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Abstract: One of the applications of dynamical systems with chaotic behavior is data encryption.
Chaos-based cryptography uses chaotic dynamical systems as the basis for creating algorithms.
The present article discusses a new dynamical system called M-map with its analysis: fixed points,
bifurcation diagram, Lyapunov exponent, and invariant density. The obtained bifurcation diagram
and the plot of the Lyapunov exponent (with a minimum value of ln 2 and a maximum value of ln 4)
suggest that the so-called robust chaos characterizes this map. Moreover, the obtained results are
compared with other dynamical systems used in cryptography. Additionally, the article proposes a
new image encryption algorithm. It uses, among others, cyclically shifted S-box or saving encrypted
pixels on the first or last free space in the cipher-image. The conducted analysis shows that the
cipher-images are characterized by an entropy value close to 8, a correlation of adjacent pixels value
close to 0, or values of Number of Pixel of Change Rate (NPCR) and Unified Average Changing
Intensity (UACI) measures close to 100% and 33%, respectively.

Keywords: discrete dynamical system; logistic map; tent map; sine map; chaos; Lyapunov exponent;
image encryption

1. Introduction

Dynamical systems with chaotic behavior describe many physical phenomena. Their
particular application is cryptography based on the chaos theory, which uses these types of
recurrences to keep data secure [1–3]. This is possible due to the properties of chaotic maps,
such as random-like behavior and sensitivity to changing initial conditions and, at the same
time, the deterministic method of obtaining successive states. In chaotic cryptography, the
values of the initial conditions and parameters are treated as secret keys.

The vast majority of scientific publications in the area of using chaos in cryptography
focus on defining new algorithms that will be used to keep data secure based on the
selected chaotic system. Many of these algorithms turn out to be ineffective or even
dangerous [4–9]. On the other hand, sparse works have focused on dynamical systems,
which are a significant part of the encryption process. Of course, new systems appear in
the works mentioned above; however, they are often treated as additions to the algorithms.

Chaotic cryptography requires a dynamical system that is appropriate from its point
of view. Such a system should be characterized, among others, by a large range of values
of initial conditions and parameters for which chaos can be observed. In addition, the
distribution of the iterated variable of such systems should be flat to make it impossible to
perform statistical analysis.

In the professional literature, multi-dimensional chaotic dynamical systems, such as
the Lorentz system [10,11], Henon map [12], discrete memristor hyperchaotic maps [13],
two-dimensional sine logistic modulation map [14], or memristive Rulkov neuron model [15],
have been used in chaotic cryptography. The use of such mappings increases the number
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of calculations to obtain the next state of the system, which results directly from their
complicated structure [16]. For this reason, one-dimensional mappings of the following
form are often used for encryption:

xk+1 = f (xk), (1)

where f : [0, 1]→ [0, 1] is a given function.
Chaotic cryptography uses only chaotic systems. Therefore, it is necessary to determine

whether the given system meets this condition. One of the measures determining whether
the mapping of the form (1) generates chaotic orbits is the Lyapunov exponent defined by
the formula

λ = lim
N→∞

1
N

N−1

∑
i=0

ln | f ′(xi)|. (2)

The value of the Lyapunov exponent determines whether the obtained orbit is stable
(λ ≤ 0) or whether the trajectories starting from close initial conditions diverge after
some time (λ > 0). It should be emphasized that condition λ > 0 is only a necessary
condition for chaos to occur. Another valuable feature of dynamical systems is the so-called
invariant density, which from a practical point of view is the distribution of the iterated
variable, which can be obtained by solving the Frobenius–Perron [17,18] equation. Both the
Lyapunov exponent value and the invariant density are normally obtained numerically.

Examples of systems (1) that are commonly used in recent years in chaotic cryptog-
raphy are the logistic map [1,19–29], (skew or asymmetric) tent map [19,21,25,27,30–32],
or sinus map [19,25,28,33]. However, from a cryptographic point of view, the mentioned
mappings have properties not entirely suitable for use in such applications [34]. This is
evidenced by, for example, the logistic map, which is the most frequently used dynamic
system in the professional literature. For this reason, this article presents a new dynam-
ical system characterized by chaotic behavior. Its properties are much better than in the
case of the mappings mentioned above. In addition, this article analyzes, among other
things, the Lyapunov exponent and the potential applications for data encryption of the
presented system.

The main contributions and novelty of this article are (i) the development of a new
dynamic system that can be used in chaotic cryptography, (ii) the presentation of a new
image encryption algorithm, and (iii) the development of a simple S-box algorithm which
is part of the encryption process.

This article is structured in the following order—the first part, the Introduction, out-
lines the topics. In Section 2, some mappings often used in cryptography are shown.
Section 3, which is the Model section, shows the M-map equation. Section 4 presents the
analysis, which shows inter alia, fixed points, bifurcations, Lyapunov exponent, and the
invariant density. Then, in Section 5, a new image encryption algorithm with its analysis is
shown. The last sections include the Conclusion and References.

2. One-Dimensional Mapping Used in Cryptography

In chaotic cryptography, one-dimensional mappings are particularly popular. The
most frequently used dynamic systems of this type are presented below.

The logistic map is given by the following formula [1,19–29]:

xk+1 = axk(1− xk), (3)

where a ∈ [0, 4]. It is characterized, among others, by chaotic behavior for the value of the
parameter a ∈ [3.57, 4] except for the so-called periodic windows. More about its analysis
and possible modifications can be found, among others, in [35,36].
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Equally often, in scientific publications on chaotic cryptography, the asymmetric tent
map is used, which is given by the following formula [19,21,25,27,30–32]:

xk+1 =

{ xk
p 0 < xk < p

1−xk
1−p p ≤ xk < 1

, (4)

where p ∈ (0, 1). This mapping for each value of the p parameter has a chaotic solution
with a positive Lyapunov exponent.

Another mapping that is used in chaotic cryptography is the sine map, which can be
defined by the following equation [19,25,28,33]:

xk+1 = a sin(πxi), (5)

where a ∈ [0, 1]. This system has very similar features to the logistic map.
The above list can be enriched with other one-dimensional dynamical systems, such as

a Gauss map [37,38]. However, their values are not specified in the [0, 1] interval; therefore,
they are not taken into account in the comparative analysis in this article.

3. The M-Map

This article introduces a new model of a one-dimensional chaotic map, which has been
named M-map. The recursive equation of the M-map is determined by the following formula:

xk+1 = f (xk, p) =


xk
p

(
2− xk

p

)
, 0 6 x 6 0.5

1−xk
p

(
2− 1−xk

p

)
, 0.5 < x 6 1

, (6)

where p ∈ [0.25, 0.5].
Figure 1 shows the M-map graphically. This figure shows that this system looks like

the letter “M” and, hence, the name of this map: M-map. Moreover, it can be observed
that when the p parameter changes from the value of p = 0.25 to p = 0.5, the form of the
map changes from two parabolas to the letter “M” to switch finally to the logistic map for
p = 0.5. It can also be easily seen that this map is symmetric about the line x = 1

2 .

Figure 1. M-map (6) for different p parameter values. Additionally, fixed points are marked in red.

4. Analysis

The analysis of the dynamical system (6) was divided into several subsections. It deals
with fixed points, bifurcation diagram, Lyapunov exponent, and invariant density.

4.1. Fixed Points

One of the elements of the analysis of dynamical systems is the determination of their
fixed points, i.e., such values x∗ for which the following equation holds

x∗ = f (x∗). (7)

In the case of M-map, we distinguish the following cases:
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• For p ∈
[

1
4 , 1−

√
2

2

)
:

x∗ ∈
{

0,−p2 + p, −p2−2p+2− 3
√

p3(p+4)
2 , −p2−2p+2+ 3

√
p3(p+4)

2

}
• For p = 1−

√
2

2 :

x∗ ∈
{

0,−p2 + p, −p2−2p+2+ 3
√

p3(p+4)
2

}
• For p ∈

(
1−

√
2

2 , 1
2

]
:

x∗ ∈
{

0, −p2−2p+2+ 3
√

p3(p+4)
2

}
The calculated fixed points are shown in Figure 1.

4.2. Bifurcation Analysis

The bifurcation diagram shows the solutions of the system depending on the value of
its parameter. For M-map, the bifurcation diagram of the mapping is shown in Figure 2. It
can be read that the M-map has no visible periodic windows, which makes the behavior of
the dynamical system in this area chaotic. Moreover, the iteration variable density for the
given p parameters is noticeable. The darker area around the values of 0 and 1 means that
there is a greater accumulation of the mapping values. Thus, the density of the M-map will
have a U-like shape similar to the logistic map density. This observation was confirmed in
the analysis of the invariant density in Section 4.4.

Figure 2. Bifurcation diagram of (6) mapping for different values of p parameter (∆p = 0.000125).

4.3. Lyapunov Exponent

The Lyapunov exponent is a measure of the chaotic nature of a dynamical system and
can be determined using Formula (2). Its positive value is necessary for a dynamic system
to behave in a chaotic manner.

For the M-map, its graph is shown in Figure 3. This plot confirms that this map-
ping does not have the so-called periodic windows. Moreover, the shape of the Lyapunov
exponent curve is interesting—it is not fractal. In this case, as in the case of Weierstrass recur-
rence [39,40], its shape is smooth. This phenomenon occurs in so-called robust chaos [41].

The value of the Lyapunov exponent directly translates into the sensitivity of the
dynamical system to changes in the initial condition. The greater the value of the Lyapunov
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exponent, the faster the trajectories starting from very close initial conditions diverge. This
process can be seen in Figure 4.

Figure 3. The Lyapunov exponent of (6) for different values of the p parameter (∆p = 0.000005).

Figure 4. Sensitivity to the change of initial conditions of (6) with x0 = 0.123 and x1 = 0.123 + 10−15.

4.4. Density of the Iterated Variable

Invariant density allows determining the probability distribution of the iterated vari-
able. It can be determined from the Frobenius–Perron [17,18] formula. However, as a rule,
determining it in an analytical manner is difficult or even impossible. For this reason, it is
approximated numerically using histograms.

Graphs of the numerically obtained densities for the selected p parameter values
are shown in Figure 5. The lower right graph shows the invariant density of the logistic
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mapping for the value of the parameter a = 4, which can be determined by the follow-
ing formula

ρ(x) =
1

π
√

x(1− x)
. (8)

The densities for the remaining cases still resemble the “U” shape. However, their
shape is not perfectly equal to (8).

Figure 5. Density of the iterated variable of the M-map for different values of p parameter.

4.5. Comparative Analysis

The dynamic systems used in the construction of cryptographic algorithms must have
appropriate properties. These properties include, among others, the largest possible range
of parameter values and initial conditions for which chaos occurs. Looking at the graphs of
both the bifurcation diagram in Figure 2 or the Lyapunov exponent in Figure 3, it can be seen
that the interval in which chaos occurs is within the value of the parameter p ∈ [0.25, 0.5].
At the same time, it is worth emphasizing that there are no periodic windows, which
appear in many dynamic systems with chaotic behavior. The analysis also shows that
the Lyapunov exponent has a stable value, i.e., its value does not change significantly for
values close to the parameter value. Such a situation is also very desirable from the point of
view of chaotic cryptography. Moreover, the density of the iterated variable resembles the
letter ”U” similarly to the logistic mapping (Figure 5). This means that the density of this
mapping is flat in the middle and relatively symmetrical and, thus, can be used to generate
pseudo-random values.

Table 1 compares the proposed M-map mapping with logistic, skew tent, and sine
map. A similar juxtaposition is shown in Figure 6. As criteria, aspects important in chaotic
cryptography were selected, i.e., the range of parameter values for chaos, the value of the
Lyapunov exponent, and the map density.

Table 1. Comparison of different dynamical systems.

M-Map Logistic Map Tent Map Sine Map

Chaos p ∈ [0.25, 0.5] a ∈ [3.57; 4] p ∈ (0, 1) a ∈ [0.87, 1]
Lyapunov exponent always positive unstable always positive unstable

Density stable unstable uniform unstable
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The range of M-map values for which there is chaos is comparable to the other
mappings. However, in the case of the logistic map and sine map in the given ranges,
there are the so-called periodic windows. This means that by selecting the parameter value,
there is a risk of hitting the periodic window and thus obtaining a periodic solution. This
situation is, of course, very undesirable from a cryptographic point of view.

The value of the Lyapunov exponent confirms the range of parameters for which there
is chaos. Only M-map and tent map are consistently positive of the four compared map-
pings. In the case of the tent map, its value can be determined using the following formula

λ = −p ln p− (1− p) ln(1− p). (9)

Despite the fact that its value is constantly greater than zero, for values of p close to 0
and 1, its value is close to zero. In such cases, numerically obtained trajectories of the tent
map (4) lose their properties (e.g., uniform density) [42]. On the other hand, the Lyapunov
exponent for M-maps proceeds from ln 2 for p = 0.5 to ln 4 at p = 0.25. Additionally, for all
mappings that consist of only two arms, the maximum value of the Lyapunov exponent is
ln 2. In this respect, the M-map representation has by far the best features.

Figure 6. Value of the Lyapunov exponent (first row) and density (second row) for the logistic, tent,
and sine map.

On the other hand, in the case of invariant density, the best mapping for chaotic
cryptography is the tent map. The distribution of this mapping is uniform over the entire
range of p parameter values. On the other hand, the M-map has a “U” -like density. A
similar shape of the density function also has the logistic map but only for the value of the
a parameter close to 4, which is given by the Formula (8).

Moreover, it is possible to improve the density of the proposed mapping in such a
way that its shape resembles the density with the given Relation (8). This procedure may
consist in changing the mapping parameter according to the adopted scheme. It is possible
to use, e.g., the following scheme.

pi+1 = 0.25 + ((pi + xi) mod 0.25) (10)

xi+1 = f (xi, pi) (11)
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The distribution of the mapping obtained as a result of the operation of the above
procedure is presented in Figure 7. In this graph, it can be seen that the map density
approximates the density (8) better than it does for single parameter values (see Figure 5).

Figure 7. Distribution of an exemplary orbit when changing the value of the p parameter.

The above comparison shows that the M-map can replace the logistic map and other
one-dimensional chaotic maps in cryptography applications.

5. Application in Chaos-Based Cryptography
5.1. Simple Image Encryption Algorithm

A simple encryption algorithm was developed to demonstrate the use of the M-map
that depicts the image’s encryption. This encryption procedure is based on using a dynamic
S-box and saving the encrypted pixels in the appropriate place in the cipher-image. The
S-box dynamics consist of its dynamic shift for each encrypted pixel. Moreover, successive
pixels are stored in the first free position from the beginning or end of the cipher-image.
The value of the M-map determines which variant is selected.

5.1.1. Image Encryption Algorithm

The proposed image encryption algorithm operates on pixels in RGB encoding. Hence,
it is required that the images be in this format. The next steps are Algorithm 1.

The general scheme of the encryption algorithm is shown in Figure 8.

Figure 8. Encryption scheme.
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Algorithm 1 Image Encryption Algorithm

1. Set the keys: x and p;
2. From the set {0, 1, · · · , 255}, generate an S− box;
3. For every pixel value px(i, j):

(a) Calculate x from (6) (x = f (x, p));
(b) Calculate shi f t = f loor(256 · x) and shift the S-box in a cyclic way by the value

shi f t;
(c) Read the S− box value for the pixels RGB components (S− box(px(i, j)));
(d) If x ≤ 0.5 :

write value S− box(px(i, j)) in the first free place in the cipher-image;
(e) If x > 0.5 :

write value S− box(px(i, j)) in the last free place in the cipher-image.

In step 3b of the encryption algorithm, the shi f t value for the S-box shifting is calcu-
lated. Examples of such an S-box and its shifted version are shown in Table 2.

Table 2. S-box and shifted S-box by the value of n.

S-Box Value

original 100, · · · , 47, 113, · · · , 7︸ ︷︷ ︸
n

shifted 113, · · · , 7, 100, · · · , 47

5.1.2. Decryption Algorithm

Decryption algorithm is shown in Algorithm 2

Algorithm 2 Decryption Algorithm

1. Set the keys: x and p;
2. From the set {0, 1, · · · , 255} generate an S− box;
3. When not all pixels are read:

(a) Calculate x from (6) (x = f (x, p));
i. If x ≤ 0.5 :

read the first free pixel px;
ii. If x > 0.5 :

Read the last free pixel px;
(b) Find the S− box indexes for the RGB components of the pixel px
(c) Calculate shi f t = f loor(256 · x) and shift the S-box in a cyclic manner by the

value shi f t;
(d) Write the read indexes in the first free place in the plain-image.

The general scheme of the decryption algorithm is shown in Figure 9.

Figure 9. Decryption scheme.

5.1.3. S-Box Generation

The S-box should be generated in the second step of the proposed encryption algorithm.
For this purpose, known from the literature, methods of generating permutations with, for
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example, chaotic mappings can be used. This article proposes a procedure that is based on
generating permutations using the Fisher–Yates algorithm. More about the Fisher–Yates
method itself, as well as its variants concerning the use of chaotic mappings, can be found
in [43,44].

The proposed algorithm uses the tent map (4) due to uniform distribution. However,
the M-map can also be used for this purpose even despite a non-uniform distribution (see
Figure 7). A flat distribution from such values can be obtained by using, e.g., the procedure
described in [45].

Preliminary assumptions: Let Sn be a list consisting of [0, 1, . . . , 255], lengthSn repre-
sents its length, Sb is an empty list, N and M are the image dimensions:

1. Calculate the value of Spx, which is the sum of all pixels of the plain-image. Spx is the
private key of the S-box;

2. Starting from initial value ((x +
Spx

3·255·N·M ) mod 1) and parameter p, drop the first
103 recurrence (4) values;

3. From set {0, 1, . . . , 255}, generate the following permutation:

While lengthSn > 0:

i. Calculate x from recurrence (4);
ii. Calculate index = f loor(x · lengthSn);
iii. Add Sn[index] to Sb;
iv. Remove from Sn element Sn[index];
v. Decrease lengthSn by 1.

The S-box generation algorithm depends on the value of Spx. This means that this value
must be passed as a secret or public key. An incorrect value of Spx entered for decryption
will result in receiving another S-box; thus, the cipher-image will not be decrypted correctly.
If the value of Spx is treated as a secret key, then the number of all such keys is equal to
3 · 255 · N ·M. For an image with dimensions of 512 × 512, the number of all possible keys
is 200540160.

5.2. Cipher-Images of Selected Benchmark Images

Standard images of Lena, Pepper, and Baboon, shown in Figures 10a–12a, were
selected to analyze the proposed encryption algorithm. The cipher-images obtained for
the initial condition value of x = 0.789 and the parameter value of p = 0.352 are shown in
Figures 10b–12b. On the other hand, Figures 10c–12c show images after decryption.

(a) (b) (c)
Figure 10. Image of Lena, its cipher-image and decrypted image. (a) Image of Lena; (b) cipher-image
of Lena; (c) decrypted image of Lena.
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(a) (b) (c)
Figure 11. Image of Peppers, its cipher-image, and decrypted image. (a) Image of Peppers; (b) cipher-
image of Peppers; (c) decrypted Peppers image.

(a) (b) (c)
Figure 12. Image of Baboon, its cipher-image, and decrypted image. (a) Image of Baboon; (b) cipher-
image of Baboon; (c) decrypted Baboon image.

For the selected test images and their cipher-images, an analysis was carried out in the
next subsections. The diagram of this analysis is shown in Figure 13.

Figure 13. Research methodology for cipher-images analysis.

5.3. Key Sensitivity Analysis

A secure cipher should be sensitive to changes of the key values. To encrypt the
image of Lena (Figure 10a), parameter p = 0.352 values was chosen, while the initial
condition is set to x0 = 0.789. The key resulting from the S-box generation algorithm
is equal to 100842898. The images obtained with a tiny change of one of the keys are
visible in Figure 14. Figure 14a is obtained for initial condition x0 = 0.789 + 10−16. In
turn, Figure 14b is obtained for the map parameter equal to p = 0.352 + 10−16. Finally,
Figure 14c is obtained for the key obtained from the S-box equal to 100842897. In each of
the above cases, the keys used differ from the correct ones by a tiny value. However, the
recovered images are completely different from Lena’s image from Figure 10a.
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(a) (b) (c)
Figure 14. Images recovered with invalid values of keys. (a) Initial condition value changed by 10−16;
(b) parameter value changed by 10−16; (c) the key from the S-box changed by 1.

5.4. Histograms

The simplest analysis of an encryption algorithm is to analyze the cipher-image
histogram. The histogram of the cipher-image should be perfectly flat to make any statistical
analysis impossible. In the case of a color image, such an analysis applies to each of
the channels, i.e., it is performed separately for the pixels representing the red channel,
separately for the green channel, and finally for the blue channel. The results obtained
from this analysis for the original images and cipher-images are presented in Figures 15–17.
From these figures, it can be seen that the histograms of the encrypted images for each
channel are flat. From a cryptographic point of view, this is the most appropriate situation.

Figure 15. Histograms of Lena (Figure 10a (top row)) and its cipher-image (Figure 10b (bottom row)).

Figure 16. Histograms of Pepper (Figure 11a (top row)) and its cipher-image (Figure 11b (bottom row)).
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Figure 17. Histograms of Baboon (Figure 12a (top row)) and its cipher-image (Figure 12b (bottom row)).

5.5. Differential Attack Analysis

NPCR (Number of Pixel of Change Rate) and UACI (Unified Average Changing
Intensity) are two crucial measures of the algorithm’s resistance to differential attacks. To
determine them, we need two encrypted images E1 and E2, for which its plain-images P1
and P2 differ from each other for only one randomly selected pixel. Furthermore, E1 and E2
are received using the same values of keys.

5.5.1. NPCR Analysis

The NPCR value is calculated from the following formula:

NPCR =
1

N ×M ∑
i,j

D(i, j)× 100%, (12)

where the following is the case:

D(i, j) =

{
0 if E1(i,j) = E2(i,j)
1 if E1(i,j) 6= E2(i,j)

, (13)

and N ×M denotes the image dimensions, and E∗(i,j) is the pixel in the (i, j) coordinates
of the E∗ image. The ideal value for NPCR is 100%. In practice, NPCR close to 100%
means that the encryption algorithm is resistant to differential attacks. The results for the
cipher-images are presented in Table 3. The numerical values in this table are close to the
ideal value, which concludes that the proposed algorithm is resistant to differential attacks.

Table 3. NPCR values for test cipher images. The first column is the image, and the next one is the
NPCR value for the Red, Green, and Blue channels.

Image Red Green Blue

Lena 99.19 99.23 99.21
Pepper 99.24 99.24 99.25
Baboon 100 100 100

5.5.2. UACI Analysis

The UACI value is calculated from the following formula:

UACI =
1

N ×M

[
∑
i,j

|E1(i,j) − E2(i,j)|
255

]
× 100%, (14)

and N ×M denotes the image dimensions, and E∗(i,j) is the pixel in the (i, j) coordinates of
the E∗ image. The desired value for UACI is 33%. The results for the cipher-images are
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presented in Table 4. The numerical values in this table are close to the ideal value, which
concludes that the proposed algorithm is resistant to differential attacks.

Table 4. UACI values for test cipher images. The first column is the image, and the next one is the
UACI value for the Red, Green, and Blue channels.

Image Red Green Blue

Lena 32.62 32.60 32.64
Pepper 32.78 32.85 32.78
Baboon 34.74 34.80 34.75

5.6. Entropy

Entropy measures the amount of information in the source. The greater its value, the
more information this source carries with it. It can be calculated with the formula:

H(m) =
255

∑
i=0
−p(mi) log2 p(mi), (15)

where p(mi) is the probability of element mi in message m. In the case of images, mi is
understood as the pixel value for a specific channel, i.e., it takes the value from the set
{0, 1, · · · , 255}, while p(mi) is the probability of mi in a given channel, in all pixels of the
image. For m defined as above, the entropy has a maximum value of 8. This case means
that all probabilities of p(mi) are equal to 1

256 . The entropy results for the test images are
presented in Table 5. The obtained results show that the entropy for the cipher-images is
close to 8.

Table 5. Entropy value for test cipher images. The first column is the image, and the next one is the
entropy value for the Red, Green, and Blue channels.

Image Red Green Blue

Lena 7.9992 7.9992 7.9993
Pepper 7.9992 7.9992 7.9993
Baboon 7.9993 7.9993 7.9993

5.7. Correlation Analysis for the Adjacent Pixels

Pearson’s correlation coefficient r can be used to determine the correlation between
pixels. It is is given by the following formula:

r =
Cov(x, y)

σx · σy
, (16)

where the following is the case:

σx =
√

Var(x) =

√√√√ 1
N

N

∑
i=i

(
xi −

1
N

N

∑
i=1

xi

)2

, (17)

σy =
√

Var(y) =

√√√√ 1
N

N

∑
i=i

(
yi −

1
N

N

∑
i=1

yi

)2

, (18)

Cov(x, y) =
1
N

N

∑
i=i

(
xi −

1
N

N

∑
i=1

xi

)(
yi −

1
N

N

∑
i=1

yi

)
. (19)

x and y are consecutive image pixels with dimensions N × M. The results of the r cor-
relation coefficient for the cipher-images are presented in Table 6. The obtained values
of the r coefficient are close to zero, which means that the cipher-image pixels are not
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correlated. The lack of correlation applies to adjacent pixels in the horizontal, vertical, and
diagonal arrangements.

Table 6. Correlation coefficient values (r) for test cipher images. The first column is the image, and
the next one is the correlation coefficient value for the RGB channels of the horizontal, vertical, and
diagonal adjacent pixels.

Image Horizontal Vertical Diagonal
Red Green Blue Red Green Blue Red Green Blue

Lena 0.0022 0.0002 0.0030 0.0008 0.0007 −0.0001 −0.0011 0.0016 0.0007
Pepper 0.0027 −0.0024 0.0013 0.0013 −0.0004 −0.0001 −0.0004 0.0019 −0.0006
Baboon 0.0048 0.0035 0.0009 −0.0050 0.0006 −0.0013 −0.0002 −0.0007 −0.0003

5.8. Comparative Analysis

To illustrate the proposed algorithm against the background of encryption procedures,
Lena’s image and measures for its cipher-image from the publication [46–48] were selected.
And so, the Table 7 shows the values for NPCR, Table 8 shows the comparison for the UACI
measure, Table 9 shows the entropy, while the Table 10 shows the correlation coefficient
for adjacent pixels. These Tables show that the values obtained for Lena’s image from
the proposed algorithm and those cited in the literature are similar. And so, looking at
the NPCR value in the Table 7 in the case of [47,48] publications, the obtained values are
very similar. In the case of the UACI measure, the result from work [47] is very similar
again, but those from work [48] are already much worse (close to 49%) than the proposed
algorithm. In the case of the entropy values presented in Table 9, all compared values are
similar, although the closest values to the optimal value 8 are those from the proposed
algorithm. Table 10 shows the correlation values for adjacent pixels for the compared works.
Both the proposed algorithm and those from [47,48] have values very similar, close to the
optimal value of 0.

Table 7. Comparison of the NPCR values for cipher-images components of Lena from different
publications. The first column is the image, and the next one is the NPCR value for the Red, Green,
and Blue channels.

Image Red Green Blue

Proposed 99.19 99.23 99.21
[47] 99.58 99.56 99.64
[48] 99.7909 99.7925 99.7910

Table 8. Comparison of the UACI values for cipher-images components of Lena from different
publications. The first column is the image, and the next one is the UACI value for Red, Green, and
Blue channels.

Image Red Green Blue

Proposed 32.62 32.60 32.64
[47] 33.27 33.36 33.50
[48] 49.1964 49.2234 49.2374
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Table 9. Comparison of the entropy values for cipher-images components of Lena from different
publications. The first column is the image, and the next one is the entropy value for Red, Green, and
Blue channels.

Image Red Green Blue

Proposed 7.9992 7.9992 7.9993
[46] 7.7771 7.6251 7.7150
[47] 7.9973 7.9972 7.9975
[48] 7.9893 7.9898 7.9894

Table 10. Comparison of correlation coefficient values (r) for cipher-images components of Lena from
different publication. The first column is the image, and the next one is the correlation coefficient
value for the RGB channels of the horizontal, vertical, and diagonal adjacent pixels.

Image Horizontal Vertical Diagonal
Red Green Blue Red Green Blue Red Green Blue

Proposed 0.0022 0.0002 0.0030 0.0008 0.0007 −0.0001 −0.0011 0.0016 0.0007
[47] 0.0017 0.0011 −0.0030 −0.0004 0.0076 0.0050 0.0049 −0.0002 0.0049
[48] 0.0024 −0.0056 −0.0078 0.0010 −0.0037 0.0031 −0.0148 −0.0295 −0.0247

6. Conclusions

The article proposes a new dynamical system for cryptography applications based
on the chaos theory. To confirm its usefulness, the analysis of fixed points, bifurcation,
Lyapunov exponent, and invariant density was performed. The analysis shows that
the so-called robust chaos characterizes the proposed dynamic system, i.e., there are
no periodic windows. Moreover, both the Lyapunov exponent’s stable value and the
iterated variable’s density suggest that this mapping can be used in chaotic cryptography
applications. Additionally, the proposed mapping was compared with logistic, tent, and
sine maps. The obtained results show its better features concerning other compared
dynamical systems.

The article also introduces a new image encryption algorithm. It uses, among others,
S-box, which is cyclically shifted and saves encrypted pixels in the cipher-image in the first
free place from its beginning or end. However, it is required that the images be saved in
RGB color format. The algorithm was tested on the images of Lena, Baboon, and Pepper,
for which color histograms, NPCR and UACI measures, entropy, and correlation analysis
for the adjacent pixels are presented. These values are successively almost equal to the
following: 8 for the entropy, 0 for the correlation of adjacent pixels, 100% for the NPCR,
and 33% for the UACI. The obtained values show that this simple algorithm can be used
in practice to encrypt images.
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