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Abstract: Periodically driven quantum many-body systems exhibit novel nonequilibrium states,
such as prethermalization, discrete time crystals, and many-body localization. Recently, the general
mechanism of fractional resonances has been proposed that leads to slowing the many-body dynamics
in systems with both U(1) and parity symmetry. Here, we show that fractional resonance is stable
under local noise models. To corroborate our finding, we numerically study the dynamics of a small-
scale Bose–Hubbard model that can readily be implemented in existing noisy intermediate-scale
quantum (NISQ) devices. Our findings suggest a possible pathway toward a stable nonequilibrium
state of matter, with potential applications of quantum memories for quantum information processing.

Keywords: Floquet systems; Bose-Hubbard model; nonequilibrium many-body dynamics; open
quantum system

1. Introduction

Nonequilibrium quantum phases without static analogs have become an active area
of research because programmable quantum simulators [1] such as cold atoms [2–5] and
superconducting circuits [6–11] allow the preparation of exotic states of matter into a states
out of equilibrium. Paradigmatic examples of nonequilibrium states are discrete time
crystals [12–21] and Floquet prethermalization [22–29]. The search for nonequilibrium
states of matter is challenging because one needs to move beyond standard quantum
statistical mechanics [30–34], and simulations of quantum many-body systems in classical
computers [35–37]. In a recent contribution by some of the authors [38], it has been
pointed out the emergence of a prethermal and localized nonequilibrium phase, termed
“fractional resonance”, appearing in a broad class of many-body Hamiltonians exhibiting
U(1) and parity symmetry such as the Bose–Hubbard model [39,40], the XXZ spin-1
model [41,42] or the Jaynes–Cummings–Hubbard model [43–45]. Moreover, small-scale
versions of these models can be experimentally implemented in NISQ devices. Therefore,
we believe it is pertinent to investigate for the stability of such nonequilibrium states of
matter under the action of loss mechanisms, which will be relevant for applications in
quantum memories [46] and quantum metrology [47].

On the other hand, quantum computing [48] and quantum machine learning [49–51]
are progressing tremendously. The main driving force behind this progress is that quantum
computers promise exponential speedup over their classical counterparts in solving specific
tasks [52]. When fault-tolerant general-purpose quantum computers become available in
the long term, it is expected they will implement adiabatic state preparation and quantum
phase estimation as the standard quantum routine to determine the ground-state energy
of a sophisticated physical Hamiltonian [53–56]. However, such schemes are resource-
intensive, and thus they are not appropriate for current NISQ hardware [57–61], thereby
shifting the central research theme toward low-depth hybrid quantum-classical algorithms,
otherwise known as NISQ algorithms [62]. Recently, by utilizing quantum data processing
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based on the classical shadow, learning certain information about a many-body quantum
state from an experiment can be exponentially reduced [63–65]. In contrast, in the standard
classical paradigm, one must repeat the experiment many times to build statistical certainty
about the measurement data at each experimental run. By loading the entire quantum
state of a many-body system into a quantum memory, a shift in the paradigm occurs in
a new approach. After some quantum processing is applied to the replicated state, mea-
surements are performed. Then the protocol can be repeated. Furthermore, renowned
quantum machine learning algorithms center around the Harrow–Hassidim–Lloyd (HHL)
algorithm [66] and quantum principal component analysis [67], which require the physical
realization of quantum random access memory [68,69]. Here, we recognize a substantial
overlap with localized nonequilibrium states of matter, such as prethermal states [22–29]
and many-body localization [70–72]. Moreover, because localized nonequilibrium states of
matter retain information about their initial state, they may be used as quantum memo-
ries [73]. These and the above arguments indicate that developing and realizing a quantum
memory represents the pinnacle achievement in quantum technologies and applications.

In this article, we provide a detailed analysis of the stability of fractional many-body
resonances under noisy environments within the paradigm of NISQ devices. This inves-
tigation represents an essential step before seeking potential applications of fractional
resonances and their associated prethermal states as a quantum memory. The article is or-
ganized as follows. In Section 2, we briefly recap the emergence of many-body resonances,
emphasizing the integer and fractional resonance states using a generic Hamiltonian.
In Section 3, we consider a one-dimensional lattice of strongly correlated bosonic par-
ticles described by the Bose–Hubbard model (BHM) [39,40], where we study the open
quantum system dynamics of the BHM, and discuss the stability of integer and fractional
resonance states when considering realistic parameters of NISQ devices such as supercon-
ducting circuits, for the sake of simulating the prescribed physics in an experiment. Finally,
in Section 4, we present our concluding remarks.

2. The Model

Let us consider a one-dimensional lattice with open boundary conditions described
by the generic lattice Hamiltonian. We have

Ĥ = h̄
L

∑
j=1

(
ωÔj +

U
2

Ô2
j
)
− h̄J0 cos (Ωt)

L−1

∑
j=1

(
Â†

j Âj+1 + Â†
j+1 Âj

)
, (1)

which is composed of a local energy term Ĥ0 ≡ h̄ ∑L
j=1
(
ωÔj + UÔ2

j /2
)

with local opera-

tors Ôj, and a time-dependent hopping interaction ĤI(t) = h̄J0 cos (Ωt)∑L−1
j=1

(
Â†

j Âj+1 +

Â†
j+1 Âj

)
, allowing for the exchange of particles/excitations between the nearest neighbor-

ing sites via the local ladder operators Âj and Â†
j . These operators satisfy the commutation

relations [Ôi, Â†
j ] = δij Â†

j , [Ôi, Âj] = −δij Âj. Here, we restrict ourselves to studying bosonic
particles. However, the treatment is also applicable to spin-d systems. If the many-body
system is isolated from an external environment, the term ∑N

j=1 ωÔj is a constant of motion
because the Hamiltonian exhibits U(1) symmetry. The Hermitian operator Ôj satisfies
the eigenvalue equation Ôj

∣∣mj
〉
= mj

∣∣mj
〉
, where mj is a quantum number that labels the

local quantum state of the jth lattice site. For instance, mj may represent the occupation
number of a bosonic system or the spin component along the z direction of spin-d systems.
In this work, we focus on finite-size lattices with reflection symmetry characterized by
the parity operator P̂ , which satisfies P̂

∣∣m1, . . . , mj, . . . , mL
〉
=
∣∣mL, . . . , mj, . . . , m1

〉
, where

|m1, .., mj, .., mL〉 ≡
⊗L

l=1 |ml〉.
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To understand the processes that may occur due to the hopping of particles/excitations,
let us move to a rotating frame with respect to the free Hamiltonian Ĥ0. We obtain

H̃I(t) =− h̄J0 cos (Ωt)
L−1

∑
j=1

[
eiUt
(

Ôj+1−Ôj−1
)

Â†
j Âj+1

+ Â†
j+1 Âje

−iUt
(

Ôj+1−Ôj−1
)]

,

(2)

from which we can identify two characteristic time scales: one is provided by the driving
frequency Ω, and another is the onsite interaction U, which leads to a local anharmonic
spectrum. The Hamiltonian (2) is not strictly periodic either in Ω or U. However, we will
consider integer and fractional driving frequencies in the unit of U defined as Ω = U and
Ω = U/2, respectively. In both cases, it can be shown that H̃I(t + T) = H̃I(t) is periodic
with period T = 2π/Ω [38]. Moreover, we consider the strongly interacting regime, where
U � J0 [3], where J0 is the bare (static) hopping rate. This regime allows us to describe
the particle/excitation hopping processes within the semi-classical picture as discussed in
Refs. [29,38].

Let us briefly describe the aforementioned semi-classical picture to identify many-
body resonances [74] in the closed system scenario. To find many-body resonances, we
focus on how specific quantum states, referred to as configurations, are connected via the
hopping term. Let us suppose the many-body system is initialized in the configuration∣∣m1, . . . , mj, mk, ml , . . . , mL

〉
, a hopping event from the site j to k will lead the system to

occupy the state
∣∣m1, . . . , mj − 1, mk + 1, ml , . . . , mL

〉
. Now, let us compute the local energy

of those states using the unperturbed Hamiltonian Ĥ0. The result reads

Ĥ0

∣∣∣m1, . . . , mj, mk, ml , . . . , mL

〉
= h̄

L

∑
j=1

(
ωmj +

U
2

m2
j

)∣∣∣m1, . . . , mj, mk, ml , . . . , mL

〉
(3a)

Ĥ0

∣∣∣m1, . . . , mj − 1, mk + 1, ml , . . . , mL

〉
= h̄

[ L

∑
j=1

(
ωmj +

U
2

m2
j

)
+ U(mk −mj + 1)

]∣∣∣m1, . . . , mj − 1, mk + 1, ml , . . . , mL

〉
. (3b)

The energy difference between these two configurations is ∆E = h̄U(mk −mj + 1).
Therefore, to evolve from the state

∣∣m1, . . . , mj, mk, ml , . . . , mL
〉

to |m1, . . . , mj − 1, mk +
1, ml , . . . , mL〉, the driving frequency should match the condition mΩ = U(mk −mj + 1).
Analogously, it can be shown that a hopping event from k → j leads to the condition
mΩ = U(mj −mk + 1), so we can write generically mΩ = U[±(mk −mj) + 1], with m ∈ Z,
which defines the integer many-body resonance [29,38]. In this case, the emerging many-
body dynamics is ruled by nearest-neighbor interactions where the time scale for spreading
particles/excitations is J−1

0 . In our recent work [38], the emergence of fractional resonances
in many-body quantum systems has been proposed where second-order processes rule the
nonequilibrium dynamics.

In this article, we have rigorously demonstrated the emergence of fractional res-
onance condition by using the Magnus expansion [75–77]. Here, we will follow the
semi-classical picture described above to find the fractional resonance condition. If the
initial configuration is

∣∣m1, . . . , mj, mk, ml , . . . , mL
〉
, we want to connect this state with∣∣m1, . . . , mj − 1, mk, ml + 1, . . . , mL

〉
via two hopping events. Notice that the latter config-

uration has local energy h̄ ∑L
j=1

(
ωmj +

U
2 m2

j

)
+ h̄U(ml −mj + 1). The energy difference

between this configuration and the initial one is ∆E = h̄U(ml −mj + 1). Therefore, to con-
nect both configurations, two identical hopping events are necessary, each kicking the
system with energy h̄U(ml − mj + 1)/2. The same analysis can be done for a hopping
from j→ l leading to the condition Ω = U(mj −ml + 1)/2, so we can write generically
mΩ = U[±(mj −ml) + 1]/2, where m ∈ Z.

Let us consider the schematic representation of Figure 1 to illustrate integer and
fractional resonance conditions better. Here, we display a schematic representation of many-
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body resonances in the driven lattice model. In Figure 1a, we show two configurations
with all particles (green circles) occupying a lattice site and the leftmost site occupied by
two particles. The energy difference between these configurations is ∆E = h̄U. Therefore,
to evolve from the lower to the upper configuration, one needs to activate a hopping event
with frequency Ω = U to increase the system energy. In Figure 1b, we show configurations
that involve two hopping events where the leftmost particle moves to the rightmost lattice
site. The energy difference between these configurations is ∆E = h̄U, so each hopping
event increases the system energy by a h̄U/2. 2

| 0i | 3i
H

(1)
FH

(0)
F| 2i

FIG. 1. Diagram representing many-body procesess in the driven Bose Hubbard model. The center panel represents the initial state with one
particle (full sphere) per site. The left panel represents single-particle processes dominated by the frequency scale J0, whereas the right panel
virtual two-particle processes dominated by J2

0/U. The semitransparent sphere represents an empty state. The modulated hopping rate J(t) is
represented by the wiggle orange curve.

The model.—We consider N interacting bosons in a one-
dimensional lattice of size L whose dynamics is described by
the Bose-Hubbard model [51, 52]

H(t) =
LX

j=1

~(!a†ja j +
U
2

a†ja
†
ja ja j) � ~J(t)

L�1X

j=1

(a†ja j+1 + H.c),

(1)
where a j(a

†
j ) are the annihilation (creation) bosonic operators

at the jth lattice site, ! is the single site frequency, U the
on-site interaction, J(t) = J0 cos(⌦t) the modulated hopping
strength between neighboring sites while J0 the bare hopping
rate, and ⌦ the driving frequency. The modulated hopping
can be implemented in superconducting circuits [27]. The
BHM (1) conserves the particles number [H, N̂]=0 with N̂ =PL

j=1 a†ja j. Also, since we consider open boundary conditions,
the model exhibits parity symmetry such that [H, P̂] = 0,
where P̂|n1, n2 . . . , nLi = |nL, . . . , n2, n1i. In the equilibrium
situation, the competition between the on-site interaction and
the hopping leads to a quantum phase transition at the criti-
cal point (U/J0)c = 3.27 [59]. Here, we work in the strongly
interacting regime of the BHM characterized by U/J0 � 1,
namely deep into the Mott insulating regime [15]. This allow
us to truncate the local Hilbert space to a maximum occupa-
tion number nmax = 2 when working with a large lattice size
L > 6, and then being able to describe the dynamics in terms
of holons and doublons spreading over the lattice [15, 54].

In order to gain physical intuition on the processes that may
occur due to the hopping of bosons, let us move to a rotating
frame with respect to H0 =

PL
j=1 ~(!a†ja j +

U
2 a†ja

†
ja ja j). The

resulting Hamiltonian simply reads

HI(t) = �~J(t)
L�1X

j=1

⇥
eiUt(n̂ j+1�n̂ j�1)a ja

†
j+1+e�iUt(n̂ j+1�n̂ j+1)a†ja j+1

⇤
,

(2)
where n̂ j = a†ja j is the number operator at the jth lattice
site. Notice that there are two characteristic frequencies in
the Hamiltonian (2), U and ⌦. Hence, HI(t) is not strictly
periodic in either, analog to the case of the Hubbard model
[50]. Many-body resonances can be identified when apply-
ing the Hamiltonian (2) to the quantum state |n j, n j+1i, where
n j(n j+1) stands for the occupation number at site j( j + 1), see

Supplemental Material. An interesting feature of the Hamil-
tonian (2) is that it becomes periodic at fractional ⌦ = U/2
and integer ⌦ = U driving frequencies, the latter correspond-
ing to the lowest-order available many-body resonance satis-
fying the condition �E = ±U [53], see Supplemental Ma-
terial for a detailed discussion of the periodicity of Eq. (2).
For both driving frequencies, the Hamiltonian in the rotating
frame satisfies HI(t + T ) = HI(t) with period T = 2⇡/⌦, and
we can apply the Floquet theory for time-periodic Hamilto-
nians [60]. Surprisingly, the fractional frequency ⌦ = U/2
is a resonance condition where virtual two-particle processes
dominate the dynamics displaying prethermalization and lo-
calization simultaneously, as we will prove next.

If the time-dependent Hamiltonian is periodic H(t + T ) =
H(t) with the period T = 2⇡/⌦, the dynamics is cap-
tured by the unitary time evolution operator U(t, t0) =
P(t, t0)e�

i
~HF (t�t0), where P(t, t0) is the periodic kick operator

and HF is the time-independent Floquet Hamiltonian [60].
When the driving frequency is much larger than all natural
frequency scales of the system, HF can be approximated using
the Magnus expansion HF =

P1
n=0 H(n)

F [48, 49], see Supple-
mental Material.

Stroboscopic dynamics in the Bose-Hubbard
Trimer.—Here, we present the quantum dynamics of a
three-site lattice (trimer) in the high-frequency regime of a
periodically modulated hopping scenario. We will discuss
the integer (⌦ = U) and fractional (⌦ = U/2) driving and
their e↵ects on the system dynamics. As initial condition
we consider a product state with one excitation per site for
a fixed value U/J0 = 40, that is, | (0)i = NL

j=1|1i j where
L corresponds to the system size. Then, at t = 0 we switch
on the modulated hopping rate and let the system to evolve
under the Hamiltonian (1).

The number of states, here referred to as configurations,
that may participate in the dynamics correspond to all possible
configurations of N particles distributed in L lattice sites DN =

(N + L � 1)!/N!(L � 1)!. In the trimer case at unit filling
N/L = 1 there are D3 = 10 configurations. The initial state
| 0i = |111i has parity p = +1. Since the BHM preserves
the parity, the dynamics will only involve states within the
positive parity subspace | 0i, | 1i = 1p

2
(|021i+ |120i), | 2i =

2

| 0i | 3i
H

(1)
FH

(0)
F| 2i

FIG. 1. Diagram representing many-body procesess in the driven Bose Hubbard model. The center panel represents the initial state with one
particle (full sphere) per site. The left panel represents single-particle processes dominated by the frequency scale J0, whereas the right panel
virtual two-particle processes dominated by J2

0/U. The semitransparent sphere represents an empty state. The modulated hopping rate J(t) is
represented by the wiggle orange curve.

The model.—We consider N interacting bosons in a one-
dimensional lattice of size L whose dynamics is described by
the Bose-Hubbard model [51, 52]

H(t) =
LX

j=1

~(!a†ja j +
U
2

a†ja
†
ja ja j) � ~J(t)

L�1X

j=1

(a†ja j+1 + H.c),

(1)
where a j(a

†
j ) are the annihilation (creation) bosonic operators

at the jth lattice site, ! is the single site frequency, U the
on-site interaction, J(t) = J0 cos(⌦t) the modulated hopping
strength between neighboring sites while J0 the bare hopping
rate, and ⌦ the driving frequency. The modulated hopping
can be implemented in superconducting circuits [27]. The
BHM (1) conserves the particles number [H, N̂]=0 with N̂ =PL

j=1 a†ja j. Also, since we consider open boundary conditions,
the model exhibits parity symmetry such that [H, P̂] = 0,
where P̂|n1, n2 . . . , nLi = |nL, . . . , n2, n1i. In the equilibrium
situation, the competition between the on-site interaction and
the hopping leads to a quantum phase transition at the criti-
cal point (U/J0)c = 3.27 [59]. Here, we work in the strongly
interacting regime of the BHM characterized by U/J0 � 1,
namely deep into the Mott insulating regime [15]. This allow
us to truncate the local Hilbert space to a maximum occupa-
tion number nmax = 2 when working with a large lattice size
L > 6, and then being able to describe the dynamics in terms
of holons and doublons spreading over the lattice [15, 54].

In order to gain physical intuition on the processes that may
occur due to the hopping of bosons, let us move to a rotating
frame with respect to H0 =

PL
j=1 ~(!a†ja j +

U
2 a†ja

†
ja ja j). The

resulting Hamiltonian simply reads

HI(t) = �~J(t)
L�1X

j=1

⇥
eiUt(n̂ j+1�n̂ j�1)a ja

†
j+1+e�iUt(n̂ j+1�n̂ j+1)a†ja j+1

⇤
,

(2)
where n̂ j = a†ja j is the number operator at the jth lattice
site. Notice that there are two characteristic frequencies in
the Hamiltonian (2), U and ⌦. Hence, HI(t) is not strictly
periodic in either, analog to the case of the Hubbard model
[50]. Many-body resonances can be identified when apply-
ing the Hamiltonian (2) to the quantum state |n j, n j+1i, where
n j(n j+1) stands for the occupation number at site j( j + 1), see

Supplemental Material. An interesting feature of the Hamil-
tonian (2) is that it becomes periodic at fractional ⌦ = U/2
and integer ⌦ = U driving frequencies, the latter correspond-
ing to the lowest-order available many-body resonance satis-
fying the condition �E = ±U [53], see Supplemental Ma-
terial for a detailed discussion of the periodicity of Eq. (2).
For both driving frequencies, the Hamiltonian in the rotating
frame satisfies HI(t + T ) = HI(t) with period T = 2⇡/⌦, and
we can apply the Floquet theory for time-periodic Hamilto-
nians [60]. Surprisingly, the fractional frequency ⌦ = U/2
is a resonance condition where virtual two-particle processes
dominate the dynamics displaying prethermalization and lo-
calization simultaneously, as we will prove next.

If the time-dependent Hamiltonian is periodic H(t + T ) =
H(t) with the period T = 2⇡/⌦, the dynamics is cap-
tured by the unitary time evolution operator U(t, t0) =
P(t, t0)e�

i
~HF (t�t0), where P(t, t0) is the periodic kick operator

and HF is the time-independent Floquet Hamiltonian [60].
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under the Hamiltonian (1).
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that may participate in the dynamics correspond to all possible
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The model.—We consider N interacting bosons in a one-
dimensional lattice of size L whose dynamics is described by
the Bose-Hubbard model [51, 52]

H(t) =
LX

j=1

~(!a†ja j +
U
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a†ja
†
ja ja j) � ~J(t)

L�1X
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(a†ja j+1 + H.c),

(1)
where a j(a

†
j ) are the annihilation (creation) bosonic operators

at the jth lattice site, ! is the single site frequency, U the
on-site interaction, J(t) = J0 cos(⌦t) the modulated hopping
strength between neighboring sites while J0 the bare hopping
rate, and ⌦ the driving frequency. The modulated hopping
can be implemented in superconducting circuits [27]. The
BHM (1) conserves the particles number [H, N̂]=0 with N̂ =PL

j=1 a†ja j. Also, since we consider open boundary conditions,
the model exhibits parity symmetry such that [H, P̂] = 0,
where P̂|n1, n2 . . . , nLi = |nL, . . . , n2, n1i. In the equilibrium
situation, the competition between the on-site interaction and
the hopping leads to a quantum phase transition at the criti-
cal point (U/J0)c = 3.27 [59]. Here, we work in the strongly
interacting regime of the BHM characterized by U/J0 � 1,
namely deep into the Mott insulating regime [15]. This allow
us to truncate the local Hilbert space to a maximum occupa-
tion number nmax = 2 when working with a large lattice size
L > 6, and then being able to describe the dynamics in terms
of holons and doublons spreading over the lattice [15, 54].

In order to gain physical intuition on the processes that may
occur due to the hopping of bosons, let us move to a rotating
frame with respect to H0 =
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†
ja ja j). The

resulting Hamiltonian simply reads

HI(t) = �~J(t)
L�1X

j=1

⇥
eiUt(n̂ j+1�n̂ j�1)a ja

†
j+1+e�iUt(n̂ j+1�n̂ j+1)a†ja j+1

⇤
,

(2)
where n̂ j = a†ja j is the number operator at the jth lattice
site. Notice that there are two characteristic frequencies in
the Hamiltonian (2), U and ⌦. Hence, HI(t) is not strictly
periodic in either, analog to the case of the Hubbard model
[50]. Many-body resonances can be identified when apply-
ing the Hamiltonian (2) to the quantum state |n j, n j+1i, where
n j(n j+1) stands for the occupation number at site j( j + 1), see

Supplemental Material. An interesting feature of the Hamil-
tonian (2) is that it becomes periodic at fractional ⌦ = U/2
and integer ⌦ = U driving frequencies, the latter correspond-
ing to the lowest-order available many-body resonance satis-
fying the condition �E = ±U [53], see Supplemental Ma-
terial for a detailed discussion of the periodicity of Eq. (2).
For both driving frequencies, the Hamiltonian in the rotating
frame satisfies HI(t + T ) = HI(t) with period T = 2⇡/⌦, and
we can apply the Floquet theory for time-periodic Hamilto-
nians [60]. Surprisingly, the fractional frequency ⌦ = U/2
is a resonance condition where virtual two-particle processes
dominate the dynamics displaying prethermalization and lo-
calization simultaneously, as we will prove next.

If the time-dependent Hamiltonian is periodic H(t + T ) =
H(t) with the period T = 2⇡/⌦, the dynamics is cap-
tured by the unitary time evolution operator U(t, t0) =
P(t, t0)e�

i
~HF (t�t0), where P(t, t0) is the periodic kick operator

and HF is the time-independent Floquet Hamiltonian [60].
When the driving frequency is much larger than all natural
frequency scales of the system, HF can be approximated using
the Magnus expansion HF =

P1
n=0 H(n)

F [48, 49], see Supple-
mental Material.

Stroboscopic dynamics in the Bose-Hubbard
Trimer.—Here, we present the quantum dynamics of a
three-site lattice (trimer) in the high-frequency regime of a
periodically modulated hopping scenario. We will discuss
the integer (⌦ = U) and fractional (⌦ = U/2) driving and
their e↵ects on the system dynamics. As initial condition
we consider a product state with one excitation per site for
a fixed value U/J0 = 40, that is, | (0)i = NL

j=1|1i j where
L corresponds to the system size. Then, at t = 0 we switch
on the modulated hopping rate and let the system to evolve
under the Hamiltonian (1).

The number of states, here referred to as configurations,
that may participate in the dynamics correspond to all possible
configurations of N particles distributed in L lattice sites DN =

(N + L � 1)!/N!(L � 1)!. In the trimer case at unit filling
N/L = 1 there are D3 = 10 configurations. The initial state
| 0i = |111i has parity p = +1. Since the BHM preserves
the parity, the dynamics will only involve states within the
positive parity subspace | 0i, | 1i = 1p

2
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FIG. 1. Diagram representing many-body procesess in the driven Bose Hubbard model. The center panel represents the initial state with one
particle (full sphere) per site. The left panel represents single-particle processes dominated by the frequency scale J0, whereas the right panel
virtual two-particle processes dominated by J2

0/U. The semitransparent sphere represents an empty state. The modulated hopping rate J(t) is
represented by the wiggle orange curve.

The model.—We consider N interacting bosons in a one-
dimensional lattice of size L whose dynamics is described by
the Bose-Hubbard model [51, 52]

H(t) =
LX

j=1

~(!a†ja j +
U
2

a†ja
†
ja ja j) � ~J(t)

L�1X

j=1

(a†ja j+1 + H.c),

(1)
where a j(a

†
j ) are the annihilation (creation) bosonic operators

at the jth lattice site, ! is the single site frequency, U the
on-site interaction, J(t) = J0 cos(⌦t) the modulated hopping
strength between neighboring sites while J0 the bare hopping
rate, and ⌦ the driving frequency. The modulated hopping
can be implemented in superconducting circuits [27]. The
BHM (1) conserves the particles number [H, N̂]=0 with N̂ =PL

j=1 a†ja j. Also, since we consider open boundary conditions,
the model exhibits parity symmetry such that [H, P̂] = 0,
where P̂|n1, n2 . . . , nLi = |nL, . . . , n2, n1i. In the equilibrium
situation, the competition between the on-site interaction and
the hopping leads to a quantum phase transition at the criti-
cal point (U/J0)c = 3.27 [59]. Here, we work in the strongly
interacting regime of the BHM characterized by U/J0 � 1,
namely deep into the Mott insulating regime [15]. This allow
us to truncate the local Hilbert space to a maximum occupa-
tion number nmax = 2 when working with a large lattice size
L > 6, and then being able to describe the dynamics in terms
of holons and doublons spreading over the lattice [15, 54].

In order to gain physical intuition on the processes that may
occur due to the hopping of bosons, let us move to a rotating
frame with respect to H0 =

PL
j=1 ~(!a†ja j +

U
2 a†ja

†
ja ja j). The

resulting Hamiltonian simply reads

HI(t) = �~J(t)
L�1X

j=1

⇥
eiUt(n̂ j+1�n̂ j�1)a ja

†
j+1+e�iUt(n̂ j+1�n̂ j+1)a†ja j+1

⇤
,

(2)
where n̂ j = a†ja j is the number operator at the jth lattice
site. Notice that there are two characteristic frequencies in
the Hamiltonian (2), U and ⌦. Hence, HI(t) is not strictly
periodic in either, analog to the case of the Hubbard model
[50]. Many-body resonances can be identified when apply-
ing the Hamiltonian (2) to the quantum state |n j, n j+1i, where
n j(n j+1) stands for the occupation number at site j( j + 1), see

Supplemental Material. An interesting feature of the Hamil-
tonian (2) is that it becomes periodic at fractional ⌦ = U/2
and integer ⌦ = U driving frequencies, the latter correspond-
ing to the lowest-order available many-body resonance satis-
fying the condition �E = ±U [53], see Supplemental Ma-
terial for a detailed discussion of the periodicity of Eq. (2).
For both driving frequencies, the Hamiltonian in the rotating
frame satisfies HI(t + T ) = HI(t) with period T = 2⇡/⌦, and
we can apply the Floquet theory for time-periodic Hamilto-
nians [60]. Surprisingly, the fractional frequency ⌦ = U/2
is a resonance condition where virtual two-particle processes
dominate the dynamics displaying prethermalization and lo-
calization simultaneously, as we will prove next.

If the time-dependent Hamiltonian is periodic H(t + T ) =
H(t) with the period T = 2⇡/⌦, the dynamics is cap-
tured by the unitary time evolution operator U(t, t0) =
P(t, t0)e�

i
~HF (t�t0), where P(t, t0) is the periodic kick operator

and HF is the time-independent Floquet Hamiltonian [60].
When the driving frequency is much larger than all natural
frequency scales of the system, HF can be approximated using
the Magnus expansion HF =

P1
n=0 H(n)

F [48, 49], see Supple-
mental Material.

Stroboscopic dynamics in the Bose-Hubbard
Trimer.—Here, we present the quantum dynamics of a
three-site lattice (trimer) in the high-frequency regime of a
periodically modulated hopping scenario. We will discuss
the integer (⌦ = U) and fractional (⌦ = U/2) driving and
their e↵ects on the system dynamics. As initial condition
we consider a product state with one excitation per site for
a fixed value U/J0 = 40, that is, | (0)i = NL

j=1|1i j where
L corresponds to the system size. Then, at t = 0 we switch
on the modulated hopping rate and let the system to evolve
under the Hamiltonian (1).

The number of states, here referred to as configurations,
that may participate in the dynamics correspond to all possible
configurations of N particles distributed in L lattice sites DN =

(N + L � 1)!/N!(L � 1)!. In the trimer case at unit filling
N/L = 1 there are D3 = 10 configurations. The initial state
| 0i = |111i has parity p = +1. Since the BHM preserves
the parity, the dynamics will only involve states within the
positive parity subspace | 0i, | 1i = 1p

2
(|021i+ |120i), | 2i =

a)

b)

(a)

(b)

Figure 1. Schematic representation of many-body resonances in the driven lattice model. (a) The
panel shows a transition from the initial condition mj = mk = ml = 1 with particles (green circles)
occupying each lattice site (from bottom to top). Here, we represent a hopping event where the
middle particle moves to the left-most site, reaching the configuration mj = 2, mk = 0, ml = 1.
The energy difference between these configurations is ∆E = h̄U. (b) The panel shows a transition
from the initial condition mj = mk = ml = 1 with particles (green circles) occupying each lattice
site (from bottom to top). The top panel shows two hopping events in which the leftmost particle
moves to the rightmost site, reaching the configuration mj = 0, mk = 1, ml = 2. The energy difference
between these configurations is also ∆E = h̄U. Therefore, within the semi-classical picture, each
hopping event increases the system energy by h̄U/2.

Along this line of thinking, we will prove that the emergent many-body fractional
resonance is a stable phenomenon under loss mechanisms inherent to NISQ devices. In par-
ticular, we will numerically study the nonequilibrium dynamics of the Bose–Hubbard
model [39,40,78], which allows us to describe implementations of strongly interacting
lattice systems in superconducting circuits [6–8,10,79–81].

The Bose–Hubbard Model

The Bose–Hubbard model (BHM) describes strongly interacting bosonic systems on
a lattice, where we recognize operators Ôj = n̂j = â†

j âj, â†
j = Â†

j , and âj = Âj. Replac-
ing these operators in the generic Hamiltonian (1), we can generate the Bose–Hubbard
Hamiltonian
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ĤBH(t) = h̄
L

∑
j=1

(
ωâ†

j âj +
U
2

â†
j â†

j âj âj
)
− h̄J(t)

L−1

∑
j=1

(â†
j âj+1 + H.c.), (4)

where âj(â†
j ) is the annihilation (creation) bosonic operator at site jth, ω is the single site

frequency, U the on-site interaction, J(t) = J0 cos (Ωt) the modulated hopping strength
between neighboring sites, whereas J0 is the bare hopping rate, and Ω is the driving fre-
quency. We stress that modulating the hopping rate can be achieved in superconducting
circuits with transmons [11]. The symmetries of the Hamiltonian (4) play a crucial role in
describing the many-body dynamics. In particular, the BHM exhibits U(1) symmetry char-
acterized by the conservation of the total number of particles/excitations [ĤBH, N̂] = 0 with
N̂ = ∑L

j=1 â†
j âj. Moreover, because we consider a lattice with open boundary conditions,

the model preserves the parity [ĤBH, P̂] = 0, where P̂|n1, n2, . . . , nL〉 = |nL, . . . , n2, n1〉,
where nj stands for the number of particles/excitations at the jth lattice site. Hereafter,
we will consider an initial state with unit filling, that is, |ψ0〉 =

⊗L
j=1|1〉j. In general,

the total number of states that may be involved in the dynamics correspond to all possible
configurations of N particles distributed in L lattice sites DN,L = (N + L− 1)!/N!(L− 1)!.

3. Open Quantum System Dynamics

Practical implementations of strongly correlated bosonic systems in superconducting
circuits always involve interacting with some electromagnetic environment which leads to
noisy dynamics. NISQ devices made of superconducting circuits have proven successful in
stabilizing nonequilibrium many-body states [6–11,28], whose features are well captured by
the BHM [39,40]. In these experiments, the open system dynamics is well described by the
Lindblad master equation. However, because superconducting circuits such as transmons
are anharmonic oscillators, we must use the microscopic master equation to fully capture
the colored nature of the bath [82]. Considering a single anharmonic oscillator located at the
jth lattice site, and described by the local Hamiltonian Ĥ(j)

S = h̄ ∑n ω
(j)
n |nj〉〈nj|, the master

equation in the Lindblad form reads

dρ̂j

dt
=− i

h̄
[Ĥ(j)

S , ρ̂j]

+ ∑
m,n>m

κ
(j)
nmL[|mj〉〈nj|]ρ̂j + ∑

n
γ
(j)
nnL[|nj〉〈nj|]ρ̂j,

(5)

whereL[Ô]ρ̂ = Ôρ̂Ô†− 1
2 (Ô†Ôρ+ ρÔ†Ô). Here, κ

(j)
nm and γ

(j)
nn define decay and dephasing

rates, respectively. In the decay rates, the subscripts n, m refer to the decay from the state
|nj〉 to |mj〉, whereas the dephasing rates refer to the dephasing for the superpositions
of states |mj〉 and |nj〉, within each lattice site j. In this work, we consider finite lattices
with L = 3 and L = 4 sites with up to nmax = 3 and nmax = 4 particles per site with
local Hilbert space dimension dim(H`) = 4 and dim(H`) = 5, respectively. In these cases,
a multilevel approach with local states {|0j〉, |1j〉, |2j〉, |3j〉} and {|0j〉, |1j〉, |2j〉, |3j〉, |4j〉}
must be included in the Lindblad master Equation (5).

By using the multi-level approach for a single anharmonic oscillator, in this work, we
consider the Bose–Hubbard lattice described by the master equation

dρ̂

dt
= − i

h̄
[ĤBH(t), ρ̂] +

L

∑
j=1

nmax

∑
m=0,n>m

κ
(j)
nmL[|mj〉〈nj|]ρ̂

+
L

∑
j=1

nmax

∑
n=0

γ
(j)
nnL[|nj〉〈nj|]ρ̂, (6)

where ρ̂ represents the density matrix of the strongly interacting lattice.
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3.1. Three-Site Bose–Hubbard Lattice

Let us consider a three-site Bose–Hubbard lattice. We will present results about
the stability of the emerging many-body dynamics when considering integer (Ω1 = U)
and fractional (Ω2 = U/2) resonance conditions in an open system scenario. Our study
involves the numerical solution of the Lindblad master Equation (6) by using the fourth-
order Runge–Kutta algorithm. We consider a product state with unit filling |ψ0〉 = |111〉 as
an initial condition. In a closed system scenario, the system will only populate states within
the positive parity subspace |ψ0〉, |ψ1〉 = 1√

2
(|120〉 + |021〉), |ψ2〉 = 1√

2
(|102〉 + |201〉),

|ψ3〉 = 1√
2
(|210〉+ |012〉), |ψ4〉 = |030〉, |ψ5〉 = 1√

2
(|300〉+ |003〉) [38]. In an open quantum

system scenario, we expect that U(1) symmetry will no longer be preserved. Our model
will consider identical loss mechanisms for each lattice site, implying parity symmetry is
still held.

In Figures 2 and 3, we plot the populations of states |ψi〉 with i = 0, 1, 2, 3, 4, 5 for
the integer resonance condition Ω1 = U and fractional resonance condition Ω2 = U/2,
respectively. We identify populations as Pi(t) = |〈ψi|ψ(t)〉|2. In both figures, Pi are
populations numerically computed considering a closed system scenario governed by the
Hamiltonian (4), and PD

i are populations numerically obtained considering decay and
dephasing mechanisms acting upon each lattice site via the master Equation (6). We stress
that the populations of states |ψ1〉 and |ψ2〉 are the same, so we only show P1(t).

0 250 500 750 1000
t/T1

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

Pr
ob

ab
ili

ty

PD
5 PD

3 PD
4

0 250 500 750 1000
t/T1

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

Pr
ob

ab
ili

ty

P1 PD
1

0 250 500 750 1000
t/T1

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

Pr
ob

ab
ili

ty

(a)

(b)

(c)

P0 PD
0

Figure 2. We plot the populations of states |ψi〉 with i = 0, 1, 2, 3, 4, 5 for the integer resonance
Ω1 = U. In all panels, PD

i are populations numerically obtained considering decay and dephasing
for each lattice site, whereas Pi are populations numerically computed considering a closed system
scenario. (a) The panel shows the population of state |ψ0〉 for the closed and open system dynamics.
(b) The panel shows the population of state |ψ1〉 for the closed and open system dynamics. (c) The
panel shows the population of states |ψ3〉, |ψ4〉, and |ψ5〉 for the open system. Moreover, the three-
site Bose–Hubbard lattice is initialized in the state |ψ0〉 = |111〉, and we use realistic parameters
ω = 2π × 4.5 GHz, J0 = 2π × 11.5 MHz, κ10 = 11.9 kHz, κ21 = 24.39 kHz, κ32 = 33.33 kHz,
γ00 = 13.89 kHz, γ11 = 31.25 kHz, γ22 = 83.33 kHz. We consider up to nmax = 3 particles per site
with a local Hilbert space dimension dimH` = 4.
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Figure 3. We plot the populations of states |ψi〉 with i = 0, 1, 2, 3, 4, 5 for the fractional resonance
Ω2 = U/2. In all panels, PD

i are populations numerically obtained considering decay and dephasing
for each lattice site, whereas Pi are populations numerically computed considering a closed system
scenario. (a) The panel shows the population of state |ψ0〉 for the closed and open system dynamics.
(b) The panel shows the population of state |ψ3〉 for the closed and open system dynamics. (c) The
panel shows the population of states |ψ1〉, |ψ4〉, and |ψ5〉 for the open system. Also, the three-
site Bose–Hubbard lattice is initialized in the state |ψ0〉 = |111〉, and we use realistic parameters
ω = 2π × 4.5 GHz, J0 = 2π × 11.5 MHz, κ10 = 11.9 kHz, κ21 = 24.39 kHz, κ32 = 33.33 kHz,
γ00 = 13.89 kHz, γ11 = 31.25 kHz, γ22 = 83.33 kHz. We consider up to nmax = 3 particles per site
with a local Hilbert space dimension dimH` = 4.

In our numerical simulations, we use realistic values for decay (κnm) and dephasing
(γnn) rates of superconducting circuit experiments [83]. In addition, single site frequency ω
and hopping rate J0 are taken from Ref. [10], and U = 40J0 (see the caption of Figure 2 and
Figure 3 for details). It is worth mentioning that despite the long time needed for the popu-
lation of state |ψ3〉 to occur with the highest probability in the fractional resonance case,
see Figure 3b, the system is robust under loss mechanisms. By using realistic parameters,
we estimate driving periods of about T1 ≈ 2 ns and T2 ≈ 4 ns, for integer and fractional
resonance conditions, respectively. Although relaxation and dephasing affect the popula-
tions within the positive parity subspace, strong oscillations of probabilities still survive
within our simulating time. This is a signature of the stability of many-body resonances.
Strong oscillations still survive in local observables, such as the average occupation number
per site. Figure 4 shows the average occupation number of each lattice site Nj(t) for the
integer resonance Ω1 = U. The upper panel shows the dynamic evolution of the closed
system, and the lower panel shows the dynamics in the open system scenario. As expected,
N1(t) = N3(t) due to the reflection symmetry of the lattice with identical parameters for
loss mechanisms. Within the simulating time t = 8 µs (t = 4000T1), we still see strong
oscillations of the occupation numbers and Poincare recurrences. Because we consider
zero-temperature baths for relaxation, we expect Nj(t) → 0 in the long-time dynamics.
We stress that due to the memory consumption of the Runge–Kutta algorithm, we cannot
simulate longer times by using the realistic parameters of Ref. [83].
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Figure 4. We plot the average occupation number Nj(t) for each lattice site, for the integer reso-
nance Ω1 = U. The upper panel (a) shows the closed system scenario. The lower panel (b) shows
the open system scenario. As in previous numerical simulations, the three-site Bose–Hubbard
lattice is initialized in the state |ψ0〉 = |111〉. We use realistic parameters ω = 2π × 4.5 GHz,
J0 = 2π × 11.5 MHz, κ10 = 11.9 kHz, κ21 = 24.39 kHz, κ32 = 33.33 kHz, γ00 = 13.89 kHz,
γ11 = 31.25 kHz, γ22 = 83.33 kHz. We consider up to nmax = 3 particles per site with a local Hilbert
space dimension dimH` = 4.

Figure 5 shows the average occupation number of each lattice site Nj(t) for the
fractional resonance Ω2 = U/2. The upper panel shows the dynamic evolution of the
closed system, and the lower panel shows the dynamics in the open system scenario.
Although the average occupation numbers start decaying, within the simulating time
t = 4 µs (t = 1000T2), strong oscillations around the initial value Nj(0) = 1 are still present.
As in the integer resonance, we expect Nj(t)→ 0 in the long-time dynamics because zero-
temperature baths act upon individual bosonic particles. Notice that N1(t) and N3(t) decay
faster in comparison to N2(t). This happens because second-order processes dominate the
dynamics, and lattice edges can be populated with more than one particle, which results in
faster relaxation processes.

When considering noisy dynamics, the U(1) symmetry is broken, and the system
could populate states outside the unit-filling subspace. In this case, the wave function
may be written as a linear combination of all possible configurations |ψ(t)〉 = ∑Ml=1 cl(t)|l〉,
withM = ∑L

N=0 DN,L for a fixed number of sites L. Therefore, it is necessary to compute
the probability of all accessible configurations the system may visit along with its dynamical
evolution. In the three-site Bose–Hubbard lattice, there areM = ∑3

N=0 DN,3 = 64 accessible
configurations. Figure 6 shows the distribution of populations of each configuration |cl(t)|2
for the integer case Ω1 = U. The upper panel shows the system dynamics considering
a closed system, whereas the lower panel is an open system scenario. In the long-time
dynamics, a fraction of configurations outside the unit filling subspace start to be populated;
however, signatures of the stability of the integer resonance are visible in the average
occupation number shown in Figure 4. In analogy, Figure 7 shows the distribution of
populations of each configuration |cl(t)|2 for the fractional case Ω2 = U/2. The upper
panel shows the system dynamics considering a closed system, whereas the lower panel is
an open system scenario.
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Figure 5. We plot the average occupation number Nj(t) for each lattice site, for the integer res-
onance Ω2 = U/2. The upper panel (a) shows the closed system scenario. The lower panel
(b) shows the open system scenario. As in previous numerical simulations, the three-site Bose–
Hubbard lattice is initialized in the state |ψ0〉 = |111〉. We use realistic parameters ω = 2π × 4.5 GHz,
J0 = 2π × 11.5 MHz, κ10 = 11.9 kHz, κ21 = 24.39 kHz, κ32 = 33.33 kHz, γ00 = 13.89 kHz,
γ11 = 31.25 kHz, γ22 = 83.33 kHz. We consider up to nmax = 3 particles per site with a local Hilbert
space dimension dimH` = 4.

Figure 6. Populations associated with each configuration |cl(t)|2 for the integer case Ω1 = U,
with T1 = 2π/Ω1, and a lattice with L = 3 sites. The upper panel shows the system dynamics
considering a closed scenario, whereas the lower panel is an open scenario. In this simulation, we have
considered all possible configurations in the Hilbert space, which containsM = 64 configurations.
As in previous numerical simulations, we consider up to nmax = 3 particles per site with a local
Hilbert space dimension dimH` = 4.
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Figure 7. Populations associated with each configuration |cl(t)|2 for the fractional case Ω2 = U/2,
with T2 = 2π/Ω2, and a lattice with L = 3 sites. The upper panel shows the system dynamics
considering a closed scenario, whereas the lower panel is an open scenario. In this simulation, we have
considered all possible configurations in the Hilbert space, which containsM = 64 configurations.
As in previous numerical simulations, we consider up to nmax = 3 particles per site with a local
Hilbert space dimension dimH` = 4.

3.2. Four-Site Bose-Hubbard Lattice

Let us consider the four-site Bose–Hubbard lattice initialized in the state |ψ0〉 = |1111〉.
In this case, there areM = ∑4

N=0 DN,4 = 625 accessible configurations. As in the three-site
Bose–Hubbard lattice, in Figure 8, we plot the distribution of populations of each configura-
tion |cl(t)|2 for the fractional case Ω2 = U/2. The upper panel shows the system dynamics
considering a closed system, whereas the lower panel is an open system scenario. In both
cases, we see that the system populates the same configurations. Therefore, we conclude
that, for finite lattice sites, and for short times up to t = 20 T2 (t = 80 µs), the slowing-down
characteristic of the fractional resonance is a stable phenomenon under noisy dynamics.
We emphasize that due to resource consumption of the Runge–Kutta algorithm and our
limited computational resources, and our current computational resources, we can only
simulate up to t = 20 T2 for a lattice of L = 4 sites. In the short term, we expect to extend
our study to larger lattice sizes L > 10 using the adaptive time-dependent density matrix
renormalization group approach to confirm further the findings presented here. Notice
that there is strong evidence about the stability of many-body resonances when increasing
the lattice size, at least for the closed system dynamics, see Ref. [38] and Appendix A.

3.3. The Linear Entropy

Another way to characterize the stability of the system under noisy mechanisms is
by using the linear entropy defined as S(ρ̂) = 1− tr(ρ̂2), where ρ̂ is the system density
matrix. In a closed system scenario, the linear entropy S(ρ̂) = 0 at all times because ρ̂ is a
pure state. However, a realistic situation will necessarily imply the density matrix to be a
statistical mixture. In the previous section, we demonstrated that the fractional many-body
resonance and its characteristic slowing down of the dynamics [38] is a stable phenomenon
under loss mechanisms. The latter is also reflected in linear entropy as shown in Figure 9,
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where the upper (lower) panel shows the linear entropy as a function of time for a lattice of
L = 3 (L = 4) sites. In both cases, S(ρ̂) is is less than 1 within the simulating time.

Figure 8. Populations associated to each configuration |cl(t)|2 for the fractional case Ω2 = U/2,
with T2 = 2π/Ω2, and a lattice with L = 4 sites. The upper panel shows the system dynamics con-
sidering a closed scenario, whereas the lower panel is an open scenario. In this simulation, we have
considered all possible configurations in the Hilbert space, which containsM = 625 configurations.
In this case, we consider realistic parameters ω = 2π× 4.5 GHz, J0 = 2π× 11.5 MHz, κ10 = 11.9 kHz,
κ21 = 24.39 kHz, κ32 = 33.33 kHz, κ43 = 500 kHz, γ00 = 13.89 kHz, γ11 = 31.25 kHz,
γ22 = 83.33 kHz, and γ33 = 45.45 kHz. We consider up to nmax = 4 particles per site with a
local Hilbert space dimension dimH` = 5.
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Figure 9. Linear entropy for the fractional case Ω2 = U/2, with T2 = 2π/Ω2. (a) The upper panel
represents a lattice of L = 3 sites. (b) The lower panel shows a lattice of L = 4 sites. We have used the
same realistic parameters and local Hilbert space dimension as in previous numerical simulations.
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4. Conclusions

Considering small lattices of strongly interacting bosonic particles, we have provided
robust evidence about the stability of many-body resonances and their characteristic slow-
ing down under realistic parameters of NISQ devices implemented in superconducting
circuits. Our investigation includes decay and dephasing mechanisms acting locally on each
bosonic particle using the Lindblad master equation, which has been proven helpful in de-
scribing state-of-the-art superconducting circuit experiments. In the short term, we expect
to extend our study to larger lattice sizes L > 10 using the adaptive time-dependent density
matrix renormalization group approach to confirm further the findings presented here.
Our conclusions are essential before seeking potential fractional resonance applications
and their associated prethermal states as a quantum memory device.
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Appendix A. Stability of Integer Resonance

In Ref. [38], it has recently been shown that in the fractional resonance case, the half-
chain entanglement entropy (SL/2) does not blow up within the simulating time as one
increases the lattice size. The latter is due to the strong localization of the many-body state
that results from the resonance condition. However, the stability of the integer resonance is
not clear by simply comparing the entanglement behavior for two relatively nearby lengths
of the lattice. Here, we have extended the lattice size up to L = 24 sites, investigated the
integer resonance dynamics, and considered a closed system scenario. Figure A1a shows
the convergence check of the time-evolving block decimation algorithm (TEBD). The results
show that a bond dimension χ = 560 is enough to ensure a trustful numerical simulation
within the simulating time. The latter is further confirmed in Figure A1b, where we plot
the truncation error in a semi-log scale as a function of time. In this case, we compare
the truncation errors for lattice sizes L = 16 and L = 24. In Figure A1c, we compare SL/2
for both lattice sizes. Our results show that by increasing the lattice size from L = 16 to
L = 24, the half-chain von Neumann entropy does not blow up within the simulating time.
The latter results from the strong localization of the quantum many-body state due to the
integer resonance condition.

https://github.com/tenpy/tenpy
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Figure A1. (a) Convergence check of the TEBD algorithm by computing the half-chain von Neumann
entropy, SL/2, for a lattice of L = 24 sites. (b) Truncation errors of the TEBD algorithm for lattice
sizes L = 16 and L = 24. (c) SL/2 for lattices sizes L = 16 and L = 24. In all numerical simulations,
we considered parameters J0 = 0.01ω, U = 40J0, and up to nmax = 3 particles per site with a local
Hilbert space dimension dimH` = 4.
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