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Abstract: We examine how a chiral medium responds to a pair of plane waves of circular polarizations.
To this goal, we assume the chiral medium to be spatially homogeneous for simplicity. By assuming
the medium to be a lossless, we provide analytic formulas of key bilinear parameters such as the
pair of electromagnetic and reactive Poynting vectors in addition to the pair of electromagnetic and
reactive helicities. By examining two obliquely colliding plane waves, we learned that most of those
key parameters are asymmetric with respect to the medium chirality. Only for a counter-propagating
pair, some of those key parameters are found to exhibit symmetry with respect to the medium
chirality. We will discuss the implications of those asymmetries and symmetries from the viewpoints
of typical applications in optics and physics.

Keywords: anti-symmetry; symmetry; medium chirality; field helicity; electromagnetic properties;
reactive properties; obliquely colliding waves

1. Introduction

From the viewpoint of light–matter interactions, optics consists of two components:
optical media and electromagnetic (EM) waves [1–3]. As regards media, optical chirality is
an anti-symmetric parameter, while a refractive index is normally a symmetric parameter.
As regards EM waves, field helicity is one of the key characters in addition to the omni-
important Poynting vector [3–10]. One is normally interested in how a media responds to
an incident EM wave. We are here to examine such interactions in terms of symmetry and
asymmetry (anti-symmetry being included) [2,11]. It is said in [12] that helical EM fields
have long been exploited to characterize chiral matter (translated into our languages).

Before going deeper into chirality and helicity, both being the main topics of this
study, let us consider electromagnetic antennas [13–15]. Even novices in engineering and
technology have some experiences from their daily use of wireless cellular phones. A major
function of antennas is to either receive or send EM signals, either from afar or out to
far-away targets, respectively. However, ordinary users neglect the small antennas that are
sitting within cellular phones. This is because the design of such mini antennas belongs
to the job of engineers of commercial companies. Although the far-field behaviors are
crucial to antennas considered as detectors [12], sensors [10], and communication gears, the
near-field behaviors play important roles in properly designing antennas as electro-optic
energy-conversion devices [14].

In this aspect, one could associate one pair of concepts, ‘active’ and ‘reactive’, with
another pair of concepts, ‘radiating’ and ‘non-radiative’, respectively. The ‘reactive near
field’ is defined as that region immediately surrounding an antenna wherein the reactive
field predominates. In between this reactive near field and the ‘(Fraunhofer) far field’ lies
the ‘radiating near field’, alternatively called either the ‘(Fresnel) intermediate field’ or the
‘transition field’. In comparison, this ‘reactive near field’ is alternatively called either the
‘nearest part of the near field’ or the ‘non-radiative near field. Meanwhile, consider a Mie
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scattering off a dielectric sphere illuminated by a plane wave. Here, the EM helicity is
especially active in the near field, which arises from interactions among multiple scattered
waves even if an external incident wave is linearly polarized [10,16]. As regards EM
waves, both EM and reactive helicities make one of the key parameters in addition to the
all-important Poynting vector.

With a firm grasp on the meaning of a near field obtained from the preceding para-
graph, let us turn to another familiar phenomenon of light focusing. We observe that
light focusing is normally accompanied by a spatially inhomogeneous EM field distribu-
tion [9,17]. For instance, the focal point is defined by the highest field intensity, while
a focusing process is nothing but a process whereby EM energy is spatially intensified.
Meanwhile, it is well-established that the angular momentum (AM) of an EM wave is
decomposable into its spin and orbital parts [1,18–20]. Moreover, spatial alterations in
an AM take place through a spatially inhomogeneous EM field, as either spin-to-orbital
conversion (SOC) or orbital-to-spin conversion (OSC) [9,10]. In most cases, light focusing
entails an OSC (not a SOC) as an EM wave progresses onto a near field (focal point) from a
far field.

In our previous study in [16], we have shown that the EM field induced by an electric
point dipole exhibits a SOC (not an OSC) from a near field (the dipole location) outwards
into a far field. In other words, the spin AM is a near-field phenomenon, whereas the orbital
AM is a far-field one from an approximate perspective. In short, a near-field spin AM and a
far-field orbital AM prevail in an approximate sense [15]. From another viewpoint, either
SOC or OSC takes place in the intermediate field [10]. Of course, a focusing process incurs
a succession of varying polarization states [9]. In this study, the spin AM and polarization
states will be handled in more detail. Other examples of light focusing are provided in
various references of [16].

The constitutive relations for a chiral medium are odd in the chirality parameter of
a medium. The resulting solutions to the governing Maxwell equations are thus largely
odd in the chirality parameter. The asymmetry of such solutions is what has been con-
ventionally found for the Mie scattering off a dielectric particle through an embedding
chiral medium [21]. See Section 8.3 of [22] for details, where a pair of incident waves is
employed in a collinear fashion. Recently, the same configuration is investigated with a
view to how to enhance the usually weak chiral signals resulting from Mie scatterings [2].
The incident plane waves employed for such Mie scatterings are taken to be elliptically
(circularly, included) polarized [16,23].

Two linearly polarized waves constitute an elliptically polarized incident wave. Two
such elliptically polarized waves then undergo a co-propagation, namely, propagations
in the same direction, although counter-rotations are implemented in the azimuthal direc-
tion [9,10,21,22,24,25]. Such a predominance of collinear incident waves led even to calling
the co-propagation a ‘precondition’ for Mie scatterings [16,26,27]. Instead, we are interested
in how a chiral medium responds to a pair of obliquely colliding plane waves [28–30].

Normally, various characteristics of a given EM field are probed by a foreign object
immersed in that EM field. In this regard, opto-mechanical responses are utilized to examine
the resulting light–matter interactions [3,9,16,19,20,27,31,32]. For instance, a foreign object
could experience dilatation, rotation, or torsion due to the surrounding EM field [10,33].

For simplicity, we do not include any foreign objects within a medium, unlike scat-
tering problems. The co-propagating pair and the counter-propagating (a.k.a. inversely
propagating) pair will then be considered as two extreme cases by setting the oblique angle
to zero and π, respectively, as sketched in Figure 1a [25,34]. Resultantly, a pair of obliquely
colliding waves exhibit such an asymmetry prevailing in the key bilinear parameters [9,10].
What we found out is that the asymmetry turns into symmetry in the chirality parameter
only in the rare configuration of two counter-propagating waves. Our system belongs to a
type of extrinsic chiral system [26]. Although a pair of co-propagating waves can execute
an (o-called simultaneous) oblique incidence on a space-fixed body [26], this configuration
is not part of this study.
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Figure 1. (a) Four types of propagating wave vectors: a left wave QL, the co-propagating right wave
Q⇒R , the counter-propagating right wave Q�

R , and a generic right wave Qα
R rotated clockwise from

Q⇒R through the angle α. (b) Planar coordinate pairs: the space-fixed pair {x, y}, the characteristic
pair {ξ+, ξ−} attached to both of {QL, Q⇒R }, and the characteristic pair {η+, η−} attached to Qα

R. The
two waves {QL, Qα

R} collide at the origin located at {x, y} = {0, 0}.

It is well known that distinct interference effects arise from interactions between a pair
of obliquely colliding waves [4,34]. Counter-propagating pairs of beams are quite common
in laser trapping [35], although beams of finite cross sections are employed in practical
situations. For simplicity of analysis in this study, obliquely colliding plane waves are
assumed of infinite extents. Notwithstanding, what makes our study non-simple is the
fact that our pair of counter-propagating waves proceeds with wave numbers of different
magnitudes because of medium chirality.

From a broader perspective, a generic set of multiple propagating waves should
be treated in fully three-dimensional (3D) configurations. Depending on the relative
orientations and polarization states of each constituent waves, numerous possibilities arise
in terms of various interference effects [1,3,4,6,17,33]. As a special case, a pair of counter-
propagating waves could form a standing wave, if the participating wave numbers are of an
equal magnitude but of opposite signs [10,36]. Likewise, two crossed pairs of propagating
waves could form two respective standing waves, when respective wave numbers in each
pair are of equal magnitudes. Indeed, such two-pair standing waves are employed in 3D
laser trapping [35].

The issue of symmetry is closely linked not only to geometry [9,11] but also to con-
servation laws [2,4,7,10,12,18,26,36]. By handling the Maxwell equations with necessary
constitutive relations that reflect optical chirality, we can identify several EM parameters
that characterize the EM fields: (i) a pair of energy densities (an EM energy density and an
reactive energy density) [10,29,36,37], (ii) a pair of Poynting vectors (an EM Poynting vector
and a reactive Poynting vector) [3,31,38], and (iii) a pair of field helicities (an EM helicity
and a reactive helicity) [7,10,12,15,33]. These six parameters are bilinear in the electric and
magnetic fields, which in turn satisfy the linear Maxwell equations. Therefore, we are still
solving linear problems in this study, unlike in fluid mechanics which generically carries
nonlinearities due mainly to nonlinear convection [2,3,8,9,39–41]. Yet, all the physically
meaningful quantities are related to those six bilinear parameters. In other words, our
upcoming symmetry and nonlinearity arise from considering not nonlinear problems but
bilinear physical parameters.
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Among these six field properties, we do not even need to mention the importance
of the EM energy density, the EM Poynting vector, and the EM helicity as the key field
parameters [1]. Notwithstanding, the remaining three reactive properties (the reactive
energy density, the reactive Poynting vector, and the reactive helicity) are receiving in-
creasing attention these days although the reactive parameters are less well known than
the EM parameters [7,32]. The reactive helicity is alternatively called a ‘magneto-electric’
energy density, [7,15,19,32]. A ‘helicity’ sometimes implies only the sign (i.e., handedness)
of the field helicity employed in this study [1,2,7,10,17,28]. It is emphasized for this study
that both helicities are the property of the EM fields, while optical chirality is a material
property [7]. Numerical studies on the EM field around a 3D ferrite disk show that reactive
parameters are indeed strongly localized in the near field of that disk [10].

In a first approximation, forces and/or torques exerted on a nano-object can be eval-
uated in the small-particle Rayleigh limit [3,7,17]. Normally, the gradient force due to
the EM energy density and the radiation pressure due to the Poynting EM vector are
dominant [4,6,35]. Magneto-electric nano-objects immersed in EM waves are influenced by
both EM and reactive Poynting vectors, when both electric and magnetic polarizabilities
of nano-objects contain absorptive components [1,4,6,7,10,19,32]. The photo-kinetic (PK)
force exerted on a Rayleigh particle by the EM fields is succinctly expressed in [3] and by
Equation (15) of [38]. See [31] as well. The consequential forces and torques exerted on
polarizable particles depend not only on the field characters but also on the exact values
of the complex particle polarizabilities. When judiciously exploited, the anti-symmetry
of the optical chirality of a medium offers several opportunities for sensing [12,42] and
enantiomeric separation [24,43].

In case with a Mie scattering off a chiral particle immersed in an achiral medium,
the symmetry and/or asymmetry of various bilinear parameters have already been in-
vestigated [7]. We may touch upon some analogues found in fluid mechanics as regards
vorticities, characteristics, transitions, etc., wherever appropriate [2,3,8,9,40,41].

This study proceeds in the following way. Section 2 provides governing relations and
key parameters. Section 3 offers plane-wave solutions to obliquely colliding waves, which
are followed by the evaluations of the above-mentioned six EM parameters. Section 4
presents numerical results on the parameter space focusing on symmetry issues. Section 5
examines additional bilinear parameters from different perspectives. Section 6 provides
discussions, followed by the conclusion in Section 7.

2. Formulation

Let us start with the Maxwell equations of ∇̃ ×
~
E = −∂

~
B/∂t̃ and ∇̃ ×

~
H = ∂

~
D/∂t̃

along with the Gauss laws ∇̃·D = 0 and ∇̃·
~
B = 0. Hereinafter, the tilde denotes dimen-

sional quantities. Likewise, the nabla operator ∇̃ is working with the dimensional space
variables, say, {x̃, ỹ, z̃} in the Cartesian coordinates. Vectors should be formally written as
the column vectors, say, {x̃, ỹ, z̃}T with the superscript signifying ‘transpose’. However, to
avoid confusion, note that {x̃, ỹ, z̃} is also employed.

Bold letters refer to vectors. The electric displacement
~
D and the magnetic induction

~
B are related to the electric field

~
E and the magnetic field

~
H through the pair of constitutive

relations [22]. Here, ε̃ and µ̃ are the electric permittivity and the magnetic permeability,
respectively. Furthermore, either β̃ or κ̃ is the chiral parameter as a material property of a
medium. Hence, an optical medium under this study is characterized by the triad of either{

ε̃, µ̃, β̃
}

or {ε̃, µ̃, κ̃}, which are assumed spatially uniform for simplicity. Now, both fields

of
{~

E,
~
H
}

are assumed to be time-oscillatory according to the temporal factor exp
(
−iω̃t̃

)
,

where
{

ω̃, t̃
}

denote frequency and time.
Let us introduce the reference quantities: {ε̃0, µ̃0}, being equal to {ε̃, µ̃} evaluated in

vacuum. In addition, c̃0 = (ε̃0µ̃0)
−1/2 is the light speed in vacuum, while Z̃0 =

√
µ̃0/ε̃0

is the impedance in vacuum [11]. Furthermore, we define the reference time 1/ω̃ and the
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reference wave number k̃0 = ω̃/c̃0. Here, ω̃ is an assignable constant, for instance, in case
with a monochromatic EM wave [7]. In brief,

c̃0 ≡
1√
ε̃0µ̃0

, Z̃0 ≡

√
µ̃0

ε̃0
, k̃0 =

ω̃

c̃0
(1)

By use of these reference quantities, we define the following set of dimensionless
parameters.

ε ≡ ε̃
ε̃0

, µ ≡ µ̃
µ̃0

, β ≡ k̃0 β̃, κ ≡ c̃0κ̃,

t ≡ ω̃t̃, {x, y, z} ≡ k̃0{x̃, ỹ, z̃}, ∇ ≡ ∇̃
k̃0

,

E ≡
~
E
Ẽ0

, H ≡ Z̃0

~
H
Ẽ0

, D ≡
~
D

ε̃0 Ẽ0
, B ≡ Z̃0

~
B

µ̃0 Ẽ0

(2)

Here, Ẽ0 is an assignable reference electric field. Correspondingly, the dimensionless
form of exp

(
−iω̃t̃

)
is the reduced factor exp(−it).

In this study, we will examine two types
{

Ccurl
β , C f ield

κ

}
of constitutive relations that

are placed in the following dimensionless forms [21,22,27].

Ccurl
β :

{
D = ε(E + β∇× E)
B = µ(H + β∇×H)

; C f ield
κ :

{
D = εE + iκH
B = µH− iκE

(3)

For these dimensionless relations, we have started with the four dimensional relations
~
D = ε̃

(~
E + β̃∇̃ ×

~
E
)

, etc. The first pair Ccurl
β is called the ‘curl-β-based constitutive rela-

tions’ [22]. In comparison, the second pair C f ield
κ is called the ‘field-κ-based constitutive

relations’ [7,21,24,43]. This first pair is alternatively called the ‘Drude-Born-Fedorov rela-
tions’, while the second pair is called the ‘Tellegen relations’ [27,30]. Although κ is complex
for a generic Pasteur medium with C f ield

κ [28], we take κ to be real in this study. Molecular
implications of these chirality parameters are discussed by [24], where chiral impurities
affecting the apparent chiral properties of water were taken as an example.

As intermediaries, let us introduce a pair {kL, kR} of dimensionless wave numbers,
respectively, for the two types of constitutive relations defined by Equation (3) [27].

Ccurl
β :

 kR ≡
√

εµ
1+β
√

εµ

kL ≡
√

εµ
1−β
√

εµ

, β ≡ 1
2

(
1

kR
− 1

kL

)
,
√

εµ =
[

1
2

(
1

kR
+ 1

kL

)]−1

C f ield
κ :

{
kL ≡

√
εµ + κ

kR ≡
√

εµ− κ

(4)

This pair {kL, kR} will be derived later. Meanwhile, the Maxwell equations are trans-
formed into the following dimensionless forms [22].{

∇× E = iB
∇×H = −iD

,
{
∇·E = 0
∇·H = 0

(5)

Our task with Equations (3) and (5) is to solve for the dimensionless field variables
{E, H} at the dimensionless space coordinate {x, y, z} for the specified triad of either
{ε, µ, β} or {ε, µ, κ} as dimensionless parameters.

Let us introduce a complex variable f ≡ Re( f ) + iIm( f ) for any f ∈ C being complex,
where the superscript ∗ denotes a complex conjugate. Let us define a pair of energy
densities.

I ≡ 1
2
(εE∗·E + µH∗·H), J ≡ 1

2
(εE∗·E− µH∗·H) (6)

Here, {I, J} are the EM energy density and the reactive energy density, respectively. It is
obvious that I takes a form based on the electric-magnetic democracy (or duality) [10,18,20],
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namely, symmetric with respect to the interchange in {εE∗·E, µH∗·H}. I is the positive
definite for ε, µ > 0 [2]. In contrast, J is of an anti-electric-magnetic democracy, i.e., inverting
its sign with respect to the interchange in {εE∗·E, µH∗·H}.

Furthermore, we establish two pairs of complex parameters E·H∗ ≡ K + iC and
E×H∗ ≡ P + iR based on the field vectors {E, H}.{

P ≡ Re(E×H∗)
R ≡ Im(E×H∗)

,
{

C ≡ Im(E·H∗)
K ≡ Re(E·H∗) (7)

Here, {P, R} are the EM Poynting vector and the reactive Poynting vector, respectively.
As the most important parameter in characterizing EM fields [5,20], the EM Poynting vector
is alternatively called a ‘kinetic Abraham momentum density’ [18,27]. The EM Poynting
vector is related to a radiation pressure exerted on nano-objects immersed in the EM
fields [3,6]. In this connection, we remark that the scattering cross sections are evaluated
based on the EM Poynting vector when it comes to Mie scatterings [21,22]. Meanwhile, the
polarization states of EM fields are linked to E·H∗ ≡ K + iC [6].

In addition, {C, K} are the EM helicity and the reactive helicity (densities), respec-
tively [20,42,44]. We learn that C is alternatively called an ‘active helicity’ [43], whereas
K is alternatively called a ‘active chirality’ or just a ‘chirality’ [7]. Since β is dubbed an
‘optical chirality’ of a medium, we decided to intentionally call {C, K} an ‘EM helicity’ and
a ‘reactive helicity’, respectively, so as to differentiate them from the medium chirality, viz.,
either β or κ.

Notice in Equation (2) that {ε, µ} denote a relative permittivity and a relative perme-
ability, respectively. From here on, we assume a medium under consideration to be lossless
so that {ε, µ, β, κ} are real for simplicity. In this study, we place a further restriction that
ε, µ > 0. Hence, the conventional refractive index n is given by n ≡ √εµ [1]. Consulting
the constitutive relations in Equation (3), C ≡ Im(E·H∗) can be alternatively defined by
C ≡ Im(D·B∗) [12]. This distinction between the two defining formulas for C is essentially
linked to the Abraham–Minkowski dilemma [18,27,45], details of which lie beyond the
scope of this study.

We can invert the Maxwell equations in Equation (5) together with Equation (3) to
obtain the matrix relation ∇× {E, H}T = K{E, H}T with the interaction matrix K defined
below, differing according to the constitutive relations.

∇×
{

E
H

}
= K

{
E
H

}
,


Ccurl

β : K ≡ 1
1−εµβ2

(
εµβ iµ
−iε εµβ

)
C f ield

κ : K ≡
(

κ iµ
−iε κ

) (8)

It is implied by Equation (8) that one of {E, H} is the vorticity of the other and vice
versa [4], analogues of which are amply found in fluid mechanics [2,40]. A key point is
the near-anti-symmetry of K except for the distinct off-diagonal factors of {ε, µ}. Both
K-matrices in Equation (8) are of an identical structure. This aspect can be easily verified,
say, for the second relation of Equation (8) in case with C f ield

κ .(
κ iµ
−iε κ

)
= κ

(
1 0
0 1

)
+ i

1
2
(µ− ε)

(
0 1
1 0

)
− 1

2
(µ + ε)

(
0 −i
i 0

)
(9)

We have on the right-hand side of Equation (9) a pair {σ1, σ2} of Pauli matrices. The
first relation of Equation (8) in case with Ccurl

β can be understood in an analogous fashion.
Among the three matrices on the right-hand side of Equation (9), the first diagonal matrix
refers to a rate of stretching, while the second matrix implies a rate of shearing [3,28]. These
two matrices are symmetric. In comparison, the third anti-symmetric matrix of Equation (9)
signifies vorticity. The corresponding plane of rotation lies on the xy-plane as depicted
in Figure 1. This vorticity is associated with a certain axial vector, which we choose to be
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directed along the z-coordinate in Figure 1. Linked to vortices, there are diverse phenomena
such as toroidal rolls, rotating clouds, helical streamlines, etc. [3,8,10].

Let us introduce the following pairs of auxiliary vectors.{
A± ≡ [E∗·(∇×H)∓H∗·(∇× E)]∗

B± ≡ µH∗·(∇×H)∓ εE∗·(∇× E)
(10)

Let us form dot products such that the Faraday law ∇× E = iB and the Ampère law
∇×H = −iD both in (5) give rise to H∗·(∇× E) = iH∗·B and E∗·(∇×H) = −iE∗·D.
They are then denoted by (FL) and (AL), respectively. We then take the difference
(FL)− (AL) and the sum (FL) + (AL), whence their respective real and imaginary parts
are separated. In this manner, we obtain the following pair of conservation laws involving
{∇·P,∇·R} together with another pair of constraint relations [17,27,29,37].

Ccurl
β :


{

I = 1
2 Im(A+)− 1

2 βRe(B−)
∇·P = − 1

2 Re(A+)− 1
2 βIm(B−){

J +∇·R = − 1
2 Im(A−) + 1

2 βRe(B+)
Re(A−) + βIm(B+) = 0

; C f ield
κ :


{

I = 1
2 Im(A+)− κIm(E·H∗)

∇·P + 1
2 Re(A+) = 0{

J +∇·R + 1
2 Im(A−) = 0

1
2 Re(A−) = κRe(E·H∗)

(11)

Here, we employed the two types of constitutive relations listed in Equation (3).
This rather complicated set of relations in Equation (11) is reduced to a simpler set for
an achiral medium. In this respect, Equations (3) and (5) are reduced to ∇× E = iµH
and ∇×H = −iεE for an achiral medium with either β = 0 or κ = 0. Hence, Equa-
tion (10) is reduced to {A+, A−} = 2i{I, J} and B+ + B− = −i2εµE·H∗. For an achiral
medium with β = 0, especially for the curl-β-based constitutive relations, we have a
more physically meaningful reduced pair of B+ = −i2εµK and B− = 2εµC as proved
in Supplementary Material. Notice that B+ = −i2εµK is linked to R as seen from
J +∇·R = − 1

2 Im(A−) + 1
2 βRe(B+) in Equation (11). For this reason, 1

2 K is alternatively
called a magneto-electric energy density [10].

For an achiral medium with either type of constitutive relations, the second relation of
the first pair in Equation (11) is reduced to the familiar conservation law ∇·P = 0, while
the first relation of the second pair in Equation (11) is reduced to ∇·R + 2J = 0 [9,10].
In comparison, the remaining two relations in Equation (11) are trivially satisfied. The
equations involving∇·P in the conservation laws of Equation (11) carry a non-conservative
term Re(A−), which cannot be expressed as a divergence of something such as ∇Φ− [6].
Likewise, the equations involving∇·R in the conservation laws of Equation (11) carry a non-
conservative term Re(A+), which cannot be expressed as a divergence of something such
as ∇Φ+ [6]. According to Equation (10), both of Re(A±) account for curl components [4].
We will examine in the future the conditions under which 1

2 Re(A±) can be expressed as
divergences of scalar potentials Φ±, namely, in Re(A±) = ∇Φ±.

Among many works on the conservation laws [2,4,7,26], details can be found in the
Supplementary Material of [12], where lossy media are handled as well. Notwithstanding,
we can hardly find conservation laws that explicitly involve β or κ as in Equation (11). In
addition to Equation (11), we have placed in Supplementary Material other forms of {P, R}
that are of lesser utility to this study but warrant further investigations [1–4,12,18,20,43–45].

There are other set of chirality–helicity conservation laws that hold true between the
pair {C, K} of Equation (7) and the pair {E∗ × E, H∗ ×H}. Consider the polarization states
Im(E∗ × E) and Im(H∗ ×H) in the physical EH-space [8]. We can then define the average
spin angular momentum (AM) density M ≡ 1

2 Im(εE∗ × E + µH∗ ×H) suitable for the
electric-magnetic democracy. It is alternatively called a canonical spin angular momentum
(AM) density [2,9,17,18]. As a counterpart to the energy conservation laws presented in
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Equation (11), we can then derive the chirality conservation law involving ∇·M as easily
proved in Supplementary Material.

M ≡ 1
2

Im(εE∗ × E + µH∗ ×H),

{
Ccurl

β : ∇·M + 2εµ

1−εµβ2 K = 0

C f ield
κ : ∇·M = 0

(12)

Our dimensionless scheme relying on Equations (1)–(3), (5)–(7) and (12) is consistent
with the formulas of [20]. In addition, the average induced current ∇×M is related to the
spin part [18] as discussed in Supplementary Material. The curl ∇×M is also related to
the spin-curl forces [3,8,17].

Thanks to the cancellation by exp(−it) exp(+it) = 1, the six parameters of
Equations (6) and (7) as well as M in Equation (12) are devoid of time dependence. For
these seven parameters, we have neglected the factor of half arising from the time aver-
age of time-oscillatory parameters [33]. It is stressed that the seven parameters listed in
Equations (6), (7), and (12) are bilinear (quadratic included) in the field variables {E, H}.
Therefore, the linear properties {E, H} are not directly transferred to these six bilinear
parameters, which carry many interesting mathematically nonlinear properties.

For a generic EM wave with {E, H}, let us form the pair of spin angular momentum
(AM) densities:ME ≡ Im(εE∗ × E) (electric) and MH ≡ Im(εH∗ ×H) (magnetic). We
then evaluate their respective spatial divergences {∇·ME,∇·MH}. It is well-known that
K ≡ Re(E·H∗) is proportional to either of {∇·ME,∇·MH}. Meanwhile, the EM Poynting
vector P can be decomposed into its spin and orbital parts [1,18–20]. It is then easy to
relate the spin part to the curl 1

2∇×ME (electric) and 1
2∇×MH . These relations have

been proven only for achiral media in [32,46]. Modified versions for chiral media should
contain terms proportional to either of {β, κ} depending on the constitutive relations as in
Equation (11). We leave that topic to another future work.

3. Plane-Wave Solutions for Obliquely Colliding Waves

The pair {E, H} of vectors lies in the ‘physical EH-space’, which can be rewritten
in terms of the pair {QL, QR} of vectors in the ‘circular Q-space’. Both pairs are related
through the following transformation rule.{

E
H

}
= A

{
QL
QR

}
, Z ≡

√
µ

ε
, A ≡

(
1 −iZ

−iZ−1 1

)
=

(
1 0
0 1

)
− i
(

0 Z
Z−1 0

)
(13)

Here, Z ≡
√

µ/ε is the relative impedance, which constitutes another medium prop-
erty as does the pair {ε, µ}. Unlike the specifiable constant Z̃0 ≡

√
µ̃0/ε̃0 in Equation (1),

Z ≡
√

µ/ε is a key parameter in this study [17]. The off-diagonal part of matrix A is
symmetric only if Z = 1. From another viewpoint, this off-diagonal part exhibits a log-
anti-symmetry because log

(
Z−1) = − log(Z) [29]. Inverting the matrix relation {E, H}T =

A{QL, QR}T gives rise to a pair of the Riemann–Silberstein vectors QL = 1
2 (E + iZH) and

−iZQR = 1
2 (E− iZH) [28,29,36]. This last pair E± iZH signifies the circular-basis (i.e.,

helicity-basis) nature of {QL, QR} in the aforementioned circular Q-space [7].
Recall that the pair {kL, kR} was provided in Equation (4) for two different types of

constitutive relations. It is straightforward to show, through the concept of diagonalization,
that the pair {QL, QR} satisfies the following set of relations [22].

∇·
{

QL
QR

}
=

{
0
0

}
,∇×

{
QL
QR

}
=

(
kL 0
0 −kR

){
QL
QR

}
,
{
∇2QL + k2

LQL = 0
∇2QR + k2

RQR = 0
(14)

In particular, the divergence-free Gauss laws in Equation (5) are easily transformed into
∇·QL = ∇·QR = 0. It is noteworthy that the second pair of the curl relations carry distinct
eigenvalues {kL,−kR}. Solutions to {QL, QR} in Equation (14) with Equations (8) and (13)
are provided in Section 8.3 of [22] in case with two co-propagating waves. What we are
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doing henceforth is to make some modifications to Equation (14) for obliquely colliding

waves. Let us take
{

^
x,

^
y,

^
z
}

to be the unit vectors in the Cartesian coordinates {x, y, z}. Let

a generic wave vector QLR ∈ {QL, QR} refer to either of the left and right waves with a
corresponding generic wave number kLR ∈ {kL,−kR}. Here, the subscript ‘LR’ stands for
either a left or a right wave.

Our immediate task is to solve a generic vector Helmholtz equation∇2QLR + k2
LRQLR = 0

under two attendant conditions of∇·QLR = 0 and the vector relation∇×QLR = kLRQLR [27].
Recall that solutions to both of {QL, QR} are independent of each other unless they are
related by boundary conditions between them, say, in Mie scatterings [7] or across inter-
faces [25]. In our study, plane waves in an unbounded bulk media guarantee such an
independence. Meanwhile, both of {kL, kR} presented in Equation (8) in terms of either{√

εµ, β
}

or
{√

εµ, κ
}

have been derived during the process of obtaining
∇2QLR + k2

LRQLR = 0 [21,22].
To seek a plane-wave solution, we could specify any direction of propagations. For

a later generalization to a pair of obliquely colliding waves, we assume a plane-wave
propagation to be executed on a certain plane, for instance, the xy-plane. Therefore, the
Helmholtz equation ∇2QLR + k2

LRQLR = 0 admits solutions with a propagation factor
exp[ikLR( f x + gy)] with a normalization condition f 2 + g2 = 1 for a pair of constants
a, b ∈ R. As usual, we assume further that the plane-wave solution QLR is structureless

except for exp[ikLR( f x + gy)] such that QLR ∝
(

a
^
x + b

^
y + c

^
z
)

exp[ikLR( f x + gy)] for a

triad of constants a, b, c ∈ C [1]. The divergence-free condition ∇·QLR = 0 demands
immediately that the propagation factor takes the form exp

[
ikLR

(
± 1√

2

)
(x− y)

]
. Here, the

double sign ±1 should be introduced because of the quadratic relation f 2 + g2 = 1. In
fact, a proper choice of sign out of the two multiplying factors of ±1 provides a clue to our
ensuing dynamical considerations.

At this point, we are left with a single curl condition ∇×QLR = kLRQLR or three
scalar conditions, from which we obtain the following relations.

∓ ci
1√
2

kLR
^
x∓ ci

1√
2

kLR
^
y±

(
ib

1√
2

kLR + ia
1√
2

kLR

)
^
z = kLR

(
a

^
x + b

^
y + c

^
z
)

(15)

Here, we have |A| ≡
√

A∗·A as a vector magnitude for A ∈ C3, whereas |a| ≡
√

a∗a is
a scalar magnitude with a ∈ C. We can solve the above three scalar equations with
another normalization condition |a|2 + |b|2 + |c|2 = 1 such that |QLR| ≡ |QLR|. Be-
cause QLR ∈ C, we can take c ∈ R in Equation (15) so that our solution ends up with

QLR ≡ QLR
1√
2

[
^
z∓ i 1√

2

(
^
x +

^
y
)]

exp
[
±ikLR

1√
2
(x− y)

]
.

It is appropriate from the form exp
[
±ikLR

1√
2
(x− y)

]
to introduce the following pair

of characteristic coordinates ξ± ≡ 1√
2
(x± y) and their corresponding vectors

^
ξ± ≡ ∇ξ± ≡

1√
2

(
^
x± ^

y
)

[39]. We further define a pair of rotated (proper) characteristic coordinates η±
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and their corresponding vectors η± ≡ ∇η± [17]. Let us list below their definitions and
attendant properties, while consulting Figure 1.

ξ± ≡ 1√
2
(x± y)

^
ξ± ≡ 1√

2

(
^
x± ^

y
) ,

{
η−
η+

}
=

(
cos α − sin α
sin α cos α

){
ξ−
ξ+

}
⇒


η± ≡ 1√

2
[(cos α± sin α)x± (cos α∓ sin α)y]

^
η± ≡ 1√

2

[
(cos α± sin α)

^
x± (cos α∓ sin α)

^
y
] ⇒

^
ξ± ≡ ∇ξ±,

^
ξ± ×

^
z = ±

^
ξ∓,

∣∣∣∣^ξ±∣∣∣∣ = 1

^
η± ≡ ∇η±,

^
η± ×

^
z = ±^

η∓,
∣∣∣∣^
η±

∣∣∣∣ = 1
,


^
ξ±·η± = cos α
^
ξ± ×

^
η± = − sin α

^
z

(16)

We learn that both of
{

^
ξ−,

^
ξ+,

^
z
}

and
{

^
η−,

^
η+,

^
z
}

are right handed triads of basis

vectors as
{

^
x,

^
y,

^
z
}

, while
^
z is the common axial vector [10]. Take further notice that the

rotation angle α ∈ R is a specifiable constant in this study. In stark contrast, the usual
azimuthal angle ϕ ∈ R in both cylindrical and spherical polar coordinates is defined
through tan ϕ ≡ y/x [3]. Hence, ϕ is an independent parameter measured in the
counter-clockwise direction on the xy-plane. Since α 6= ϕ , we introduced a different
symbol of α.

We can prove from Equation (16) the relationship
^
ξ±·η± = cos α of Equation (16),

thus falling in conformance with the definition of the clockwise rotation angle α. Both char-

acteristic pairs {ξ±, η±} and their respective characteristic vectors
{

^
ξ±,

^
η±

}
are straight

lines on the physical xy-plane. Yet, the rotated pair
{

η±,
^
η±

}
can be considered highly

nonlinear in the clockwise rotation angle α. Indeed, this nonlinear dependence will turn
out to be a key player in the symmetry argument of this study.

With the help of Equation (16), the aforementioned solution QLR found from Equation (15)
can be specialized into the following three types of vectors

{
QL, Q⇒R , Q�

R

}
[28].


QLR = QLR

1√
2

(
^
z∓

^
ξ+

)
exp(±ikLCξ−)

QLR ∈
{

QL
QR

} ⇒



QL = QL
1√
2

(
^
z− i

^
ξ+

)
exp(ikLξ−)

QR :


Q⇒R = Q⇒R

1√
2

(
^
z + i

^
ξ+

)
exp(ikRξ−)

Q�
R = Q�

R
1√
2

(
^
z− i

^
ξ+

)
exp(−ikRξ−)

(17)

Here, we neglected the common temporal factor e−it, which has been rendered dimen-

sionless according to Equation (2). There is another solution 1√
2

(
^
z +

^
ξ+

)
exp(−ikLξ−) in

addition to the left wave QL = QL
1√
2

(
^
z− i

^
ξ+

)
exp(ikLξ−) presented in the above set. To

fix an idea, we selected only QL, which serves as a reference wave in this study. In stark
contrast, the right wave QR is specialized into two vectors

{
Q⇒R , Q�

R

}
. In conventional

sense, a linear combination of the co-propagating pair {QL, Q⇒R } constitutes an elliptically
polarized plane wave [21,22]. Moreover, there will be no standing waves as a result of the
collision between

{
QL, Q�

R

}
since |kL| 6= |kR| for a chiral medium [10].
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The vectors 1√
2

(
^
z∓

^
ξ+

)
exp(±ikLCξ−) have a rotational character due to the vector

^
z∓

^
ξ+, while being advanced on the ξ±-plane. Resultantly, these vectors could undergo ei-

ther spiral or helical trajectories [2,3,9,11]. A non-zero field helicity is linked to the existence
of the z-component in all Q’s listed in Equation (17) along the rotation axis [2]. Refractions
through a planar slab offer an existence of co- and counter-propagating waves [25]. Since
all vectors in Equation (17) carry spatially homogeneous polarizations, unlike in [9], the
ensuing analysis in this study is rather straightforward.

Notice from Equation (4) that both of {kL, kR} assume positive signs under the
condition of a small (weak) chirality parameter such that either

∣∣β√εµ
∣∣ < 1 or |κ| <√

εµ [2,3,11,28]. Correspondingly, kL, kR > 0 is assumed throughout this study. As dis-
played in Figure 1a, QL then undergoes propagations from the second quadrant denoted
by ‘[2]’ to the fourth quadrant denoted by ‘[4]’ on the xy-plane. Because the right wave Q⇒R
in Equation (17) carries its phase speed kR of the same sign as kL for QL, the pair {QL, Q⇒R }
constitutes a co-propagating pair.

In comparison, the pair
{

QL, Q�
R

}
constitutes a counter-propagating pair, because

the right wave Q�
R in Equation (17) carries its phase speed −kR of the opposite sign to

kL for QL. This is the reason why we have intentionally chosen the superscripts {⇒,�}
to denote such pairs of co- and counter-propagations. Any wary reader can easily verify
the curl conditions that ∇×QL = kLQL, ∇×Q⇒R = −kRQ⇒R , and ∇×Q�

R = −kRQ�
R for

Equation (17). Consulting Figure 1b, let us replace the space-fixed parameters
{

^
ξ+, ξ−

}
of Q⇒R = Q⇒R

1√
2

(
^
z + i

^
ξ+

)
exp(ikRξ−) in Equation (17) with their rotated parameters{

^
η+, η−

}
to form another solution vector as follows.

{
^
ξ+, ξ−

}
Q⇒R = Q⇒R

1√
2

(
^
z + i

^
ξ+

)
exp(ikRξ−)

⇒


{

^
η+, η−

}
Qα

R = Qα
R

1√
2

(
^
z + i

^
η+

)
exp(ikRη−)

(18)

Here, the superscript α signifies that Qα
R is a right wave rotated clockwise through

the angle α as measured from the right wave Q⇒R . It is obvious that this rotated vector Qα
R

satisfies all the necessary conditions listed in Equation (14), namely, ∇·Qα
R = 0, ∇×Qα

R =
−kRQα

R, and ∇2Qα
R + k2

RQα
R = 0. In fact, Qα

R of Equation (18) encompasses both Q⇒R and
Q�

R of Equation (17) as two special cases. In other words, setting α = 0 in Equation (16)

leads to ξ± = η± and
^
ξ± =

^
η± in Equation (15), thus leading to Qα

R = Q⇒R . Likewise,

setting α = π in Equation (16) leads to ξ± = −η± and
^
ξ± = −^

η± in Equation (15), thus
leading to Qα

R = Q�
R . Consequently, the pair of {QL, Qα

R} for 0 < α < π (two end angles
being subtracted) designates a pair of obliquely colliding waves.

It is worth stressing that this kind of thorough discussion on Qα
R presented in Equa-

tion (18) has been handled only by a few, for instance, [17]. Notwithstanding, only an
achiral medium was considered by [17]. In comparison, Qα

R has been discussed nei-
ther by [21] nor by [22]. Hence, our illumination parameters for the pair {QL, Qα

R} are{
ξ−, η−, α, QL, Qα

R
}

[11]. We have thus accomplished a type of ‘switchable directional
excitation’ [25].

Based further on the fields {Eα
LR, Hα

LR}, let us customize the EM and reactive energy
densities derived in Equation (6) as follows under the assumption εµ > 0.{

Iα
LR ≡

1
2
[
ε(Eα

LR)
∗·Eα

LR + µ(Hα
LR)
∗·Hα

LR
]
=
√

εµ
(

Z−1|QL|2 + Z
∣∣Qα

R
∣∣2)

Jα
LR ≡

1
2
[
ε(Eα

LR)
∗·Eα

LR − µ(Hα
LR)
∗·Hα

LR
]
= 0

(19)
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An alternative form Iα
LR = ε|QL|2 + µ

∣∣Qα
LR
∣∣2 is acceptable as well, where the factor

of half (not the half arising from time averaging) happens to be missing. It is noticeable
that the cross terms (QL)

∗·Qα
R and QL·(Qα

R)
∗ cancel each other for Iα

LR. Meanwhile, it
surprises us that the resulting reactive energy density Jα

LR identically vanishes for any pair{
|QL|,

∣∣Qα
LR
∣∣} for any strengths of the two constituent waves whenever {QL, Qα

LR} satisfy
Equation (14).

Based on the fields {Eα
LR, Hα

LR} in terms of {QL, Qα
R} according to Equation (13), we

form both complex helicity Eα
LR·(Hα

LR)
∗ and Poynting vectors Eα

LR × (Hα
LR)
∗ as follows [1].{

Eα
LR·(Hα

LR)
∗ = i

(
Z−1|QL|2 − Z

∣∣Qα
R
∣∣2)+ 2Re

[
Qα

R·(QL)
∗]

Eα
LR × (Hα

LR)
∗ = i

[
Z−1QL ×Q∗L − ZQα

R × (Qα
R)
∗]+ 2iIm

[
Qα

R × (QL)
∗] (20)

By taking real and imaginary parts of Equation (20) according to Equation (7), we arrive
at the following two pairs of EM and reactive parameters after finding the intermediaries
of Eα

LR·(Hα
LR)
∗ and Eα

LR × (Hα
LR)
∗.{

Cα
LR = Z−1|QL|2 − Z

∣∣Qα
R
∣∣2

Kα
LR = 2Re

[
(QL)

∗·Qα
R
]{

Pα
LR = Im

[
ZQα

R × (Qα
R)
∗ − Z−1QL × (QL)

∗]
Rα

LR = Re
[
Z−1QL × (QL)

∗ − ZQα
R × (Qα

R)
∗]− 2Im

[
(QL)

∗ ×Qα
R
] (21)

We learn from Equation (21) that both
{

Cα
LR, Pα

LR
}

involve self-products between the
two constituent waves, whereas both

{
Kα

LR, Rα
LR
}

incur cross-products. An exception is that
Rα

LR carries self-products as well. It turns out sometimes that Kα
LR = 2Re

[
(QL)

∗·Qα
R
]

carries
a more physical importance because of its interference implications than
Cα

LR = Z−1|QL|2 − Z
∣∣Qα

R
∣∣2 that bears only a magnitude information [7,12].

Consider the polarization states of {QL, Qα
R} in the circular Q-space:

|QL|−2Im
[
(QL)

∗ ×QL
]
=

^
ξ− and

∣∣Qα
R
∣∣−2Im

[
(Qα

R)
∗ ×Qα

R
]
= −^

η− for a left wave and an
oblique right wave, respectively [25]. Therefore, the angle of polarization rotation is equal

to −α, thereby being the negative of the oblique collision angle according to
^
ξ±·η± = cos α

in Equation (16). The phase modulation is thus achieved by α in our study. With the help of
Equations (12) and (13), we specialize the spin AM density M ≡ 1

2 Im(εE∗ × E + µH∗ ×H)
to our obliquely colliding waves as follows.

Mα
LR ≡ 1

2 Im
[
ε(Eα

LR)
∗ × Eα

LR + µ(Hα
LR)
∗ ×Hα

LR
]

= εIm
[
(QL)

∗ ×QL
]
+ µIm

[
(Qα

R)
∗ ×Qα

R
]
+ Z(µ− ε)Re

[
(QL)

∗ ×Qα
R
] (22)

Here, we assumed ε, µ ∈ R. Resultantly, the average spin AM density Mα
LR takes a

mixture of symmetric and anti-symmetric forms with respect to {ε, µ}. It turns out that
both parts

{
Re
[
(QL)

∗ ×Qα
R
]
, Im

[
(QL)

∗ ×Qα
R
]}

contain not only the longitudinal vector
^
ξ− −

^
η− but also the transverse vector

^
z [1,20,29]. The 3D polarization vector is thus

given by Mα
LR/Iα

LR, being normalized by the average energy density Iα
LR provided by

Equation (19).
It is stressed that Equations (19)–(22) hold true for both types of constitutive relations

presented in Equation (3). Utilizing Equations (17) and (18), various self- and cross-products
between {QL, Qα

R} necessary for Equation (21) are straightforwardly evaluated in Supple-
mentary Material. Those formulas are made concise by introducing the following pair{

Γα
LR, δα

LR
}

of parameters.{
Γα

LR ≡ kLξ− − kRη−
(QL)

∗Qα
R ≡

∣∣(QL)
∗Qα

R
∣∣ exp

(
−iδα

LR
) (23)
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Here, we have made use of both {kL, kR} of Equation (4) and {ξ−η−} of Equation (16).
Firstly, we defined an ‘interference function’ Γα

LR(α) that depends especially on the oblique
angle α, thus signifying interactions between the reference left wave and an oblique right
wave [11,33]. The magnitude |ξ− − η−| is an offset distance [25]. Secondly, we introduced
a specifiable ‘amplitude factor’ δα

LR for a given pair
{

QL, Qα
R
}

of specified magnitudes [6].
For concreteness, we set 0 ≤ δα

LR < 2π. It is further noted that
∣∣(QL)

∗Qα
R
∣∣ 6= |QL|

∣∣Qα
R
∣∣ in

general. This interference function Γα
LR(ε, µ, α, x, y; β) or Γα

LR(ε, µ, α, x, y; κ) introduced in
Equation (23) is the first key parameter for a two-wave system, whereas the amplitude
factor δα

LR defined by Equation (23) is the second key parameter [1,4,17].
We further evaluate the as-yet-undetermined three parameters

{
Kα

LR, Pα
LR, Rα

LR, Mα
LR
}

presented in Equations (21) and (22) by use of Equation (23) and necessary dot- and cross-
products evaluated in Supplementary Material.

Kα
LR = (1− cos α)

∣∣(QL)
∗Qα

R
∣∣ cos

(
Γα

LR + δα
LR
) Pα

LR = Z−1|QL|2
^
ξ− + Z

∣∣Qα
R
∣∣2η−

Rα
LR = −

√
2
∣∣(QL)

∗Qα
R
∣∣ cos

(
Γα

LR + δα
LR
) 1√

2

(
^
ξ− − η−

)
Mα

LR = ε|QL|2
^
ξ− − µ

∣∣Qα
R
∣∣2 ^
η−

+ Z(µ− ε)
∣∣(QL)

∗Qα
R
∣∣ 1

2

[
sin α cos

(
Γα

LR + δα
LR
)^
z + sin

(
Γα

LR + δα
LR
)(^

ξ− −
^
η−

)]
(24)

The two leading components ε|QL|2
^
ξ− − µ

∣∣Qα
R
∣∣2 ^
η− of Mα

LR are not dependent on
the interference function Γα

LR. As stated shortly before as regards Equation (22), the re-

maining components
{

^
z,

^
ξ− −

^
η−

}
of Mα

LR are in-phase and out-of-phase with respect

to
{

Kα
LR, Rα

LR
}

. Their common multiplier (µ− ε) appearing on the interference term
Re
[
(QL)

∗ ×Qα
R
]

in Equation (22) and in Equation (24) prompts us to examine the fol-
lowing relation [6,25].

Z−1 − Z ≡
√

ε

µ
−
√

µ

ε
=

ε− µ
√

εµ
(25)

Notice incidentally that the numerator ε− µ on the right-hand side of Equation (25)
is related to the second matrix for a rate of shearing on the right-hand side of Equation
(9). As an example of Equation (25), µ = p(ε− 1) + 1 with the duality parameter p over
0 ≤ p ≤ 1 has been employed in [7] so that ε− µ = (ε− 1)(1− p). In this case, it is found
that

[
(d/dp)

(
Z−1 − Z

)]∣∣
ε
> 0.

Let us find the two limits of the pair
{

ηα
−, Γα

LR
}

from Equations (16) and (23) as
follows [17].

α = 0 :

{
ηα=0
− = 1√

2
(x− y) = ξ−

Γα=0
LR = 0

, α = π :

{
ηα=π
− = − 1√

2
(x− y) = −ξ−

Γα=π
LR = (kL + kR)ξ−

(26)

We then find the two limits for the key bilinear parameters of a co-propagating case
and a counter-propagating case, respectively, from Equations (23) and (24) [10].

α = 0 : Kα=0
LR = 0, Pα=0

LR = (εµ)−1/2 Iα
LR

^
ξ−, Rα=0

LR = 0

α = π :


Kα=π

LR = 2
∣∣∣(QL)

∗Q�
R

∣∣∣ cos
[
(kL + kR)ξ− + δα

LR
]

Pα=π
LR = Cα

LR

^
ξ−

Rα=π
LR = −2

∣∣∣(QL)
∗Q�

R

∣∣∣ cos
[
(kL + kR)ξ− + δα

LR
]^
ξ− = −Kα=π

LR

^
ξ−

(27)

With the limits in Equation (26), Mα=0
LR and Mα=π

LR can be easily deduced from Equation (24).
As seen from Supplementary Material, (QL)

∗·Qα
R =

∣∣(QL)
∗Qα

R
∣∣1

2(1− cos α)exp
[
−i
(
Γα

LR + δα
LR
)]
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so that {QL,Qα
R} are of crossed polarizations with each other at α = 0 if viewed in the circular

Q-space.
As a direct consequence of this pair of limit behaviors in Equation (26), the pair of

{QL, Qα
R} for 0 < α < π (two end angles being subtracted) designates a spatially non-

uniform wave [3,8]. Based on {QL, Qα
R} and the transformation rule in Equation (13), let

us form a pair of electric and magnetic fields {Eα
LR, Hα

LR} for such a combined wave by
Eα

LR = QL − iZQα
R and Hα

LR = −iZ−1QL + Qα
R [21,22]. Because {Eα

LR, Hα
LR} are described

by two independent spatial coordinates, namely, {ξ−, η−}, the pair {QL, Qα
R} exhibits a

non-uniform X-wave-like configuration on the circular Q-space [29,36].

4. Symmetry with Respect to Medium Chirality

We recognize from Equations (26) and (27) the importance of the algebraic average
1
2 (kR + kL) appearing for the counter-propagating pair

{
QL, Q�

R

}
in Equation (17), the

latter being evaluated with α = π. It is curious enough that
√

εµ is the inverse of the
geometric mean between {kL, kR} as seen from Equation (4) for the curl-β-based constitutive
relations. From Equation (4), this algebraic average 1

2 (kR + kL) takes the following simple
forms [27]. {

Ccurl
β : 1

2 (kR + kL) =
√

εµ

1−β2εµ

C f ield
κ : 1

2 (kR + kL) =
√

εµ
(28)

Therefore, 1
2 (kR + kL) is symmetric with respect to β = 0 for C f ield

β . In comparison,
1
2 (kR + kL) is independent of κ for C f ield

κ , which can also be considered to signify symmetry
with respect to κ = 0. In this connection, let us revisit Equation (12) for the conservation
law involving ∇·M. We notice in ∇·M +

(
1− εµβ2)−12εµK = 0 for the curl-β-based

constitutive relations C f ield
β can rewritten as ∇·M + 2kLkRK = 0 via Equation (4), which

also features an evenness with respect to β. In stark contrast, it surprises us that ∇·M = 0
does not explicitly contain K (thus meaning an apparent independence on κ) for a chiral
media with the field-κ-based constitutive relations C f ield

κ .
Physically, both chirality parameters {β, κ} in Equation (3) are small. To find a relation-

ship holding between {β, κ} in the limit β, κ → 0 , consider temporarily the approximate
version of Maxwell equations ∇× E = iµH and ∇×H = −iεE from Equations (3) and
(5) for an achiral medium. Meanwhile, the constitutive relations C f ield

β in Equation (3) are
reduced in the following fashion.

β→ 0 :
{
∇× E = iµH
∇×H = −iεE

⇒ Ccurl
β :

{
D = εE + iβεµH
B = µH− iβεµE

(29)

When comparing the reduced constitutive relations in Equation (29) with those for
C f ield

κ defied in Equation (3), we find that κ → βεµ as β, κ → 0 [21]. Of course, we are
dealing with small chiral parameter with

∣∣β√εµ
∣∣ << 1 for Ccurl

β in Equation (4) such that
both {kL, kR} are positive as seen in Equation (4).

Let us come to the interference function Γα
LR ≡ kLξ− − kRη− given in Equation (23).

We find in Equation (8) that each of {kL, kR} is odd in β over 0 < α < π with the at-
tendant anti-symmetry that kL(±β) = kR(∓β) with

√
εµ fixed. Consequently, for a pair

of obliquely colliding waves, Γα
LR(β) encompasses both odd and even features in β. In

this connection, a key result of our study is identifying the transition with increasing
α from asymmetry (anti-symmetry included) into symmetry as α ↑ π as indicated by
Equations (26) and (27). As seen on Equation (27) in case of counter-propagating waves
with α = π, we encounter an appearance of the collaborative factor (kL + kR) within the
cosine function cos

[
(kL + kR)ξ− + δα

LR
]

[9]. Indeed, the symmetry exhibited by a pair of
counter-propagating waves is a rare event. This rarity can be imagined by the experimental
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fact that a slightest misalignment or an off-axis illumination between two presumably
counter-propagating waves leads just to an obliquely colliding wave [25,28].

Let us hence numerically evaluate cos
(
Γα

LR + δα
LR
)

in Equation (24) with Γα
LR ≡ kLξ− −

kRη− in Equation (23) for a pair of obliquely colliding waves. The optical properties are set
such that εµ = 4, while the amplitude factor δα

LR in Equation (23) is set to zero for simplicity.
For the pair {x, y}, we took x− y = 1 so that ξ− ≡ 1√

2
(x− y) = 1√

2
is fixed. In comparison,

ξ− ≡ 1√
2
[(cos α− sin α)x− (cos α + sin α)y] in Equation (23) undergoes variations with

varying α. Hence, we need to additionally specify y, which is set at y = 0 in Figure 2.
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Figure 2. The cosine cos
(
Γα

LR + δα
LR
)

of the interference factor on the parametric plane of{
β
√

εµ, α/π
}

on (a) and
{

κ
√

εµ, α/π
}

on (b). The specified data includes εµ = 4, δα
LR = 0,{x, y} =

{1, 0}.

Figure 2 shows Γα
LR(ε, µ, α, x, y; β) on panel (a) and Γα

LR(ε, µ, α, x, y; κ) on panel (b),
based on the curl-β-based constitutive relations Ccurl

β and the field-κ-based constitutive

relations C f ield
κ , respectively, given in Equation (3). The vertical axis is taken to be the

normalized rotation angle α/π over the range 0 ≤ α/π ≤ 1. Meanwhile, the horizontal
axis is chosen to be the normalized chirality parameters over the respective ranges of
−1 ≤ β

√
εµ, κ
√

εµ ≤ 1. With εµ = 4 fixed, − 1
2 < β < 1

2 and − 1
2 < κ < 1

2 are hence
implied on the respective panels. Such horizontal ranges ensure that kL, kR ≥ 0 according
to Equation (4). We placed two double-head arrows on top of each panel to show the zones
with kL < kR (in red) and kL > kR (in blue), respectively.

To check the validity of numerical values, we evaluated Γα
LR on two special points

on each of two panels of Figure 2. Both points are marked by circles in white fillings,
while being evaluated for vanishing optical chirality, namely, β = κ = 0. Therefore,
Equation (4) gives rise to kR = kL =

√
εµ = 2 at both points lying on the central vertical

lines. The doubling from kL to kR + kL appearing in Γα=π
LR = (kL + kR)ξ− of Equation (26)

is linked to the well-established fact that a typical standing wave is created by two counter-
propagating waves, where the period of the intensity peaks is generally half the common
wavelength [25,36]. The lower points in blue boundaries refer to α = 0 in correspondence
to Equations (26) and (27), whereas the upper points in red boundaries refer to α = π.
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Therefore, Γα
LR in Equation (26) is further evaluated as follows with the data εµ = 4, δα

LR = 0,
and {x, y} = {1, 0}.{

α = 0 : Γα=0
LR = (2) 1√

2
(1)− (2) 1√

2
[(1− 0)1− (1 + 0)0] = 0

α = π : Γα=π
LR = (2) 1√

2
(1)− (2) 1√

2
[(−1− 0)1− (−1 + 0)0] = 2

√
2

⇒
{

α = 0 : cos
(
Γα=0

LR
)
= 1

α = π : cos
(
Γα=π

LR
)
= cos

(
2
√

2
)
≈ −0.951

(30)

According to the color bar lying on the center of Figure 2, the numerical values of the
above pair of Γα

LR is thus confirmed. Otherwise, cos
(
Γα

LR
)

is seen to take varied values on the
planes of

{
α/π, β

√
εµ
}

and
{

α/π, κ
√

εµ
}

, respectively. Notice incidentally from Equation
(23) that specifying the amplitude factor δα

LR differently in cos
(
Γα

LR + δα
LR
)

could lead to
cos
(
Γα

LR + δα
LR
)
= −1 at α = π other than cos

(
Γα

LR
)
≈ −0.951 given in Equation (30).

By this way, phase control can be exercised to achieve a desired performance [25]. Both
panels of Figure 2 being taken together, cos

(
Γα

LR
)

is not symmetric with respect to the
vanishing chirality parameter at any α other than α = π. Only at α = π designating a
counter-propagating collision, does cos

(
Γα

LR
)

assume a symmetric feature.
In correspondence to Figure 2a, we have made variations in y for cos

(
Γα

LR
)

over
y = 0, 5

2 , 10
2 , 15

2 , 20
2 on five panels in Figure 3. All other parameters stay the same including√

2ξ− ≡ x− y = 1. Therefore, the five panels are made with increasing field points from left
to right such that {x, y} = {1, 0},

{ 7
2 , 5

2
}

,
{

12
2 , 10

2

}
,
{

17
2 , 15

2

}
,
{ 22

2 , 20
2
}

. Figure 3a is hence
a reproduction of Figure 2a. The color bar located on the right of Figure 3a is applicable
equally well to all panels of Figure 3.
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Figure 3. The cosine cos
(
Γα

LR + δα
LR
)

of the interference factor on the parametric plane of{
β
√

εµ, α/π
}

. The specified data includes εµ = 4 and δα
LR = 0. The field point is varied over

{x, y} = {1, 0},
{

7
2 , 5

2

}
,
{

12
2 , 10

2

}
,
{

17
2 , 15

2

}
,
{

22
2 , 20

2

}
on panels (a–e).

Resultantly, the two invariant aspects of cos
(
Γα=0

LR
)
= 1 and cos

(
Γα=π

LR
)
≈ −0.951 are

still visible at β = 0 on all panels of Figure 3. Of course, cos
(
Γα=π

LR
)

carries symmetry
with respect to a vanishing medium chirality β. In addition, we confirm that the spatial
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variations on each panel are intensified as the field point is removed from the origin from
panel (a) to panel (e). That is, the far-field effect manifests itself through higher spatial
oscillations. We also find that the state cos

(
Γα=π

LR
)

is a fixed-point state for any combination
of {x, y} = {y + 1, y} such that

√
2ξ− ≡ x − y = 1. Although an analogous set of five

panels has been generated for Figure 2b for the other type of constitutive relations, it is not
presented in this study for space reasons.

Movie 1 is a more continuous version of cos
(
Γα

LR
)

shown in Figure 3 for the curl-
β-based constitutive relations Ccurl

β , where one hundred panels are presented in sequel

with an equal step of ∆y = 1
10 over the whole range 0 ≤ y ≤ 10. Likewise, Movie 2 is

a more continuous version of cos
(
Γα

LR
)

corresponding to Figure 2b for the field-κ-based
constitutive relations. The cancellations become stronger in the far field as seen in Figure 3e,
whence the reactive properties carrying the factor cos

(
Γα

LR + δα
LR
)

become dominant in the
near field as seen in Figure 3a [12,29,36,37]. See both

{
Kα

LR, Rα
LR
}

in Equation (24), where
the interference function cos

(
Γα

LR + δα
LR
)

is incorporated.

5. Other Bilinear Parameters

With sufficient information on the interference function cos
(
Γα

LR + δα
LR
)

available so far,
let us come back to the generic solutions:

{
Iα
LR, Jα

LR
}

in Equation (19), Cα
LR in Equation (21),

and
{

Kα
LR, Pα

LR, Rα
LR, Mα

LR
}

in Equation (24) for more interpretation. Their special values
in Equation (27) will be also examined. The fact is that Jα

LR = 0 in Equation (19) is only
specific to our pair of obliquely colliding waves [37]. We have made a simple calculation of
the reactive energy density for the EM fields resulting from the Mie scattering [22], which
is not presented in this study. Resultantly, we learned that the reactive energy density is
strongly non-zero, especially in the near field.

Recall the transformation rule in Equation (13) that there are two distinct represen-
tations of solutions: (i) the pair {QL, QR} in the circular Q-space, and (ii) the pair {E, H}
in the physical EH-space. In this connection, Equation (19) offers two forms for the EM
energy density. Namely, Iα

LR ≡
1
2
[
ε(Eα

LR)
∗·Eα

LR + µ(Hα
LR)
∗·Hα

LR
]

is the energy density in

the physical EH-space, whereas Iα
LR =

√
εµ
(

Z−1|QL|2 + Z
∣∣Qα

R
∣∣2) is its counterpart in the

circular Q-space.
Meanwhile, we can consider the environ to be the medium through which both

waves undergo propagations. The environmental effects show themselves up through
the admittance Z−1 ≡

√
ε/µ and the impedance Z ≡

√
µ/ε differently for the left and

oblique right waves [25]. Moreover, the environmental effects are log-anti-symmetric
with the factors of

{
Z−1, Z

}
, respectively, as regards Iα

LR =
√

εµ
(

Z−1|QL|2 + Z
∣∣Qα

R
∣∣2) in

Equation (19). See the off-diagonal part of matrix A in Equation (13). That is, the environ
affects the EM energy density by a pair of logarithmic weightings, which are then modified
equally by the additional factor of

√
εµ.

Let us turn to Equation (21) listing the EM helicity Cα
LR = Z−1|QL|2 − Z

∣∣Qα
R
∣∣2, which

takes the form of square-norm difference [28]. From the energy viewpoint, Cα
LR signifies

a difference between the environ-modified energy densities in the circular Q-space. The
EM helicity is annihilated, namely, Cα

LR = 0, when Z−1|QL|2 = Z
∣∣Qα

R
∣∣2 [7]. Notice that the

reactive energy density vanishes as Jα
LR = 0 in Equation (19) so that this pair

{
Iα
LR, Jα

LR
}

loses

its usefulness. Instead, we have a complementary pair
{
(εµ)−1/2 Iα

LR, Cα
LR

}
that represents

together Z−1|QL|2 ± Z
∣∣Qα

R
∣∣2. Instead of Jα

LR, Cα
LR could thus serve as a quasi-reactive

energy density in the circular Q-space.

The EM Poynting vector Pα=0
LR = (εµ)−1/2 Iα

LR

^
ξ− in Equation (27) is presented in

case of a co-propagating pair, where (εµ)−1/2 Iα
LR = Z−1|QL|2 + Z

∣∣Qα
R
∣∣2 is taken from

Equation (19). This case corresponds to the energy flow being luminal [29]. Since
∣∣Qα

R
∣∣ is

taken to be an assignable constant in this study, the rotation angle α does not need to be
specified for Iα

LR. Meanwhile, we employed Cα
LR = Z−1|QL|2 − Z

∣∣Qα
R
∣∣2 from Equation (21)



Symmetry 2022, 14, 1895 18 of 24

for the EM Poynting vector Pα=π
LR = Cα

LR

^
ξ− in Equation (27) in case of a counter-propagating

pair. Here again, the rotation angle α does not need to be specified for Cα
LR since

∣∣Qα
R
∣∣ is

taken to be an assignable constant in Equation (21).

The distinction between Pα=0
LR = (εµ)−1/2 Iα

LR

^
ξ− and Pα=π

LR = Cα
LR

^
ξ− in Equation (27)

is significant. In the co-propagating case, the EM Poynting vector Pα=0
LR is proportional to

the energy sum (viz., the EM energy density) Iα
LR in the circular Q-space [25]. In the counter-

propagating case, the EM Poynting vector Pα=π
LR is proportional to the energy difference Cα

LR
(viz., the EM helicity) in the circular Q-space. We learned from [1] that the proportionality

Pα=0
LR = (εµ)−1/2 Iα

LR

^
ξ− is not new, while the proportionality Pα=π

LR = Cα
LR

^
ξ− is relatively

unfamiliar [2].
The reactive helicity Kα

LR = (1− cos α)
∣∣(QL)

∗Qα
R
∣∣ cos

(
Γα

LR + δα
LR
)

in Equation (24)
tells us that the reactive helicity is non-zero for non-co-propagating pair because of
the factor (1− cos α). In other words, Kα

LR = 0 solely for a co-propagating pair in
Equation (27). For the reactive helicity, a pair of co-propagating waves with α = 0 leads
to a rare event. Therefore, the reactive helicity is largely accompanied by rotatory pro-
cesses [2,43]. Furthermore, Equation (24) shows that both

{
Kα

LR, Rα
LR
}

exhibit the same
factor of

∣∣(QL)
∗Qα

LR
∣∣ cos

(
Γα

LR + δα
LR
)
. In this connection, let us examine the following pair

of parameters based on
{

Kα
LR, Pα

LR, Rα
LR
}

listed by Equation (24).

Lα
LR ≡

Kα
LR

2|(QL)
∗Qα

LR|
= 1

2 (1− cos α) cos
(
Γα

LR + δα
LR
)

cos(Pα
LR·Rα

LR) ≡
Pα

LR ·R
α
LR

|Pα
LR||Rα

LR|

= −sgn
[
cos
(
Γα

LR + δα
LR
)] (

Z−1|QL |2−Z|Qα
R|

2)√ 1
2 (1−cos α)√

Z−2|QL |4+Z2|Qα
R|

4
+2|QL |2|Qα

R|
2

cos α

(31)

Hence, Lα
LR is half the normalized reactive helicity, whereas cos(Pα

LR·Rα
LR) is the cosine

of the angle subtended between the two types of Poynting vectors {Pα
LR, Rα

LR}. Notice
that one obtains Pα

LR·Rα
LR = 0 only under rare circumstances [10]. We formed this pair

of normalized parameters such that both are bounded by unity, namely,
∣∣Lα

LR
∣∣ ≤ 1 and

|cos(Pα
LR·Rα

LR)| ≤ 1, as can be easily proved.
It is useful to consider the special case of cos(Pα

LR·Rα
LR) in Equation (31) with equal

magnitudes of |QL| =
∣∣Qα

R
∣∣ for simplicity.

cos(Pα
LR·Rα

LR) = −sgn[cos(Γα
LR + δα

LR)]

(
Z−1 − Z

)√ 1
2 (1− cos α)

√
Z−2 + Z2 + 2 cos α

(32)

According to Equation (32), cos(Pα
LR·Rα

LR) requires another parameter Z in comparison
to those necessary for evaluating Lα

LR in Equation (31). Obviously, cos(Pα
LR·Rα

LR) = 0 for a
dual medium (vacuum included) defined by Z = 1, irrespectively of the oblique angle α [7].
As discussed in Equation (25), Z is still undetermined even for a specified εµ as performed
for Figures 2 and 3 where we set εµ = 4.

As with Figure 2, we present both
{

Lα
LR, cos(Pα

LR·Rα
LR)
}

in Figure 4 to see the effects
of the rotation angle α the chirality parameter β on the transition between asymmetry to
symmetry. As in Figure 2a, we are handling only the curl-β-based constitutive relations
Ccurl

β in Equation (3). Its counterpart for the field-κ-based constitutive relations C f ield
κ will

not be much different as can be seen by comparing both panels of Figure 2. All input
settings for Figure 4 are the same as those in Figure 2a. Added are |QL| =

∣∣Qα
R
∣∣ and

Z = 1/2 for evaluating cos(Pα
LR·Rα

LR) in Figure 4b.
In this regard, let us consider Equation (25) with two extreme types of materials

with a specified εµ > 0: (i) {ε, µ} = {ε > 0, 1} for a non-magnetic medium such that
sgn
(
Z−1 − Z

)
= sgn(ε− 1) = sgn(εµ− 1), and (ii) {ε, µ} = {1, µ} for a non-electric

medium such that sgn
(
Z−1 − Z

)
= sgn(1− µ) = sgn(1− εµ). When assuming εµ > 1,
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sgn
(
Z−1 − Z

)
= ±sgn(εµ− 1) depending on either µ = 1 or ε = 1. We take µ = 1 for

Figure 4 for concreteness so that sgn
(
Z−1 − Z

)
= sgn(εµ− 1) = sgn(4− 1) = +1 with a

specified εµ = 4. Therefore, we try a nontrivial case with Z 6= 1.
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Figure 4. (a) Half the normalized reactive helicity Lα
LR and (b) the cosine cos

(
Pα

LR·Rα
LR
)

of the
angle between the EM and reactive Poynting vectors on the parametric plane of

{
β
√

εµ, α/π
}

. The
specified data includes εµ = 4, δα

LR = 0,{x, y} = {1, 0} on both panels. In addition, |QL| =
∣∣Qα

R
∣∣ and

Z ≡
√

µ/ε = 1/2 (hence ε = 4 and µ = 1 ) on panel (b).

Figure 4a is obtained by multiplying cos
(
Γα

LR + δα
LR
)

in Figure 2a through the factor
1
2 (1− cos α). Therefore, we find in Figure 4a that Lα=0

LR = 0 on the lower boundary at α = 0.
In comparison, Lα=π

LR = 0 on the upper boundary at α = π shows the same behavior as in
Figure 2a.

We now turn to cos(Pα
LR·Rα

LR) in Equation (32). Let us take α = 0 and α = π in Equa-
tion (32) to obtain the following reduced formula for cos(Pα=π

LR ·Rα=π
LR ) with the assignment

δα
LR = 0. {

cos
(
Pα=0

LR ·Rα=0
LR
)
= 0

cos(Pα=π
LR ·Rα=π

LR ) = −sgn
[
cos
(
Γα=π

LR
)] (33)

At α = 0, cos
(
Pα=0

LR ·Rα=0
LR
)
= 0 corresponds the green color in Figure 4b. In com-

parison, cos(Pα=π
LR ·Rα=π

LR ) = −sgn
[
cos
(
Γα=π

LR
)]

at α = π from Equation (32). Therefore,
cos(Pα=π

LR ·Rα=π
LR ) = ±1 depending on β, as can be verified by either the true-red color or the

true-blue color in Figure 4b at α = π. Therefore, perfectly opposite flows in {Pα=π
LR , Rα=π

LR }
are possible [36]. The symmetry of cos(Pα=π

LR ·Rα=π
LR ) with respect to β = 0 is also easily seen

in Figure 4b and by the behavior discussed for cos
(
Γα=π

LR
)

in Figure 2a and in Equation (26).
Let us perform numerical evaluations on the horizontal line at α = π in Figure 4b. We

employ the formula Γα=π
LR = (kL + kR)ξ− from Equation (26) at α = π and the specified

values of ξ− = 1√
2

and εµ = 4 with the help of kR + kL =
(
1− β2εµ

)−12
√

εµ from

Equation (28) for Ccurl
β . We thus have the following:

Γα=π
LR (β) = −sgn

[
cos
(

2
√

εµ

1− β2εµ

1√
2

)]
= −sgn

[
cos

(
2
√

2
1− 4β2

)]
(34)

Of course, Γα=π
LR (0) = −sgn

[
cos
(

2
√

2
)]

= −sgn(−0.951) > +1. Meanwhile, the first

incidence of the sign reversal away from β = 0 takes place for
(
1− 4β2)−12

√
2 = π, thus giv-

ing rise to numerical solution β = ±0.158. The resulting region of −0.316 ≤ β
√

εµ ≤ +0.316
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on the plot scale is indicated by the horizontal red arrow over the top of Figure 4b. Positive
and negative regions of cos(Pα=π

LR ·Rα=π
LR ) repeat themselves more frequently in the left and

right regions in correspondence to higher modes of the cosine function [36].
Let us follow the vertical black arrow on the parametric plane of

{
β
√

εµ, α/π
}

in
Figure 4b. With β = 0 along this line, cos(Pα

LR·Rα
LR) = 0 at the lowest point with α = 0,

thereby referring to an orthogonality between {Pα
LR, Rα

LR} for a co-propagating pair. As the
oblique collision angle α is increased upward along this line, cos(Pα

LR·Rα
LR) is increased in

magnitude as well, thus referring to a more anti-parallel alignment between {Pα
LR, Rα

LR}. At
α = π on the uppermost point, cos(Pα

LR·Rα
LR) = −1, thus indicating a perfect anti-parallel

alignment.
If Pα

LR·Rα
LR = 0 holds true, the level lines of Pα

LR on the xy-plane would be orthogonal
to those of Rα

LR. Considering R ≡ Im(E×H∗) and R ≡ Im(E×H∗) in Equation (7),
E×H∗ ≡ P + iR would become an analytic function of complex variables if Pα

LR·Rα
LR = 0.

We have thus shown that such a complex analyticity is hardly achievable for generic oblique
collisions. Instead, Figure 4b shows that−1 < cos(Pα

LR·Rα
LR) < 1 over most of the βα-plane.

According to the color bar, Figure 4b confirms that Pα
LR·Rα

LR = 0 (in green color) belong to
a rare event that takes place only at α = 0. In comparison, symmetry with respect to β is
visible solely at α = π.

6. Discussions

For lossless media with ε, µ > 0, {I, P, R} and {I, C, K} of Equations (6) and (7) admit
the following boundedness properties via the Cauchy–Schwarz inequality [1,9,15,29,33,36].

I ≡ 1
2
(εE∗·E + µH∗·H),

{
I ≥ √εµ|E×H∗| ≡ √εµ

√
|P|2 + |R|2

I ≥ √εµ|E·H∗| ≡ √εµ
√

C2 + K2
(35)

Here, we recognize the importance of the relative light speed c ≡ (εµ)−1/2. Due to the
complementary nature between {P, R}, the hot spots of the EM Poynting vector are roughly
off the hot spots of the reactive Poynting vector [10,29]. A conventional inequality that
I ≥ √εµ|P| is not enough without consideration of its reactive counterpart R [18]. Likewise,
the complementary nature between {C, K} suggests that the hot spots of the EM helicity
are not likely to coincide with the hot spots of the reactive helicity [7]. A conventional
inequality that I ≥ √εµ|C| is not enough without consideration of its reactive counterpart
K [33].

To sum up, the symmetry between an EM parameter and a reactive parameter renders
complete a boundedness property. This symmetry is another manifestation of the electric-
magnetic democracy (or duality) [10,18,20]. This completeness has not been properly
highlighted up until now.

Let us check how the first inequality of Equation (35) holds true to our obliquely

colliding pair. This is easily seen that the specific inequality
√

εµ
√
|Pα

LR|
2 + |Rα

LR|
2 ≤ Iα

LR is
satisfied by combining Iα

LR from Equation (19) with {Pα
LR, Rα

LR} from Equation (24), while
making use of

∣∣cos
(
Γα

LR + δα
LR
)∣∣ ≤ 1.

Likewise, combining Equations (21) and (24) for both helicities gives rise to the follow-
ing steps.

(
Cα

LR
)2

+
(
Kα

LR
)2

=
(

Z−1|QL|2 − Z
∣∣Qα

LR
∣∣2)2

+
[
(1− cos α)

∣∣(QL)
∗Qα

R
∣∣ cos

(
Γα

LR + δα
LR
)]2

≤ Z−2|QL|4 + Z2
∣∣Qα

R
∣∣4 − 2|QL|2

∣∣Qα
R
∣∣2 + 4|QL|2

∣∣Qα
R
∣∣2 =

(
Z−1|QL|2 + Z

∣∣Qα
R
∣∣2)2 (36)

Resultantly, Equation (19) for the EM energy density leads to the desired inequal-

ity
√

εµ

√(
Cα

LR
)2

+
(
Kα

LR
)2 ≤ Iα

LR [2,7]. We learn from the above series of steps that
the equality is established under the more restrictive set of conditions that cos α = −1,∣∣(QL)

∗Qα
R
∣∣ = |QL|

∣∣Qα
R
∣∣, and

∣∣cos
(
Γα

LR + δα
LR
)∣∣ = 1. These three requirements correspond
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to a counter-propagating pair with a vanishing amplitude factor δα
LR = 0. We can conclude

from the Cauchy–Schwarz inequalities in Equation (35) that a pair of EM and reactive
parameters are not only complementary but also complete. This notion of simultaneous
complementarity and completeness has been largely overlooked in the existing litera-
ture [7].

In line with the first inequality in Equation (35), it is appropriate to find how much of
the total energy density is divided, respectively, into the following three portions.

√
εµ|Pα

LR|
Iα
LR

,
√

εµ|Rα
LR|

Iα
LR

, 1−
√

εµ
√
|Pα

LR|
2 + |Rα

LR|
2

Iα
LR

(37)

Since the medium chirality is normally very small, we have examined the resulting
seven field properties in the limit of a small medium parameter, namely,

∣∣β√εµ
∣∣ << 1 or

|κ| <<
√

εµ [3,28]. Such small medium chirality demands extreme sensitivities in sensing
medium chiralities by measuring field helicities [42]. The symmetry in the signals acquired
in response to the medium chirality would play an appropriate role in planning pertinent
sensing experiments. Understanding gained in this study would be helpful to the shaping
or fabrication of proper chiral media as well [28].

Consider for instance an inverse problem of deducing the medium chirality from the
measured values of all or some of {I, J} in Equation (6) and {P, R, C, K, M} in
Equations (7) and (12) [2,7,8]. In fact, we are not sure which pair of constitutive relations
in Equation (3) are applicable to a medium at hand. Careful examination of the measured
data will be of great help around the state near α = π, namely, around the red boundary
points in Figure 2. In this case, an evenness around β = 0 and/or an independence on κ
will help to determine a correct pair of constitutive relations.

Recall that our problem stays essentially two-dimensional since we can always find a
plane on which two colliding plane waves undergo propagations. Whenever more than
three obliquely colliding waves are considered, we encounter in general three-dimensional
situations [6]. In such three-dimensional configurations, the parameters so far found to
vanish, say, Jα

LR = 0 in Equation (19), are highly likely to survive. In addition, other param-
eters would then become more complicated due to diverse possibilities of interferences.
Such problems will make future topics of research.

Suppose that the angle α in Qα
R of Equation (18) is considered spatially distributed

along a certain straight line. A series of the resulting Qα
R could then resemble the dynamics

of the ‘phase-gradient geometric metasurfaces’ or simply ‘gradient metasurfaces’, where
elemental units of structured metamolecules are arranged according to a predesigned
orientation as in Equation (16). See Figure 60 in [25]. Our interference function Γα

LR(α)
in Equation (23) serves as a phase in cos

(
Γα

LR + δα
LR
)

of Equation (24). This function
Γα

LR ≡ kLξ− − kRη− is a sort of geometric phase although the oblique angle α is not
geometric but more of a dynamic nature.

When a media under consideration is lossy, say, ε, µ ∈ C, almost all formulas handled
in this study should be amended [2]. Spatially inhomogeneous properties, say, ε(x, y, z)
and/or µ(x, y, z), would add more complexities [33]. Frequency-dispersive properties have
also been worked out. Attendant interpretations would become complicated and require
care [12,17,18,25]. In this aspect, κ̃(ω̃) could also be tackled in case with the ‘field-κ-based
constitutive relations’ [24]. When asymmetrically shaped bodies immersed in an achiral
medium are illuminated by circularly polarized plane waves, there should appear non-zero
EM helicities [26]. Such Mie scatterings will make interesting hunting grounds for chiral
optics [16].

In fluid mechanics, we find an interesting analogue to our problem. To this end, recall
the simple inviscid Euler equations in a one-dimensional configuration, where a spatially
dependent fluid velocity is given by u(t, x). Meanwhile, the medium property manifests
itself through a spatially dependent speed of sound c(t, x). The usual pair of characteristics
is given by c± u so that the role of a medium chirality is played by u(t, x) [36,39,41]. Here,
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the acoustic limit is given by the limit |u| << c as with our limit of small medium chirality,
viz.,

∣∣β√εµ
∣∣ < 1 or |κ| < √εµ. What we have presented in all of Figure 2, Figure 3, and

Figure 4 correspond to the subsonic regime with |u| < c. In comparison, supersonic flows
with |u| > c are allowed in fluid mechanics, whereby various nonlinear issues of transitions
and stability would come into play. In the future, we may explore such hypothetical
transition phenomena that might take place over the critical point of either

∣∣β√εµ
∣∣ = 1 or

|κ| = √εµ [39]. We notice in this connection that a rather high value of κ = 0.85 has been
tested for an analytic investigation with n ≡ √εµ = 3.5 [7].

In fact, the problem formulation and its attendant solution presented in this section
are rather simple in the sense that only a single unbounded chiral medium is under
consideration. When an EM wave passes through two semi-infinite spaces occupied by
a chiral medium and an achiral medium, respectively, there arise two distinct problems.
Both problems will require enormous human efforts in making appropriate analysis in
view of the complexity expounded by [30], even if the two media are separated by a planar
interface.

We are looking into the behaviors of a plane incident wave as usual. Depending on
where an incident and an accompanying reflected wave are located, the two problems are
defined as follows. As the first problem, the ‘achiral-to-chiral (‘AC-to-C’ for short) problem
is defined by the configuration, where an incident wave is illuminated from an achiral
medium and a transmitted wave passes through a chiral medium. This AC-to-C problem
has been extensively (but not completely) solved by [30]. As the second problem, the
‘chiral-to-achiral (‘C-to-AC’ for short) problem is defined by the configuration, where an
incident wave is illuminated from a chiral medium and a transmitted wave passes through
an achiral medium. This C-to-AC problem has never been solved as far as we are aware of.

The relative refractive indices of the two media do not affect the ensuing analysis to
an appreciable degree except where a total internal reflection takes place. For simplicity,
we continue to assume that the two media are loss-free. The two problems are certainly not
space-invertible due to chiral constitutive relations. In other words, no reflection symmetry
holds true between these two problems [27]. As a reference, the classical achiral-to-achiral
(AC-to-AC) problem is defined by a configuration, where both semi-infinite media are
dielectric with distinct positive refractive indices.

Let us make a brief review of the analytic solution for the first AC-to-C problem as
presented in [30]. As usual, we can identify an incidence plane, whence a transverse-
electric (TE) or s-wave and a transverse-magnetic (TM) or p-wave. An incident wave is
here considered to be a linear combination of a TE-wave and a TM-wave. In the reference
AC-to-AC problem, a TE-wave and a TM-wave are completely at our disposal, where
we could arbitrarily combine them with a complex coherence factor. In comparison, the
transmitted wave for the AC-to-C problem is normally a linear combination of the co-
propagating pair {QL, Q⇒R } listed in Equations (14) and (17) as dictated by the chiral
medium. Resultantly, there is an inherent coupling between a TE-wave and a TM-wave
employable for an incident wave.

Furthermore, let us mention that the first AC-to-C problem was investigated by [30]
only with the field-κ-based constitutive relations C f ield

κ listed in Equation (4). Overall,
algebraic manipulations involved in the first AC-to-C problem are unbearably complicated
for ordinary impatient readers. For instance, a modified Brewster angle for this AC-to-C
problem requires a long list of successive formulas. Notwithstanding, the key parameters
{I, J}, {P, R}, and {C, K} presented in Equations (6) and (7) have not been evaluated in
both sides of the semi-infinite media. We expect that the evaluation of those key parameters
involves a lot of algebra as well.

For the not-yet-solved second C-to-AC problem, an incident wave consists inherently
of a linear combination of {QL, Q⇒R }. Notice that {QL, Q⇒R } carry distinct wave numbers
although their wave vectors are directed in an identical propagation direction [27]. The
resulting reflected wave and transmitted wave should consist of two constituent waves. In
other words, TE-TM or s-p interferences are inherent for this C-to-AC problem. There are
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still many fuzzy and unresolved aspects of this problem. This problem poses a variety of
challenging tasks (both analytical and experimental) to us. For both problems, we might
then be able to locate specific incidence angles where helicity neutralities prevail, i.e., C = 0
and/or K = 0 [10].

7. Conclusions

We have examined how a chiral medium responds to a pair of obliquely colliding plane
waves. To this goal, we established a correct set of solutions to the Maxwell equations for a
rotational pair of left and right waves. We have thus examined key bilinear parameters of
energy densities, Poynting vectors, field helicities, and the spin angular momentum density.
By evaluating these key parameters on the parametric plane of the medium chirality and
the oblique rotation angle, we have shown that a collaborative and symmetric response
can be obtained for a pair of counter-propagating plane waves. Ways of exploiting such
symmetric properties are also suggested for a few applications.
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