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Abstract: Local fractional calculus (fractal calculus) plays a crucial role in applications, especially
in computer sciences and engineering. One of these applications appears in the theory of chaos.
Therefore, this paper studies the dynamics of a fractal complex logistic map and then employs this
map to generate chaotic sequences for a new symmetric image encryption algorithm. Firstly, we
derive the fractional complex logistic map and investigate its dynamics by determining its equilibria,
geometric properties, and chaotic behavior. Secondly, the fractional chaotic sequences of the proposed
map are employed to scramble and alter image pixels to increase resistance to decryption attacks.
The output findings indicate that the proposed algorithm based on fractional complex logistic maps
could effectively encrypt various kinds of images. Furthermore, it has better security performance
than several existing algorithms.

Keywords: fractal; local fractional calculus; complex logistic map; symmetric image encryption
algorithm; chaotic function; subordination and superordination; open unit disk; analytic function;
univalent function

1. Introduction

Advancements in communications and computer technologies facilitate data trans-
mission over internet networks. However, the main issues of data transmission over the
internet are the safety of the information from unauthorized users. Recently, image encryp-
tion, which aims to keep information secret, has attracted researchers from various fields [1].
In the encryption and decryption processes, security keys are an integral part. The security
keys are used to convert the data to nonsense data and vice versa; thus, security keys
should be shared to recover the original image [2].

The process of image encryption and decryption is based on mathematical models,
which are used to encrypt images using multi-secret keys [3]. Many encryption models have
been proposed. The most known image encryption algorithms are based on chaotic encryp-
tion [4–6]. Over the years, chaos theory has been applied in science and engineering [7,8].
It especially received much attention in the area of image encryption.

T. Gopalakrishnan and S. Ramakrishnan [9] presented an image encryption method
given by multiple chaotic maps. The method utilizes various keys for four-round encryption
cycles. The method can be employed to encrypt grayscale images and color images. Y.
Luo, et al. [10] demonstrated how a grouping of a Baker map and a logistic map can be
used as a two-dimensional chaotic system that can encrypt images. Li et al. [11] designed
an encryption system that uses key streams depending on the input image. The system
employs a chaotic system and hash function to achieve its goals. Nestor Tsafack et al. [12]
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published a novel image encryption method that is formulated by a new chaotic map with
dynamic analysis for the health internet of things.

Fractal calculus [13–15] (local fractional calculus) plays a major role in wide fields
of science and engineering such as geology, economics, chemical physics, control theory,
and fluid flow [16,17]. Fractal calculus has been utilized to generalize chaotic systems,
chaotic maps, optimization, operation, and other theories of chaos [18–22]. Chaos is an
extensive stimulating occurrence in nonlinear dynamical systems, which has been widely
investigated through the recent period. Different researchers have proposed various new
chaotic maps that have more security [23,24]. Additionally, cryptographic algorithms utilize
common chaotic models such as logistic maps [25]. G. Zhang et al. [26] proposed a new
chaotic logistic map called tent delay-sine cascade (TDSCL) for image encryption. The
algorithm of this image encryption achieves confusion and diffusion. Y. Zhang et al. [27]
proposed a new fractional-order logistic map based on S-boxes. The proposed fractional-
order chaotic system provided a larger key space to make the image encryption more
efficient against crypto-analytic attacks. The proposed S-boxes were used for the encryption
confusion process.

Fractal calculus models are now widely used in image security due to their infinite
boundaries property [28]. Sangavi and Thangavel [29] proposed an image encryption algo-
rithm that employs fractal geometry of colored images. This proposed image encryption
algorithm has a large key space with complex behavior to produce the confusion behavior.
The confusion behavior of the proposed model helps to shuffle the image’s pixel positions
to avoid correlation between image pixels.

This paper studies the dynamics of a new fractal complex logistic (FCL) map and then
investigates its performance as an essential seed for image encryption algorithms. Firstly,
the dynamical characteristics of the FCL, including the equilibrium point, the geometric
properties, and chaotic behaviors, are discovered. Simulation analysis proves that the FCL
generates wider chaotic regions and ensures the pseudo-randomness of this map. Secondly,
to demonstrate the efficiency of the FCL map in real applications, we employ it in an image
encryption algorithm. In this algorithm, the fractal complex sequences of the FCL are used
to alter the image’s pixels to drastically increase the resistance to decryption attacks. The
output findings indicate that our proposed algorithm could effectively encrypt various
kinds of images with a high level of security performance.

The rest of this paper is organized as follows: Section 2 introduces the fractal complex
logistic map and then defines its structure, fixed points, and geometric properties. Further-
more, this section proposes a new encryption algorithm to demonstrate the efficiency of
the map. Section 3 analyzes the performance of the proposed encryption algorithm. Finally,
the conclusions are presented in Section 4.

2. Materials and Methods

The proposed mathematical FCL map model that is used for the image encryption
algorithm is given as follows [13–15]:

2.1. Fractal Complex Logistic (FCL) Map

Let Cα(a, b), α ∈ (0, 1] be a fractal set and let f ∈ Cα. For ε > 0 and |χ − χ0| < δ;
the limit

f (α)(χ0) := ∆(α) f (χ0) = limχ→χ0

Γ(α + 1)( f (χ)− f (χ0))

(χ− χ0)
α

(1)

is finite and exists. Here, the gamma function is defined as Γ(z) =
∫ ∞

0 x(z−1) e−xdx.
Note that

∆(2α) f (χ0) = ∆(α)
(

∆(α) f (χ0)
)

, ∆(3α) f (χ0) = ∆(α)
(

∆(α)
(

∆(α) f (χ0)
))

. . .
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The 2D-fractal derivative is suggested for a complex function f (z), where z = x + iy
expressing on a fractal set of Cα(U), U ⊂ C (the complex plane), as follows [30]:

∆(α) f (z0) = limz→z0

Γ(α + 1)( f (z)− f (z0))

(z− z0)α
, z ∈ U, (2)

where the difference operator is formulated by

Dα f (z0) = Γ(α + 1)( f (z)− f (z0)), z ∈ U. (3)

For instance, f (zα) = zαn, has a fractal derivative

∆(α)znα =
Γ(αn + 1)

Γ(α(n− 1) + 1)
z(n−1)α. (4)

Hence, generally, for an analytic function f in a complex domain, we obtain the
construction of a fractal derivative, as follows Theorem 9 [30]:

∆(α) f (z) =
∞

∑
n=1

Φn(a, b)
Γ(α(n− 1) + 1)

z(n−1)α, (5)

where f is located in some fractal set.
The fractal integral can be recognized by the discrete formula

J(α) f (z) =
1

Γ(1 + α)

k

∑
n=1

f (zn)(δzn)
α, (6)

where δzn := zn − zn−1.

Proposition 1. Consider the fractal equation

∆(α) f (z) = F(zn, f (zn)). (7)

Then, the solution becomes as follows

f (z) = f (z0) +
1

Γ(1 + α)

k

∑
n=1

F(zn, f (zn))(zn − zn−1)
α. (8)

2.2. Structure of FCL Map

By using the difference fractal operator, we proceed to define the FCL map. A complex
logistic map is given by the structure

zn+1 = ℵzn(1− zn), z ∈ C, ℵ ∈ [0, 4], (9)

where ℵ is the control parameter. However, the above discrete complex logistic map can be
converted to the continuous type, as follows:

z• = ℵz(1− z), z ∈ C, ℵ ∈ [0, 4], (10)

By considering, z = χ + iΥ, we have the system

χ• = ℵχ− ℵ
(

χ2 − Υ2
)

(11)

Υ• = ℵΥ− 2ℵχΥ. (12)
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By considering the discrete fractal operator, we have the following FCL map,

Γ(α + 1)(zn+1 − zn) = Γ(α + 1)(ℵzn(1− zn)− zn). (13)

Consequently, we obtain the FCL map

Dαzn+1 = Γ(α + 1)(ℵzn(1− zn)− zn), α ∈ [0, 1], (14)

which corresponds to the dynamic system

Dαχ = Γ(α + 1)
(
(ℵ − 1)χ− ℵ

(
χ2 − Υ2

))
(15)

DαΥ = Γ(α + 1)((ℵ − 1)Υ− 2ℵχΥ). (16)

It is clear that when α = 0, System (16) reduces to System (12).

2.3. Properties of FCL Map
2.3.1. Equilibrium Points

Consider the following two equations

f1 : Γ(α + 1)
(
(ℵ − 1)χ− ℵ

(
χ2 − Υ2

))
= 0 (17)

f2 : Γ(α + 1)((ℵ − 1)Υ− 2ℵχΥ) = 0. (18)

Now, we have the following set

Ξ :=
{

Σ0(0, 0), Σ1(
ℵ − 1
ℵ , 0), Σ2(

ℵ − 1
2ℵ ,

+i(ℵ − 1)
2ℵ ), Σ3

(
ℵ − 1

2ℵ ,
−i(ℵ − 1)

2ℵ

)}
. (19)

The Jacobian matrix becomes

JΣ(χ,Υ) =

(
∂χ( f1) ∂Υ( f1)
∂χ( f2) ∂Υ( f2)

)

=

(
Γ(α + 1)((ℵ − 1)− 2χ) 2ℵΓ(α + 1)Υ
−2ℵΓ(α + 1)Υ Γ(α + 1)(ℵ − 1− 2ℵχ)

)
.

Note that

JΣ(0,0) =

(
Γ(α + 1)(ℵ − 1) 0
0 Γ(α + 1)(ℵ − 1)

)
,

which leads to two equal Eigenvalues λ1,2 = Γ(α + 1)(ℵ − 1).
Now, we obtain the equilibrium points of System (14) by resolving the next system

χ = Γ(α + 1)
(
(ℵ − 1)χ− ℵ

(
χ2 − Υ2

))
(20)

Υ = Γ(α + 1)((ℵ − 1)Υ− 2ℵχΥ). (21)

The set of solutions is formulated as follows:

Θ :=


−(−ℵb + b + 1)

2ℵ ,

√
− ((ℵ−1)b−1)2

ℵ

2
√
ℵ

,
(
(ℵ − 1)b− 1

ℵ , 0
)

, (0, 0)

 , (22)

where b := Γ(α + 1).

2.3.2. Geometric Properties

Consider an FCL map that is defined on a fractal set of the open unit disk := {z ∈ C :
|z| < 1}. To study the geometric properties of the FCL map, we need the following definition:
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Definition 1. Two analytic functions, f , g, are subordinated in U denoted by f ≺ g if they occur
as the function ω ∈ U, |ω| ≤ |z| satisfying f (z) = g(ω(z)). They are majorized ( f � g) if
f (z) = ω(z)g(z), which is equivalent to |an| ≤ |bn| where an and bn are the coefficients of f and
g, respectively.

The following shows the geometric behavior of the logistic map and the FCL map in
terms of the limacon map L℘(z) = (1 + ℘z)2.

Proposition 2. Consider the logistic map F(z) = ℵz(1− z) and its fractal the FCL map Fα =
ℵΓ(1 + α)z(1− z), where ℵ 6= 0.

1. If |ℵ| ≤ 2℘2, 0 < ℘ ≤ 1/2 then F(z) ≺ zL′℘(z), 0.1 < |z| < 0.3;

2. If |ℵ| ≤ 2℘2

Γ(1+α)
, 0 < ℘ ≤ 1/2 then Fα(z) ≺ zL′℘(z), 0.1 < |z| < 0.3;

Proof. Clearly, we have
zL′℘(z) = 2℘z(1 + ℘z), z ∈ U, (23)

which is the starlike analytic function in U, whenever ℘ ∈ (0, 1/2] (see [22]). Utilizing the
first condition of the theorem, we obtain

F(z)� zL′℘(z),℘ ∈ (0, 1/2]. (24)

Similarly, the second condition implies that

Fα(z)� zL′℘(z),℘ ∈ (0, 1/2]. (25)

Since F′(0) 6= 0 in view of Corollary 2 [31], we obtain the first assertion

F(z) ≺ zL′℘(z),℘ ∈ (0, 1/2],ℵ 6= 0. (26)

In the same manner, we obtain the second inequality

Fα(z) ≺ zL
′
℘(z),℘ ∈ (0,

1
2
],ℵ 6= 0, α ∈ < 0, 1 > . (27)

The geometry of the logistic map and the fractal logistic map is dominated by a starlike
function in the open unit disk U. Note that the analytic function φ(z)is called starlike if and
only if R

(
zφ′(z)
φ(z)

)
> 0. Proposition 2 yields a relation between the derivative of the logistic

map (normal and fractal) and the second derivative of the limacon map, which represents
to the convexity behavior the map following Theorem 3 [31]:

F′(z)�
(
zL′℘(z)

)′, |z| < 3−
√

8; (28)

and
F′α(z)�

(
zL′℘(z)

)′, |z| < 3−
√

8. (29)

2.4. The FCL Map Algorithm

From Proposition 1, we use Equation (14) to obtain

J(α)(Dαzn+1) = J(α)(Γ(α + 1)(ℵzn(1− zn)− zn)), (30)

zn+1 = (z0) +
1

Γ(1 + α)

k−1

∑
n=0

(Γ(α + 1)(ℵzn(1− zn)− zn))(zn+1 − zn)
α (31)



Symmetry 2022, 14, 1874 6 of 14

= z0 +
k

∑
n=1

(ℵzn−1(1− zn−1)− zn−1)(zn − zn−1)
α, (32)

where 0 ≤ |z0| < |z1| < . . . < |zn| < 1. It is clear that the map zn+1 depends on the
previous information, since there is a fractional kernel (zn − zn−1)

α.
Figure 1 illustrates the behavior of the proposed FCL map by depicting its bifurcation

diagram. From the bifurcation diagram (Figure 1a), it is obvious that the system with
α = 0.5 shows a period-doubling bifurcation with a complete absence of chaotic behavior
for the range of ℵ ∈ [2, 4]. Meanwhile, Figure 1b shows that the system with α = 0.6 enters
into chaotic behavior by period-doubling bifurcation with a complete absence of periodic
windows, mainly where ℵ ∈ (3.7, 4].

Furthermore, Figure 2 illustrates the randomness of chaotic sequences of the FCL map
by using the statistical package NIST SP800-22, which contains 16 empirical tests. Here,
a binary sequence has been taken from the FCL map with a length of 1,000,000 bits to
employ as the testing input. The sequence can be considered as random when the obtained
p-value is larger than 0.01. As can be seen in Figure 2a,b, the chaotic sequence generated
by the FCL map can pass all the sub-tests. That means this map is suitable for image
encryption algorithms.

Figure 1. Bifurcation diagram of the FCL map with the initial value z0 = 0.1: (a) α = 0.5; (b) α = 0.6.

2.5. The Encryption Method

The steps for symmetric image encryption by the proposed method are as follows:

1. Read the input image (I), and convert the values to a 52-bit binary stream using IEEE
754 float standard; then, the digital numbers from 33rd to 40th in each binary stream
are used;

2. Set the secret key, which is mainly generated from the initial value and control
parameters of the FCL map, as illustrated in Figure 3;

3. Use proposed FCL to generate the chaotic sequences Z = {|z1|, |z2|, |z3|, . . . . . . , |zn| }.
Note that for all n, 0 ≤ |zn| < 1;

4. Start the confusion of the input image by changing the position of pixels by using
conditional shift, which stops the algorithm for any shifting cases to make the variable
z outside the open unit disk;

5. Convert the chaotic sequences to binary numbers using IEEE 754 float standard in
which each chaotic output produces eight binary numbers;

6. Start the diffusion of the confusing image to obtain the encrypted image by using
the XOR operation between the binary input image and the binary form of chaotic
sequence as: Ix(i) = bitxor (Ib(i),(z(i));

7. Convert Ix into a two-dimensional encrypted image (Ie);
8. The previous steps are applied in reverse to decrypt the image.
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The bifurcation diagram is used to illustrate the behavior of the proposed chaotic maps
through the distribution of iterates zn versus the control parameter ℵ. Essentially, the FCL
map can be governed by two parameters (zn and ℵ), and the map has a random behavior
that is represented by an alteration in the values of either or both of the aforementioned
parameters (zn and ℵ). The key idea of applying the FCL map in image encryption is
based on a repetition function in which the previous output value of zn−1 will influence
the current value of zn.

block freq. discrete. f freq. random exc. random var. serial-1 serial-2  linear com. longest
0

0.2

0.4

0.6

0.8

1

P
-v

a
lu

e

(a)

ApEn cumul. f. cumul. r. lempel-ziv non-overlap overlap binary rank runs universal
0

0.2

0.4

0.6

0.8

1

P
-v

a
lu

e

(b)

Figure 2. The NIST SP800-22 result: (a,b) represent the statistical sub-tests of the chaotic sequence
generated by FCL map with the initial value z0 = 0.1 and the parameters α=0.6 and ℵ = 3.72.

Figure 3. The secret key structure, which consists of five parts with 232 bits.

3. Results

Here, the performance of the proposed image encryption model with the initial value
z0 = 0.1 and the parameters α=0.6 and ℵ = 3.72 is demonstrated using standard test images,
commonly known as Barbara, sketch, handwriting, and Lena, with the size 256× 256. We
employed statistical analyses to assess the model’s performance. The experiments were
undertaken using MATLAB R2021a with Windows 10, 8.00 GB RAM, Intel(R) Core (TM)
i7-6700HQ CPU @2.60 GHz.

3.1. Encrypting Different Kinds of Images

To demonstrate the ability of the proposed symmetric image encryption algorithm for
ciphering different types of images, Figure 4 depicts the encryption results with uniformly
distributed histograms of various kinds of images. The first column depicts the animal
sketches, handwriting, and Lena images. The second column plots the histograms of these
images. Meanwhile, the third column plots the encryption of the animal sketches, the
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handwriting, and Lena images, respectively. Finally, the fourth column depicts histograms
of the encrypted images. It can be seen from these results that the proposed encryption
algorithm can effectively encrypt various kinds of images.

Figure 4. Simulation results of the proposed encryption model: (a,e,i) are the plain-text images; (b,f,j)
are the histogram of the plain-text images; (c,g,k) are the encrypted images; (d,h,l) are the histogram
of the encrypted images.

3.2. Information Entropy Analysis

The entropy measures the degree of n predictability of information. The information
entropy is calculated for encrypted images to measure the degree of uncertainty; however,
any certain degree of predictability will threaten the encryption security [32]. Table 1 is an
assessment of the data entropy of the plaintext and the encrypted image for the suggested
FCL map model.

Table 1. Comparison of information entropy between plain and encrypted images.

Images Plain Encrypted

Barbara 7.8056 7.9785

Baboon 7.3583 7.9995

Boat 7.1901 7.9865

Lena 7.7481 7.9995

Average 7.5255 7.9910

Table 2 illustrates the comparison of information entropy of several algorithms using
Lena as a test image. As can be seen, the encrypted image produced by our FCL map
algorithm is close to the value of 8, which indicates that the chaotic sequences generated by
the proposed FCL map model have complex dynamic behaviors.
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Table 2. Comparison of data entropy of various encryption procedures utilizing Lena.

Encryption Algorithm Entropy

Wang and Guo 2014 [33] 7.9977

Liu Lingfeng 2016 [34] 7.9995

Li, Tao 2020 [32] 7.9894

Zhang Fangfanf 2021 [35] 7.9994

Proposed FCL map model 7.9995

3.3. Correlation Analysis

The aim of image encryption algorithms is to decrease the correlation among the image
pixels in order to make the prediction of any given pixel from its neighbors more difficult.
The correlation between two adjacent pixels can be calculated by Equation (33) [12]:

$(S, T) =
Corr(S, T)√
D(S)

√
D(T)

(33)

where S, T are pixel values of two adjacent pixel positions and n is the total number of
adjacent pixels, where

Corr(S, T) =
1
n

n

∑
i=1

(Si − E(S))(Ti − E(T)) (34)

D(S) =
1
n

n

∑
i=1

(Si − E(S))2 (35)

E(S) =
1
n

n

∑
i=1

Si (36)

Table 3 demonstrates the correlation coefficients of the original and encrypted images.
The calculated correlation coefficients illustrate that the correlation coefficients of the
encrypted images are close to zero, which proves that the FCL map of the proposed model
can effectively decrease the correlation among adjacent pixels of the original images.

Table 3. The correlation between plain and encrypted images. Horizontal (H), vertical (V), and
diagonal (D) indicate the correlation directions.

Image Plain Encrypted

Barbara

H 0.8135 −0.0006

V 0.8708 0.0025

D 0.9294 −0.0315

Baboon

H 0.9371 0.0007

V 0.9485 0.0006

D 0.9325 −0.0459

Boat

H 0.9371 0.0045

V 0.9324 0.0006

D 0.9342 0.0218

Lena

H 0.9387 0.0045

V 0.9812 0.0016

D 0.97261 0.0017
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Table 3. Cont.

Image Plain Encrypted

Average

H 0.9066 0.0025

V 0.93322 0.0013

D 0.9421 −0.0134

Taking the average values for testing images as an experimental object, the comparison
of correlation between different encryption algorithms in the horizontal (H), vertical (V),
and diagonal (D) directions are illustrated in Table 4.

The encryption time is used to measure the efficiency of the encryption algorithm
and it depends on certain parameters such as CPU cycles and memory usage. The image
encryption time of the proposed algorithm is the time that it takes to encrypt the input
image using proposed algorithm. In this study, the average encryption time of test images
was measured using the stopwatch timer MATLAB functions, tic and toc.

The test results of the encryption speeds of different image encryption algorithms are
also included in Table 4. Because the source codes of the encryption algorithms illustrated
in Table 4 are not publicly available, all encryption times are reported in Table 4 according to
what is given by these references. The proposed FCL map model has the fastest encryption
speed with the lowest time complexity, so it can be used in real-time image applications
such as video stream cyphering.

Table 4. Comparison of the encryption time (second), and the correlation of different encryption
algorithms using average values for testing images. Horizontal (H), vertical (V), and diagonal (D)
indicate the correlation directions.

Algorithm Encryption Time (s) Encrypted

Hua et al. 2015 [36] 0.2338

H 0.0024

V −0.0086

D 0.0402

Tong et al. 2015 [37] 0.1900

H 0.0038

V 0.0058

D 0.0133

Liu, Lingfeng 2016 [34] 0.0659

H 0.0021

V 0.0046

D 0.0033

Li, Tao 2020 [32] 0.4604

H 0.0033

V 0.0011

D 0.0008

Proposed FCL map model 0.0589

H 0.0025

V 0.0013

D −0.0134

3.4. Key Sensitivity Analysis

The image encryption algorithm primarily depends on the key sensitivity. Even one
bit change to the key combinations can produce a different encrypted image. The proposed
FCL map model is proven to be highly sensitive to changes in the encryption key. As
shown in Figure 5, the model is sensitive to changes as small as one bit. As a result, if the
decryption key is slightly changed, the decryption algorithm will not be able to correctly
decrypt the image.
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Figure 5. Key sensitivity analysis: (a) plain-image, (b) the encrypted image, (c) the decrypted image
with the right key, (d–f) the decrypted images with wrong keys.

3.5. Differential Attack Analysis

To check the ability of our encryption algorithm to resist differential attack, we use
the two metrics: the NPCR and UACI, which are the abbreviations for (Number of Pixel
Change Rate) and (Unified Average Changing Intensity), respectively. The NPCR indicates
the changed pixel numbers in the cipher image for which only one pixel is changed in the
plain image. Meanwhile, the UACI refers to the average value of difference between two
cipher images. The NPCR and UACI are given by:

NPCR =
∑i,j A(i, j)

H
× 100% (37)

UACI =
1

H

[
∑
i,j

|G1(i, j)− G2(i, j)|
255

]
× 100% (38)

where A(j, j) =

{
1, (G1(i, j) 6= G2(i, j))
0, otherwise

, where G1 and G2 are two pixels with

the same coordinates and H represents the image size. Table 5 shows the NPCR and UACI
for the proposed FCL map encryption algorithm. Furthermore, the comparisons of NPCR
and UACI for the “Lena” image with other algorithms are presented in Table 6. From
the results shown in Tables 5 and 6, it is clear that our encryption algorithm has superior
or competitive performance in defending from differential attacks (which are also called
chosen-plaintext attacks).

Table 5. The NPCR and UACI of the proposed model for the given testing images.

Image NPCR UACI

Barbara 0.9967 0.3343

Baboon 0.9966 0.3396

Boat 0.9968 0.3358

Lena 0.99 68 0.3312
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Table 6. Comparison of the NPCR and UACI for the testing image “Lena”.

Algorithm NPCR UACI

Liu Lingfeng 2016 [34] 0.9949 0.3156

Li Tao [32] 0.9949 0.3156

Zhang Fangfang 2021 [35] 0.9960 0.3347

Proposed FCL map model 0.9968 0.3312

3.6. Noise And Data Loss Analysis

Several types of noise and data lose can spoil the encrypted images. Therefore, image
encryption algorithms should be able to resist these kinds of noise and data lose. The first
and second columns of Figure 6 show the quality results of the recovered image when the
encrypted image undergoes Gaussian noise with 5% density, as well as salt and pepper
noise with 12% density. It can be observed that, although the encrypted images contain
noise, the recovered images have most of the visual information of the original images.

Figure 6. Noise and data loss analysis: (a,d) plot the encrypted image with 5% Gaussian noise and
the decrypted image, respectively; (b,e) plot the encrypted image with 12% salt and pepper noise
and the corresponding decrypted image, respectively; (c,f) plot the encrypted image with 15% data
loss and the decrypted image, respectively.

4. Conclusions

This paper studied the dynamics of a new fractal complex logistic (FCL) map, including
the equilibrium point, geometric properties, and chaotic behaviors. Furthermore, the
randomness of the FCL map was examined by the statistical test NIST SP800-22, which
revealed that the map is suitable for cryptographical applications. To further investigate
the FCL map, we designed a simple symmetric image encryption algorithm that used the
FCL map to generate chaotic sequences. Simulation results demonstrated the efficiency of
the encryption algorithm for the encryption of various kinds of images. We also analyzed
the information entropy, correlation coefficients between adjacent pixels, the sensitivity of
the key, and the resistance to chosen-plaintext attack. The analysis results show that the
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proposed encryption algorithm has a high-security level and has superiority over several
encryption algorithms. That indicates the effectiveness of the FCL map in such applications.
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