no external cloud server. This plan is built on the collaborative architecture
across mobile cloud computing environments. The proposed plan comprises a collaborative
architecture, an agent–client architecture, and an adaptable mobile resource offloading
(AMRO) architecture. It is not expected that the resources of mobile devices will always
be delivered consistently in this context. Hence, an LB scheme is needed with efficient
work division and optimum task allocation. A task-based LB strategy can consider the
individual usage patterns and changing resource states. A technique, called task-based
system load balancing (TBSLB), was created by Ramezani et al. [189]. This technique is
based on the PSO algorithm to decrease the cost of VM migration. The authors also created
a task transfer optimization model. They enhanced CloudSim (which has the Jswarm
package incorporated in it) to assess the model proposed in [190]. Their model reduces
cost, memory utilization, and VM downtime. The authors considered the utilization
cost, memory downtime, and transfer time aspects. Their model can be enhanced to
accommodate multi-objective PSO, more LB factors, and greater resource usage.

A task-scheduling method based on genetics and ant colonies was proposed by
Wu et al. [191]. They blended the best aspects of ACO and genetic approaches. An ant
colony algorithm chooses the best resource for the tasks after an earlier genetic algorithm
looks for the available resources. The genetic algorithm is less efficient, is redundant, and
has a longer response time. Due to a paucity of pheromones, the ant colony algorithm
also performs poorly during the resource search stage. The hybrid technique enhances LB
among VMs and boosts performance by incorporating elements of both algorithms.

The network-aware task placement method [192] for MapReduce decreases task com-
pletion times, total transmission times, and data cost. The challenges concerning the tasks
are as follows: (1) resource availability changes dynamically as a result of releases and
access over time; (2) data-fetching time for decreased tasks relies on size and location;
(3) the load on the path also significantly affects data access latency. When choosing a
schedule for the tasks, the load over the path should be considered to reduce data access
latency. Results indicate that this method [192] increases resource utilization and reduces
work completion times.

A multiple-scheduler architecture facilitates the reduction of the cost of executing
massively parallel activities. Xin et al. [193] proposed the weighted random scheduling
strategy to reduce task resource competition and excessive device load. Weights are allo-
cated to the tasks on the basis of factors including cost, execution time, and communication
delay. A machine with a lower cost will incur a greater cost and be more likely to be given
a task to complete. To create the necessary dataset, the authors tested MATHLAB2012b’s
WorkFlow generator. The broader group of tasks in an interval with execution time, cost,
and transmission delay was included in the datasets on which their experiments were
conducted. Additionally, they considered work structure, task completion time, device
dependency, and particular device set tests.
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Aladwani [194] proposed the Selecting VM with Least Load (SVLL) LB model for task
distribution. The SVLL model increases the performance of cloud systems by estimating
the load of each VM and allocates the tasks for execution based on the load of the VM
rather than the number of tasks allocated to the VM. This model was applied with other
task-scheduling techniques such as first come, first serve and shortest task first, which
results in improved total waiting time and total finish time of tasks. Elmougy et al. [195]
created a task load-balancing method that combines the best elements of Round Robin
(RR) scheduling and the shortest job first scheduling strategy. To balance the waiting times
for the tasks, this method maintains short and long tasks in two different ready queues
and employs dynamic task quantum. Throughput and starvation were considered by the
authors. On the CloudSim simulator, they tested the algorithm, and the results showed
that turnaround time, waiting time, and reaction time were all minimized. Additionally,
extended task hunger was lessened. To balance tasks that can be upgraded in the future to
reduce waiting times and the starving issue, the task quantum is not particularly effective.
Alguliyev et al. [196] introduced a task-based LB model, called αPSO-TBLB. Their model
offers an optimal migration of tasks causing an overload from loaded VMs to corresponding
VMs in the cloud. In their optimization model, the minimization of task execution and trans-
fer time were selected as target functions. The authors conducted simulation experiments
in Cloudsim and Jswarm software tools. The simulation results proved that the suggested
method provides an optimal solution for the scheduling of tasks and equal distribution of
tasks to VMs. Moreover, less time consumption is obtained for the assignment process of
tasks to VMs. Potluri and Rao [197] incorporated a multi-objective optimization-based VM
merged technique by taking into account the precedence of tasks, LB, and fault tolerance.
Using their technique, a better migration performance model was obtained to efficiently
model the requirements of memory, networking, and task scheduling. Their model serves
as a QoS-based resource allocation system using the fitness function to optimize execution
cost, execution time, energy consumption, and task rejection ratio.

5.4.5. Cluster-Based LB Schemes

In a cloud environment, different resources are distributed throughout multiple data
centers and clustered according to various factors such as server performance and storage
capacity. An adaptive LB method that uses predictions assists in optimizing the utilization
of data center resources. The technique [198] predicts the load in clusters; as a result, it
calls back cluster resources if the workload falls below a specified threshold and adds new
VMs when the burden increases. This approach reduces task response times and improves
resource usage.

Daraghmi and Yuan [127] provided an LB approach to alleviate the drawbacks of a
centralized controller in large data centers. With the help of designed controllers for traffic
control and network management, it divides the entire network into numerous areas and
assigns a controller to each region to reroute the flows. When an uneven load occurs, this LB
solution migrates some of the load to the controller so that it can be managed dynamically.
To manage the traffic, the authors created some solutions for the LB distributed computing
technique, including greedy approaches and one distributed greedy approach. Then, they
compared the outcomes with previously created controllers.

To confront the difficulties of current LB methods, Zhao et al. [199] discussed a heuristic
strategy for LB based on Bayes and clustering (LB-BC). Their method produces long-term
LB and is based on the Bayes theorem [200]. To select the best host, it computes the posterior
probability of physical hosts and combines it with the clustering concept. The number
of requested tasks, the standard deviation, and the LB effect are all factors that are taken
into account. Later, the strategy was contrasted with dynamic LB, which reduces standard
variation over time to a minimum. The suggested method functions only in a small region,
but it can be improved for wide area networks and real-time settings.

The cluster-based task-dispatching method [201] enhances inter-cloud communication
for LB in dynamic and real-time multimedia streaming. This method consists of two steps.
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Using a periodic ‘hello packet’ broadcast to all connected neighbor servers, it first estab-
lishes the cluster for monitoring operations, managing platform complexity, and satisfying
requests and satisfactory QoS for the hosts. If more than 5 tasks are in the queue that
needs to be completed before the task can be started, the system decides to transfer the
task requests. This approach performs better than ant colonies, while having a greater rate
of task dispatching and faster reaction times. Additionally, this method can be enhanced
for the real-time setting where intermediate nodes become congested owing to resource
limitations, so as to decrease data loss due to congestion.

Dhurandher et al. [202] proposed a decentralized cluster-based algorithm that obtains
dynamic LB in the cloud. Their algorithm supports heterogeneity and scalability and
improves network congestion. Moreover, it ensures the absence of any bottleneck node due
to its decentralized nature. A solution to the issue of load distribution on the nodes was
proposed in [203] using a cluster-based task LB approach. By organizing tasks into clusters
and distributing them among collaborating nodes, it develops a task allocation strategy
by combining the principles of genetic and KUHN algorithms. The workload allocation
among the data center nodes is enhanced by this technique, as is the response time. For
self-scheduling techniques, Han and Chronopoulos [204] created a hierarchical distributed
approach to enhance the LB and scalability of the cloud system. Both homogeneous and
heterogeneous contexts can accommodate the model’s operation. Four separate computa-
tion applications were used to implement the techniques in a large-scale cluster. The results
demonstrate better scalability, enhanced overall performance, and decreased communica-
tion overhead. Future testing of the technique can include loops with dependencies and
large-scale clusters. By clustering the load and the available resources according to specific
criteria, Nishitha et al. [205] proposed an LB algorithm for cloud environments with an
improvement in the throughput and a decrease in the frequency of failed task deployments.

5.5. Dynamic LB in Fog Computing

LB prevents some fog nodes from being either under- or overloaded. Recently, fog
network architectures were proposed [206,207] to distribute the network traffic load in
an IoT environment. Network traffic-based dynamic LB algorithms can optimize the
overall network performance, while a load balancing-assisted optimized access control
mechanism [206] can improve the network load conditions further. LB algorithms in fog
can be classified as approximate algorithms, exact algorithms, fundamental algorithms,
and hybrid algorithms.

5.5.1. Approximate Algorithms

This section discusses selected heuristic-based algorithms and probabilistic/statistic
algorithms.

− Heuristic algorithms: These algorithms are born entirely from ‘experience’ with a partic-
ular optimization problem and aim to find the best solution to the problem in optimal
time through ‘trial and error’. Solutions in heuristic approaches may not be the best
or optimal, but they can be much better than a well-informed deduction. A heuristic
approach uses the details of the problem. An exact approach takes substantial time to
get the optimal solution. Thus, a heuristic approach is preferable to get a near-optimal
solution in the optimal time. Existing heuristic methods include hill climbing [208],
Min-conflicts [209], and the analytic hierarchy process (AHP) [210].

Zahid et al. [208] suggested a framework for a three-layered architecture that consists
of a distributed fog layer, a centralized cloud layer, and a consumer layer. A hill-climbing
LB technique was proposed, which reduces the processing time (PT) and response time (RT)
of fogs to customers. Additionally, Kamal et al. [209] presented Min-conflicts scheduling, a
LB scheduling technique. The constraint fulfillment problem is solved by this algorithm
using a heuristic approach. The three layers of the suggested architecture are made up
of clouds, fog, and end users. Banaie et al. [210] developed multiple queuing systems
to estimate the performance of a fog system to decrease the delay of data streams from
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IoT devices to the applications. They used a resource caching policy and a multi-gateway
architecture in the IoT sector to hasten user access to sensor data. To provide overall load
fairness among the network entities, an LB strategy based on the AHP method was also
used. Furthermore, Oueis et al. [211] referred to the LB problem in a fog environment
to improve the quality of the user experience (QoE). They took into account many users
who needed computation offloading. To handle all requests, local computation of cluster
resources was required.

In IoT, many terminals possibly trigger enormous demands of bandwidth. To address
this problem, Chien et al. [212] proposed a service-oriented SDN service function chain
(SFC) load balance mechanism. This mechanism considers and classifies the type and
priority of service required by each terminal device. Then, it adopts the heuristic algorithm
to plan the transmission paths among SFCs to reduce the load of each service function (SF)
and improve the overall network performance. The simulation results indicate that their
approach can reduce the time of data transmission and achieve LB.

Through the resolution of the traffic routing optimization problem, Zhang and Duan [213]
addressed the issue of resource allocation optimization. Their strategy creates a mathe-
matical model for single-objective optimization. The weighted coefficient combines some
sub-objectives even if the model only has one main goal. They presented an adaptive data
traffic management method (a-ADTC) to address the traffic transmission optimization issue
to obtain the best approximation for this optimization aim. Their heuristic greedy a-ADTC
method ensures LB for a wireless network through efficient traffic movement.

− Metaheuristic Algorithms: A metaheuristic method is a higher-level heuristic method. It
is a problem-independent method that can be practical for a wide range of problems.
Any recent metaheuristic method has a diversification element and an intensification
element. A balance is required between diversification and intensification to gain an
influential and effective metaheuristic method. A metaheuristic method examines
the entire solution space; a dissimilar set of solutions should be created. Moreover,
the search must be heightened close to the neighborhood of the optimal or near-
optimal solutions. Some metaheuristic algorithms include particle swarm optimization
(PSO) [214–216], the fireworks algorithm [217], the bat algorithm [218], the whale
optimization algorithm [219], and hybrid metaheuristics [220]. He et al. [214] proposed
the fog and software-defined network (SDN). They introduced an SDN-based modi-
fied constrained optimization PSO approach for the adequate usage of the SDN and
cloud/fog architecture on the Internet of vehicles. Wan et al. [215] proposed an energy-
aware LB and scheduling solution based on the fog network. The authors provided an
energy consumption model on the fog node that was related to the workload. Then, an
optimization function was developed to balance the workload on the manufacturing
cluster. The manufacturing cluster had to be prioritized as they used an upgraded
PSO method to arrive at a good solution and complete tasks. Baburao et al. [216]
proposed a resource allocation strategy based on PSO-based LB in a fog environment.
Shi et al. [217] suggested a cloud-based mobile facial recognition architecture based on
fog and the SDN architecture to solve the delay problem. In addition, they formulated
LB in SDN and fog/cloud systems as an optimization problem. To solve the LB prob-
lem, they proposed the use of the fireworks algorithm (FWA) based on centralized
SDN controls. Yang [218] proposed a three-layered architecture based on a fog/cloud
network and big medical data. Their architecture contained the cloud, fog, and medical
devices. In this architecture, their LB strategy used the bat algorithm to execute the
initial setup of bat population data, which enhanced the quality of the solution in the
initial sample. Malik et al. [219] proposed a fog-based framework that balances the
load among fog nodes for handling the communication and processing requirements
of intelligent real-time applications for patients. To provide better services to patients,
they proposed an efficient cluster-based LB algorithm at the fog layer which consisted
of fog nodes with various VMs. These VMs were grouped in line with their storage,
functionality, computation capability, and specifications. These VMs together with
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the VM manager constituted a cluster. Such clustering assisted in the rapid allocation
of tasks and reduced latency time. Concerning LB, Karthik and Kavithamani [220]
proposed a whale optimization algorithm in a microgrid-connected wireless sensor net-
work and fog settings. Moreover, Qun and Arefzadeh [221] introduced an LB method
using a hybrid metaheuristic algorithm in fog-based vehicular ad hoc networks.

− Probabilistic/Statistic Algorithms: This section discusses LB algorithms based on proba-
bilistic/statistic algorithms, including machine learning [222], fuzzy logic [223], game
theory [224], and random walk [225].

Li et al. [222] investigated the fog infrastructure runtime features and suggested a self-
similarity-based LB (SSLB) technique for large-scale fog systems. The authors introduced an
adaptive threshold policy and a matching scheduling technique to ensure SSLB efficiency.
Singh et al. [223] presented a load balancer based on fuzzy logic that uses different levels of
tuning and the design of fuzzy control in fog environments. Their fuzzy logic model was
used to perform link analysis as connections to manage traffic. Abedin, et al. [224] formu-
lated the fog LB problem to minimize the LB cost in fog environments which are enhanced
by the narrow-band Internet of things (NB-IoT). Initially, the time resource scheduling
problem in NB-IoT was modeled as a bankruptcy game. Then, the transportation problem
was solved by applying Vogel’s approximation method of finding a viable LB solution
to ensure the optimal allocation of tasks in fog environments. Lastly, Beraldi et al. [225]
suggested a distributed approach for fog-LB based on the random-walk method.

5.5.2. Exact Algorithms

Optimization problems can be optimally solved using exact algorithms. In particular,
each optimization problem can be solved by applying the exact search. However, larger
instances require forbiddingly more time to get the optimal solution. The methodical
search is significantly slower than the exact algorithms. Researchers have proposed some
exact algorithms for LB in the fog environment including graph theory gradient-based,
decomposition, and combinatorial.

Ningning et al. [226] developed the fog computing LB approach based on dynamic
graph partitioning using the graph partitioning theory. The authors demonstrated how the
fog computing framework, following cloud atomization, could flexibly design the system
network and how the dynamic LB mechanism is capable of structuring the system and
reducing node migration due to system modifications. Puthal et al. [227] recommended
using a LB technique to assess the edge data centers (EDCs) and identify less loaded EDCs
for work distribution. Finding less loaded EDCs for task distribution is easier with this
method than with others. It enhances security via destination and boosts LB effectiveness.
In [228], the authors suggested Dijkstra’s algorithm for the LB in vehicular fog computing.
Additionally, Fan and Ansari [229] presented a workload balancing model for a fog network
to reduce the data flow delay in processing operations and communications by connecting
IoT devices to the proper base stations.

FC was utilized by Barros et al. [230] to shorten the logical distance between the
consumption site and the central distribution. IoT devices at the network edge are more
effective and less expensive in managing power flow data. They assessed the effectiveness
of the Newton–Raphson and Gauss–Seidel methods to create real-time computation for
the load flow problem using fog. Beraldi and Alnuweiri [231] investigated LB between fog
nodes and addressed the unique difficulties brought on by the fog system. They used LB
techniques that were randomized and took advantage of the power of random choice. They
built up sequential probing as a substitute for customary randomization processes that
relied on parallel examination. The downlink of the cache-enabled fog radio access network
(F-RAN) was examined by Chen and Kuehn [232], who also looked into ways to reduce
power consumption and communicate more sustainably. An effective LB technique was
proposed on the basis of channel states. The proposed the LB algorithm as an affordable
way to create greener networks because it increases cache memory for a higher content-
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hitting rate. To reduce the bandwidth cost, Maswood et al. [233] introduced a mixed-integer
linear programming (MILP) model in the fog/cloud environment.

Sthapit et al. [234] offered solutions for several conditions in which the cloud or fog
is not present. The sensor network was first modeled using a network of queues. Then,
scheduling decisions were made while taking into account LB. By employing connected
automobile systems as an illustrative application, Chen et al. [235] demonstrated how
vehicle mobility patterns may be used for executing periodic LB in fog servers. They
provided a task model to address the scheduling issue at the server level rather than the
device level. To increase serviceability in F-RANs, Dao et al. [236] presented an adaptive
resource balancing (ARB) model in which resource block (RB) utilization within remote
radio heads (RRHs) is balanced. This balance uses the Hungarian method and backpressure
technique, taking into consideration a time-varying network topology issued by potential
RRH mobility. Lastly, Mukherjee et al. [237] suggested a LB approach to specify the tradeoff
between computing delays and transmission in F-RANs.

5.5.3. Fundamental Algorithms

Some studies on LB in fog computing are based on fundamental algorithms such as
shortest job first, throttled, round robin (RR), and first fit. This section reviews the selected
fundamental algorithms.

Nazar et al. [238] offered an LB algorithm that modified the shortest job first (MSJF)
to manage the user’s request load amongst VMs at the fog level. Ahmad et al. [239]
also suggested an integrated cloud and fog-based platform for smart buildings’ efficient
energy management. For LB, the first fit (FF) method was used, which selects VMs on the
basis of partitioning memory blocks. Smart buildings with several flats and IoT devices
were considered in their cloud/fog-based approach. Chekired et al. [240] presented a
decentralized scheduling architecture for electric vehicle (EV) energy management based
on the fog system concept. Concerning particular multitenancy requirements such as
latency and priority, Neto et al. [241] suggested a multitenant load distribution strategy
for fog networks (MtLDF). They also provided case studies to show how their approach
might be applied in contrast to a latency-driven load distribution system. Barista et al. [242]
presented a method based on performing LB requirements for fog of things (FoT) platforms.
They applied SDN to program IoT settings. The authors applied the FoT LB mechanism
to the issues and evaluated response time and lost samples as two measures. A fog-based
ecosystem was created by Tariq et al. [243] to span a huge area of six distinct parts of the
planet, each of which is thought of as a separate region with several customers that submit
requests on fog to acquire the required resources. For users to have a quick response with
the least amount of delay, an LB strategy was put out to effectively choose VMs within
a fog system. An effective LB (ELB) technique was recommended by Verma et al. [244]
in addition to a fog-cloud-based architecture. Their technique maintains the data on fog
networks by using information replication technology and reducing the overall need for
large data centers. More studies [245–250] proposed some essential methods to provide LB
in fog contexts.

5.5.4. Hybrid Algorithms

This subsection presents studies with hybrid algorithms. Hybrid algorithms apply
various algorithms such as approximate, exact, and fundamental.

In fog networks, a cloud computing supplement was suggested by Naqvi et al. [251]
to speed up cloud computing operations. Fog nodes employ the service broker policies
to process requests on each of their 4–9VMs. Their ACO-based LB mechanism, along
with throttle and RR, balances the load on VMs. Additionally, Abbasi et al. [252] focused
on the application of fog computing to a smart grid (SG) that included a distributed
generation environment known as a microgrid. The purpose of this study was to enhance
resource utilization, response time, and delay time. To increase communication between
customers and an energy provider, Ali et al. [253] presented a four-layered SG-based
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architecture. Their model covers a sizable population. Three LB algorithms were used to
allocate VMs, while the service broker policies were dynamically changeable. Bin pack
techniques were employed by Zubair et al. [254] as an LB mechanism together with the
genetic algorithm (GA), throttle, and RR for resource allocation. In this study, an SG was
combined with fog, and three locations at certain buildings and a cloud-based model were
assumed. Talaat et al. [255] suggested an LB technique employing the dynamic resource
allocation approach in a fog-based system based on Q-learning and GA. The LB approach
manages incoming requests and distributes them across the active servers using a dynamic
resource allocation mechanism while continuously tracking network traffic, gathering data
on each server’s load, and monitoring network traffic. A significant LB approach (ELBS)
for a fog system suitable for applications in the healthcare industry was also presented
by Talaat et al. [256]. With the aid of caching techniques and real-time scheduling, ELBS
obtains efficient LB in a fog environment. ELBS was presented for healthcare system
applications in a fog environment. Yan et al. [257] proposed a task offloading strategy
based on greedy and coalitional game algorithms in a fog network. Their strategy is suitable
for networks considering LB. Notably, Bali et al. [258] reviewed data offloading approaches
in IoT networks at edge and fog nodes.

Avoiding overloading the fog nodes with data is crucial. On these fog nodes, data
should have a brief lifespan and should be flushed or discarded regularly. A major issue
with distributed systems is the possibility of data inconsistency and inaccuracy if data
are removed from one node. As a result, a data flushing technique is required that can
successfully flush data from fog nodes without introducing any data inconsistencies. For
delay-sensitive IoT applications, Singh et al. [259] introduced a cloud/fog architecture. They
also suggested an LB mechanism to efficiently distribute the workload among the fog nodes
in a fog cluster. Their algorithm solves the problem of determining the optimal refresh
period. Singh et al. [260] presented an energy-efficient LB algorithm, called the hybrid
priority assigned laxity (HPAL) algorithm, which allocates the tasks to an appropriate VM
and completes the task within the minimum time. After the task allocation, LB is handled
by calculating the fog optimal time and minimum execution time. Lastly, Almutairi and
Aldossary [261] investigated the effects of various edge-cloud designs on the overall IoT
service time when tasks are offloaded and the effects of various application factors, such as
compute and communication demands, on the overall efficiency. The loosely coupled (LC)
three-tier architecture and the orchestrator-enabled (OE) three-tier architecture were used
to divide the fundamental offloading strategies into two groups. Through performance-
driven modeling, they further analyzed how these two approaches affect the execution of
IoT services while taking into account the allocation status of computation resources and
communication latency resulting from various network connections between layers.

5.5.5. LB for Distributing Incoming Traffic across a Cluster of Brokers

Message queuing telemetry transport (MQTT) [262] is an application layer protocol
that is established for IoT messaging. According to MQTT design principles, network
bandwidth and device resource requirements should be kept to a minimum while also
aiming to assure dependability and some level of delivery assurance. Since June 2016,
MQTT has been recognized by ISO as a standard (ISO/IEC 20922). The protocol continues
progress by formalizing popular capability options and adding new functionalities. The
most recent version, MQTT v5.0, was released in 2018. MQTT operates according to a
publish/subscribe paradigm. Clients connect to a centralized broker when using MQTT,
and three different participant categories exist:

• BROKER: An MQTT broker is a logical entity that couples publishers and subscribers.
It is responsible for exchanging messages between the other participants. Widespread
MQTT brokers are Mosquitto, Active-MQ, Hivemq, Bevywise, and VerneMQ. For
example, HiveMQ [263] is a Java-based MQTT broker that supports MQTT 3.x and
MQTT 5. Eclipse Mosquitto [264] is an open-source message broker that implements
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the MQTT protocol versions 5.0, 3.1.1, and 3.1. Mosquitto is lightweight and is suitable
for use on all devices from low-power single-board computers to full servers.

• PUBLISHERs. These are the elements that send data to the broker so that it sends the
data to one or more subscribers that require it.

• SUBSCRIBERs. These are the elements that receive data from the broker. The data
they receive are the data sent by publishers.

An MQTT broker can be set up as a standalone server or as part of a cluster. A group
of MQTT brokers that cooperate to form one logical MQTT broker is known as a cluster of
brokers. Every broker in the cluster is operated on a different VM, typically in the cloud,
and connected through a network. Broker clusters improve dependability, availability, and
overall performance, since activities can be carried out in a highly parallel fashion among
the cluster’s brokers. Additional functionalities, such as broker discovery, failure detection,
message replication, or other cluster status details, may be exposed by clustering MQTT
brokers. These factors make the clustering strategy likely to use a significant number of
internal resources on the computer running the broker, as well as bandwidth. To provide a
single access point for all clients, load balancers are employed in conjunction with MQTT
clusters. To distribute MQTT connections and device traffic among MQTT clusters, a load
balancer is frequently set up in front of an MQTT cluster. When brokers are located within
data servers that serve numerous customers with high message rates, this is helpful. In a
cluster, the LB approach often entails connecting an incoming client to a randomly selected
broker. This random-attach strategy is very simple but generates a significant amount of
inter-broker traffic. Inter-broker traffic is an overhead for the system, and it increases the
CPU load of the brokers, compromising the scaling behavior of the whole cluster [265].

A load balancer improves the clusters’ high availability, evenly distributes the load
across the cluster nodes, and enables dynamic expansion. Plain TCP connections serve as
the connection between the load balancer and cluster nodes. A single MQTT cluster may
support millions of customers with this configuration. MQTT clients no longer need to keep
track of a list of MQTT brokers thanks to the load balancer; they just need to know one point
of connection. LB commercial solutions from AWS, Aliyun, or QingCloud are supported by
the EMQX MQTT broker [266]. When it comes to open-source software, HAProxy [267] can
act as a load balancer for an EMQX cluster. HAProxy can also establish/terminate the TCP
connections, as well as assign many dynamic scheduling policies such as RR, randomness,
or least connections.

According to Detti et al. [265], a linear increase in the number of brokers making up a
cluster does not always result in a corresponding linear improvement in performance. This
scaling penalty can be unexpectedly large—in the range of 40%. Detti et al. [265] proposed a
unique LB technique that may be applied using a greedy algorithm to address this problem
and boost performance. It calls for the usage of numerous MQTT sessions per client to lessen
inter-broker traffic. Through simulations and actual measurements, they demonstrated
the viability and efficiency of their technique for IoT and social network applications. The
scaling penalty is, thus, decreased to 10%. Kawaguchi and Bandai [268] proposed a load
balancer for distributed broker environment. Their system was tested using Amazon web
services and local machines. The comparative results were evaluated for several messages
received and transmitted by each broker at a given time. Anwer et al. [269] considered
the LB problem by investigating different MQTT-based threat models and proposing a
UML profile for the effective handling of LB in IoTs employing MQTT. The intuition of the
proposed profile is to introduce a lightweight extension that can provide a robust load-
balanced version of the MQTT protocol. HiveMQ is a cluster-oriented solution for MQTT
and is designed to make the best use of all system resources to achieve the highest message
throughput. Due to this, the authors of [270] advised offloading the SSL/TLS termination
onto the load balancer. The termination of SSL/TLS (secure sockets layer/transport layer
security) places a heavy burden on the system CPU, which could result in a reduction in
HiveMQ’s message throughput. Message throughput is maintained at a consistent rate if
SSL/TLS termination is offloaded to the load balancer. In the HiveMQ installations, it may
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occasionally be essential to reduce the cluster size. Examples of this include rolling HiveMQ
upgrades or maintenance on the computers that execute HiveMQ. In these situations, it is
obvious that all clients connected to the shutdown node lose their MQTT connections and
typically attempt to reconnect right away (depending on the MQTT client implementation).
The load balancer and the HiveMQ cluster receive a large number of connection requests as
a result; this peak in network requests should be taken into account. The HiveMQ company
also advises removing a scheduled shutdown node from the load balancer beforehand.
Thus, the MQTT clients will disseminate. Lastly, Longo et al. [271] proposed a framework
for creating and evaluating distributed architectures of MQTT brokers with realistic and
customizable network topologies. Their framework is called BORDER (benchmarking
framework for distributed MQTT brokers).

An in-depth study is required to identify and review more related works that focus on
LB for a cluster of MQTT brokers.

5.5.6. LB Solutions for Multipath Communication in IoT

Many LB algorithms have been tested over heterogeneous IoT environments. However,
these LB policies consider only various LB parameters, without considering networking
parameters such as the communication overhead, link quality, loss rate, delay, and devices’
energy lifetime [272]. In a real-time environment, IoT networks face the problem of moni-
toring sensor devices’ radio resources. However, so far, few policies have addressed such
an issue. Furthermore, the performance of any wireless network depends on whether the
connected IoT devices are resource-enriched, as well as the current situation of the IoT
network in terms of interference, collision level, channel fluctuation, bit error rate, and,
most notably, the network congestion level [272–275].

In a heterogeneous IoT environment, numerous low-powered battery-driven sensors
cooperate to communicate captured real-time data. In such an ad hoc networking envi-
ronment, the optimal battery usage of sensors or network lifetime is one of the critical
issues. Meanwhile, a denser network results in more sensor nodes communicating and
more energy being consumed. This increases traffic, interference, collisions, and thus, the
channel error rate. This in turn leads to retransmissions and more unnecessary power con-
sumption, reducing the network lifetime. Considering these issues, Adil [272] suggested a
power-aware forwarding mechanism to address the LB issue in IoT. The scheme manages
the growing traffic in the network by scheduling it on multiple available network paths
by taking care of the balance of the power consumption level. This dynamic multipath
forwarding scheme is implemented at the network layer by assuming UDP as the transport
layer protocol’s segment. Adil et al. [273] suggested another three-phase priority-based LB
scheme (enhanced-AODV) specifically for IoT. This scheme utilizes data packets classified
into three network traffic classes: (1) high priority, (2) low priority, and (3) ordinary. Never-
theless, this scheme must be tested by considering TCP as a layer-4 protocol because there
is an unordered reception of packets. Such packet reception generates unnecessary negative
acknowledgments and buffer blocking at the receiver’s end. This ultimately reduces TCP
performance (due to unnecessary congestion window (cwnd) adaptations). These problems
of multipath communication were addressed in [276–280].

Aljubayri et al. [281] tried to reduce MPTCP delay by utilizing the concept of oppor-
tunistic routing (OR) in an IoT environment. They presented the OR scheme for some
essential multipath protocols to reduce transmissions required to send a packet to the desti-
nation and enhance the performance of IoT networks. Recently, some researchers [282–285]
proposed various schemes for MPTCP while applying it to IoT networks. Pokhrel et al. [282]
suggested a novel distributed transfer learning (DTL) approach to improve the performance
of multipath networks in the industrial IoT (IIoT) environment. They addressed the issue
of following complicated computational training practices concerning massive datasets
and time/space in the case of deep learning (DL)-based network communication schemes.
Although this scheme optimizes and increases learning efficiency by employing MPTCP
with transfer learning (TL), the authors did not address crucial communication problems,
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such as out-of-order receiving, unnecessary negative acknowledgment transmissions, re-
transmissions, buffer blocking, and superfluous cwnd adaptations.

Dong et al. [286] suggested a novel power-aware multipath scheme by employing
MPTCP with RL for heterogeneous wireless networks. Although the authors addressed
the aforementioned communication problems, their method only addressed the conven-
tional heterogeneous networks. Furthermore, considering power as an essential metric,
typically for the case of limited battery-operated sensing devices in IoT networks, the
authors [283,284] proposed power-aware solutions by employing MPTCP in the IoT net-
work environment. Latest DL- and RL-based MPTCP schemes [287–290] (and surveys [291])
were considered for conventional heterogeneous, SDN and IoT networks. Xu et al. [287]
addressed common communication issues by utilizing the concept of the DL approach to
suggest a novel experience self-driven scheme for MPTCP. The purpose of their scheme
is that the protocol should be able to adapt its functionality according to the constantly
changing network environment properties. Their protocol should follow a self-adaptation
procedure by continually observing and learning the characteristics of such an environment.
This method suggests synchronous adaptations in all the subflow cwnds currently running
on multiple available paths. Another scheme [288], called SmartCC, suggests an RL-based
approach considering a heterogeneous network environment. While designing the scheme,
in addition to using the subflow current state, this scheme uses dynamic states of the
middle-boxes (i.e., routers). SmartCC offers encouraging results, especially in terms of
throughput performance compared to conventional MPTCP. Nonetheless, accumulating
dynamic state information from middle-boxes may lead to the signaling overhead and
performance degradation.

6. Lessons Learnt

In this survey, we learned the following lessons:

1. There is no perfect LB technique for improving overall LB metrics. For example, some
techniques account for response time, resource utilization, and migration time, while
others ignore these metrics and account for others. However, some metrics appear
to be mutually exclusive, e.g., depending on VM migrations, LB can lead to longer
response times. Service cost is another metric that is not taken into account. Therefore,
it is highly advantageous to introduce a comprehensive LB technique for improving
as many metrics as possible.

2. In some situations, cloud providers need to send part of their workload to another
cloud provider for LB processing. In short, using resources from multiple cloud
providers is a key requirement for future LB. In this case, cloud providers face the
problem of data lock-in. Our survey shows that very few articles addressed these
issues. Therefore, another interesting area for future research might be to study the
issue of data lock-in and cross-cloud services.

3. Even though fog computing is a hot research topic, most researchers do not yet have
access to a real testbed. It was discovered that the majority of the articles employed
simulator-based tools for their evaluations. Implementing the stated algorithms in the
real testbed is quite difficult since the outcomes of scenarios such as scheduling in the
real environment can differ from those in the simulated environment.

4. Some LB methods on FC need to be able to operate on massive scales (scalability).
Some nodes, devices, and associated processes may not be guaranteed despite the
small-scale validation of these approaches. Only a small number of works have
addressed the scalability issue, despite its significance. Future research faces an open
problem because the related publications were defined in small-scale contexts.

7. Open Research Issues

LB in IoT still has many open issues that are still waiting to be solved. For example,
LB can become more efficient if it takes into account data prioritization, traffic patterns,
and multi-objective optimization.
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1. Data prioritization: Many IoT multimedia applications use real-time delay-sensitive
data that require data prioritization. Data prioritization can address several issues
related to enhancing QoS, video streaming, scheduling, energy, memory, security, and
reducing network latency, especially in information-centric networks [292].

2. Traffic-aware load balancing: Through traffic identification and rerouting, an LB scheme
can meet various QoS criteria by leveraging SDN’s ability to monitor and operate
the network. The potential of SDN switches as an LB method in machine-to-machine
(M2M) networks was examined in [293]. By utilizing the advantages of rapid traffic
identification and dynamic traffic rerouting in SDN, they created a traffic-aware LB
system to satisfy various QoS needs of M2M traffic. They focused on LB techniques for
M2M networks. However, their plan can be used for IoT networks, where machines
and people communicate via IP-based networks and send their data to the cloud. In
this situation, SDN can help LB by implementing flow-based networking.

3. Multi-objective optimization in LB decisions: There is no technique to define most QoS
parameters for LB decisions in FC environments. For example, some algorithms con-
sider only energy, cost, or response time and ignore parameters such as scalability,
reliability, and security. Therefore, multi-objective optimization in LB decision mak-
ing needs to be extended to consider some QoS parameters and tradeoffs between
different parameters.

4. Best solutions: Most fog-based LB techniques (scheduling and resource allocation) fall
into the NP-hard and NP-complete problem complexity categories. Several meta-
heuristic and heuristic algorithms have been suggested to solve them. Future research
should focus on other optimization methods such as the lion optimizer algorithm [294],
firefly algorithm [295], simulated annealing [296], bacterial colony optimization [297],
memetic [298,299], artificial immune system [300], and grey wolf optimizer [301].

5. Context-aware computing: To balance the burden on fog nodes and IoT devices (which
may be mobile), it is crucial to forecast where they will be in the future. Observing
movement and activity patterns can help predict where nodes and devices will be in
the future. LB systems can be enhanced with accessible contextual data and semantic
assistance [302,303]. An exciting example of future trends is the development of LB
methods for fog networks using context-aware computing.

6. FC can enhance big data analytics: Decision-making and recommendation systems
for various smart environments have been implemented using big data analytics.
Fog computing can be utilized to satisfy the requirements for big data analysis in
distributed network environments that include latency, mobility, scalability, and local-
ization. Offloading computation and data storage to nearby fog nodes in the network
can achieve these metrics [304,305]. Additionally, the QoS aspects of big data analytics
can be enhanced by the application of LB methods. Thus, applying LB methods for
fog contexts to big data analytics can be seen as an open issue for research.

7. Interoperability: Fog nodes and sources are so diverse and dispersed. Thus, interop-
erability is a crucial success factor for LB in the IoT/fog context. Consumers often
check for their favorites and other variables such as pricing and functionality because
they do not want to employ just one service provider. They have the option to switch
between IoT/fog-based solutions or to apply a combination of services and products
to create smart LB-based IoT environments in a personalized manner due to interoper-
ability [306]. Thus, a fascinating research direction is to consider interoperability as a
crucial factor in combining the LB in IoT/fog-based services.

8. Efficient load management in vehicular fog computing: To enable effective cooperation
through vehicle-to-vehicle and vehicle-to-infrastructure communication, an IoT-enabled
cluster of cars can offer a rich reservoir of computational resources. This is feasible in
vehicular fog computing, in which cars act as fog nodes for the IoT and offer cloud-
like services. Then, these services are further connected with the traditional cloud
to help a group of users to cooperate and perform the tasks. The dynamic nature
of the vehicular ad hoc network makes efficient load management in vehicular fog
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computing very challenging. Recently, Hameed et al. [307] provided a capacity-based
LB approach with cluster support to carry out energy- and performance-aware vehic-
ular fog distributed computing for effectively processing IoT tasks. Their research
suggested a dynamic clustering method that forms clusters of vehicles as a function of
their position, speed, and direction.

8. Conclusions

LB of workloads on VMs is a major problem in cloud computing that has drawn
substantial attention from academics. LB also prevents some fog nodes in a network from
being under- or overloaded. This survey compared previous related surveys on LB in
the IoT. It provided a cutting-edge analysis of the problems and difficulties with LB. This
study revealed that multiple LB approaches were thoroughly surveyed while taking into
account various parameters. These cloud-based LB methods were classified into many
groups including general LB methods, natural phenomenon-based LB, task-based LB, and
agent-based LB. We talked about the benefits and drawbacks of each category of these
strategies. The presented LB algorithms in fog were classified as approximate algorithms,
exact algorithms, fundamental algorithms, and hybrid algorithms. Many LB algorithms
take into account the majority of LB metrics and offer higher resource consumption and
faster response times. However, it is necessary to enhance the methods for boosting the
performance of the system.

This article can help researchers to identify research problems working in the field of
LB, and it provides an overview of available load-balancing techniques.
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DL Deep learning
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FC Fog computing
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LTE Long-term evolution
MAC Medium access control
ML Machine learning
MPTCP MultiPath TCP
MQTT Message queuing telemetry transport
M2M Machine-to-machine
NB-API Northbound application programming interface
PHY Physical layer
PDR Packet delivery ratio
PLR Packet loss ratio
PM Psychical machine
PSO Particle swarm optimization
QoE Quality of experience
QoS Quality of service
REST Representational state transfer protocol
RFID Radio frequency identification device
RR Round robin
rp-LPLNs Routing protocol for low-power and lossy networks
RTT Round trip time
SB-API Southbound application programming interface
SDN Software defined networking
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VM Virtual machine
WAN Wide area network
WSN Wireless sensor network
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