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Abstract: The microscopic origins and the current predictions of the proxy-SU(3) symmetry model of
atomic nuclei were reviewed. Beginning with experimental evidence for the special roles played by
nucleon pairs with maximal spatial overlap, the proxy-SU(3) approximation scheme is introduced; its
validity is demonstrated through Nilsson model calculations and its connection to the spherical shell
model. The major role played by the highest weight-irreducible representations of SU(3) in shaping
up the nuclear properties is pointed out, resulting in parameter-free predictions of the collective
variables β and γ for even–even nuclei in the explanation of the dominance of prolate over oblate
shapes in the ground states of even–even nuclei, in the prediction of a shape/phase transition from
prolate to oblate shapes below closed shells, and in the prediction of specific islands on the nuclear
chart in which shape coexistence is confined. Further developments within the proxy-SU(3) scheme
are outlined.

Keywords: proxy-SU(3) symmetry; shell model; Nilsson model; prolate to oblate transition; shape
coexistence

1. Introduction

The purpose of the present article is to discuss the ideas that led to the introduction
of the proxy-SU(3) symmetry model, its microscopic justification, and its application to
nuclear structural problems. Starting with a review of nuclear structure models based
on the SU(3) symmetry in Section 2, we discuss nucleon pairs favoring deformation in
Section 3, and show how these lead to the introduction of the proxy-SU(3) symmetry in
Section 4. The approximation leading to the proxy-SU(3) symmetry is tested using Nilsson
model calculations in Section 5 and is “translated” into spherical shell model language
in Section 6. We point out (in Section 7) the crucial roles played by the highest weight-
irreducible representations. Their consequences on providing parameter-free predictions
for the collective variables β and γ of even–even nuclei, explaining the dominance of prolate
over oblate shapes in the ground states of even–even nuclei and the prediction of a prolate
to oblate shape/phase transition are examined in Section 8; in Section 9, a mechanism
predicting the nuclear chart’s specific islands (in which shape coexistence can appear) is
discussed. Possible further work on parameter-free predictions of B(E2) transition rates,
energy spectra, binding energies, and nucleon separation energies is outlined in Section 10.
The literature was searched up until October 2022.

2. SU(3) Symmetry in Nuclear Structure

Symmetries have played major roles in nuclear structures since 1937, when Wigner [1]
suggested that first approximation nuclear forces should be independent of the orientations
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of the spins and isospins of the nuclei constituting a nucleus, in a framework known as the
SU(4) supermultiplet model [2,3].

In 1949, a major step forward in deciphering the experimental observations was made
by Mayer and Jensen through the introduction of the shell model [4–7]; they interpreted
the appearance of nuclear magic numbers in terms of a three-dimensional (3D) isotropic
harmonic oscillator (HO), to which a crucial spin–orbit term was added. The 3D isotropic
HO is known to possess shells labeled by the number of excitation quanta n, characterized
by the unitary symmetries U((n + 1)(n + 2)/2), having SU(3) subalgebras [8–11]. Mayer,
Jensen, and Wigner shared the Nobel Prize in Physics in 1963 [12].

The shell model was considered adequate for describing near-spherical nuclei in the
vicinity of the magic numbers, away from which, however, large quadrupole moments
were observed. In order to explain their appearance, Rainwater in 1950 suggested [13]
that deformed shapes are energetically favored away from closed shells. In 1952, the
collective model of Bohr and Mottelson was introduced [14,15], in which departures from
the spherical shape and axial symmetry are described by the collective variables, β and γ,
respectively. Bohr, Mottelson, and Rainwater shared the Nobel Prize in Physics in 1975 [16].

In 1955, Nilsson introduced [17–19] a modified version of the shell model, in which
axial-deformed nuclei with prolate (rugby ball-like) or oblate (pancake-like) shapes can be
described through the use of a 3D anisotropic HO with cylindrical symmetry [20–25].

In 1958, Elliott proved that deformation within the nuclear sd shell with U(6) symmetry
can be described in terms of its SU(3) subalgebra [26–32], thus building a bridge between
the spherical shell model and the collective model for the case of light nuclei, in which the
consequences of the spin–orbit interaction on the ordering of the single-particle nucleon
levels are small. Beyond the sd nuclear shell, the spin–orbit force [4–7] is known to break
the SU(3) symmetry of the 3D isotropic HO, by pushing within each HO shell the orbital
possessing the highest angular momentum j to the shell below. As a result, each shell
contains the orbitals left back after this removal, called the normal parity orbitals, plus the
orbitals invading from the shell above with the opposite parity, called the intruder orbitals.

Efforts of extending the SU(3) symmetry to heavy nuclei [33–36] started in 1972,
evolved gradually into the introduction of the vector boson model [37–39], while at the
same time, the group’s theoretical structure of the Bohr–Mottelson model (with an overall
U(5) symmetry possessing an O(5) subalgebra) was understood [40].

A major step forward in the extension of the SU(3) symmetry to heavy nuclei was
taken in 1973, with the introduction of the pseudo-SU(3) symmetry [41–47]. Within the
pseudo-SU(3) framework, a unitary transformation is used [48–50], through which the
incomplete set of normal parity orbitals left in a shell is mapped onto the complete set
of orbitals of the shell below, thus recovering the SU(3) symmetry of the 3D isotropic
HO for the normal parity orbitals. This becomes possible by assigning to each orbital a
pseudo-orbital angular momentum and a pseudo-spin, while the total angular momentum
remains intact. As a result, within the pseudo-SU(3) scheme, each shell consists of a normal
parity part, which possesses a U(n) symmetry and SU(3) subalgebra, and an intruder part
which does not possess any SU(3) structure and has to be treated separately by shell model
techniques [45,46]. The relativistic mean field origins of the pseudospin symmetry were
later understood [51,52].

In 1974, it was realized that the nuclear quadrupole degree of freedom can be described
in terms of SU(6) algebra [53] formed by five generalized coordinates, conjugated momenta,
and their commutators.

Next year, the interacting boson model (IBM) [54–60] was introduced by Arima and
Iachello. In the IBM, the monopole degree of freedom is taken into account in addition
to the quadrupole one. IBM is characterized by an overall U(6) symmetry built by s-
bosons of zero angular momentum and d-bosons of angular momentum two, possessing
three limiting symmetries, U(5) [55] for vibrational nuclei, which correspond to the Bohr–
Mottelson collective model, O(6) [57] for γ-unstable nuclei (which are soft towards triaxial
deformation), and SU(3) [56] for deformed nuclei.
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In 1977, the symplectic model [61–65] was introduced by Rowe and Rosensteel. The
symplectic model, having an overall symmetry (called Sp(3,R) by Rowe and Rosensteel and
Sp(6,R) by other authors [66,67]) is a generalization of the fermionic Elliott SU(3) model and
includes many major oscillator shells in addition to core excitations. Its overall symmetry
is characterized by non-compact algebra Sp(6,R), which does possess a compact SU(3)
subalgebra along with other ones. A proton–neutron extension of the model, called the
proton–neutron symplectic model (PNSM), is also developed [68–70].

In 1982, the interacting two-vector boson model [71,72] was introduced, in which two
vector bosons of angular momentum are used as the building blocks, forming non-compact
algebra Sp(12,R), of which the maximal compact subalgebra is U(6).

In 1987, the fermion dynamical symmetry model [73] was introduced, in which the
total angular momentum of the nucleons is assumed to be split into active and inactive
parts instead of orbital angular momentum and spin parts, the k-active part contains
SU(3) subalgebra.

In 2000, an ab initio approach to a no-core shell model was introduced [74,75] for light
nuclei. It was then realized that symplectic symmetry underlies the ab initio no-core shell
model results, thus paving the way toward the development of the symplectic no-core shell
model [76–78], which was extended to intermediate-mass nuclei [79–82]. The realization
that nuclei are made of only a few equilibrium shapes [83] led to the introduction of the ab
initio symmetry-adapted no-core shell model [84,85]. An SU(3)-adapted basis [80] plays a
key role in this approach, taking advantage of the Elliott SU(3) symmetry underpinning
the Sp(3,R) [61–65] (alias Sp(6,R) [66,67]) symplectic model.

The use of the SU(3) symmetry in the nuclear structure was reviewed in 2020 by
Kota [86]. A historical account similar to the present section was given by some of the
present authors in Reference [87].

In 2017, the proxy-SU(3) symmetry was suggested [88–90], which will be the subject
of the present review. However, before describing the proxy-SU(3) symmetry itself, we will
briefly review the physical motivation behind its introduction. A review similar to the next
section was given by some of the present authors in Reference [87].

3. Nucleon Pairs Favoring Deformation

In 1953, deShalit and Goldhaber [91], in their studies on β transition probabilities,
noticed that within the proton–neutron pairs of orbitals (1p3/2, 1d5/2), (1d5/2, 1f7/2),
(1f7/2, 1g9/2), (1g9/2, 1h11/2), (1h11/2, 1i13/2), the nucleons of one kind (protons, for
example) have stabilizing effects on pairs of nucleons of the other kind (neutrons in the
example), thus favoring the development of nuclear deformation. In the standard shell
model notation |nljmj〉, in which states are labeled by the number of oscillator quanta n,
the orbital angular momentum l, the total angular momentum j, and its z-projection mj, the
orbitals forming pairs differed by |∆n∆l∆j∆mj〉 = |0110〉. We are going to call these pairs
the spherical shell model |0110〉 pairs, or the |0110〉 pairs.

In 1962, a major step forward in our understanding of effective interactions and
coupling schemes in nuclei was made by Talmi [92] through the introduction of senior-
ity [92–95], representing the number of nucleon pairs coupled to non-zero angular momen-
tum, which explained the linear dependence of neutron separation energies on the mass
number within various series of isotopes.

In 1977, Federman and Pittel [96–98] realized that when adding valence protons and
valence neutrons to a nucleus, the proton–neutron pairs (1d5/2, 1d3/2), (1g9/2, 1g7/2),
(1h11/2, 1h9/2), and (1i13/2, 1i11/2) play major roles in the onset of deformation, while
later on, deformation is reinforced by the proton–neutron pairs (1d5/2, 1f7/2), (1g9/2,
1h11/2), (1h11/2, 1i13/2), and (1i13/2, 1j15/2), as shown in Table 1. In the shell model
notation, these sets correspond to |∆n∆l∆j∆mj〉 = |0010〉, and |0110〉, respectively, the
latter set coinciding with the de Shalit–Goldhaber pairs.
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Table 1. Pairs of orbitals playing a leading role in the development of deformation in different mass
regions of the nuclear chart according to Federman and Pittel [96–98]. The pairs on the left part of the
table contribute to the beginning of the relevant shell, while the pairs on the right become important
further within the shell, as adapted from Reference [87]. See Section 3 for further discussion.

Protons Neutrons Protons Neutrons

light 1d5/2 1d3/2 1d5/2 1f7/2
intermediate 1g9/2 1g7/2 1g9/2 1h11/2

rare earth 1h11/2 1h9/2 1h11/2 1i13/2
actinides 1i13/2 1i11/2 1i13/2 1j15/2

In 1985, the decisive roles played by proton–neutron pairs were demonstrated by
Casten through the introduction of the NpNn scheme [99,100], by showing the systematic
dependence of several observables on the quadrupole–quadrupole interaction, measured
through NpNn, where Np (Nn) is the number of valence protons (neutrons) counted from the
nearest closed shell. In 1987, the P-factor, P = NpNn/(Np + Nn) [101,102], was introduced,
and the systematic dependence of several observables on it was demonstrated. The P-
factor expresses the competition between the quadrupole deformation, “measured” by the
quadrupole–quadrupole interaction through NpNn, and the pairing interaction, “measured”
through Np + Nn.

In 1995, the quasi-SU(3) symmetry [103,104] was introduced, based on the proton–
neutron pairs (1g9/2, 2d5/2), (1h11/2, 2f7/2), (1i13/2, 2g9/2), which lead to enhanced
quadrupole collectivity [105]. The quasi-SU(3) pairs are expressed as |∆n∆l∆j∆mj〉 = |1220〉
in the shell model notation.

Following detailed studies of double differences in experimental binding
energies [106–109], in 2010 it was realized (in Reference [110]) that proton–neutron pairs
differed by ∆K[∆N∆nz∆Λ] = 0[110] in the Nilsson notation [17–19] K[NnzΛ], where N
is the total number of oscillator quanta, nz is the number of quanta along the z-axis, and
Λ, K, are the projections along the z-axis of the orbital angular momentum and the total
angular momentum, respectively, which play a major role in the development of nuclear
deformation, due to the large spatial overlaps [111]. This effect was corroborated by nuclear
density functional theory calculations [112]. We are going to call these pairs the Nilsson
0[110] pairs, or simply the 0[110] pairs. Notice the difference in the notation in comparison
to the spherical shell model |0110〉 pairs.

As we shall see below, the Nilsson 0[110] pairs play crucial roles in the replacements
made within the approximation leading to the proxy-SU(3) symmetry. Furthermore, the
relation between the Nilsson 0[110] pairs and the spherical shell model |0110〉 pairs will be
clarified through the connection of the proxy-SU(3) symmetry to the spherical shell model.
Evidence supporting the formation of 0[110] pairs was found recently within Monte Carlo
shell model calculations [113].

4. The Proxy-SU(3) Approximation

The proxy-SU(3) symmetry was born when the desire to reestablish the SU(3) sym-
metry of the 3D-HO in medium mass and heavy nuclei, described in Section 2, met the
experimental hint of the 0[110] Nilsson pairs, described in Section 3. The 0[110] Nilsson
pairs were discovered through experimental observation [110], where the proton–neutron
pairs of this type maximize the proton–neutron interaction. This maximization was at-
tributed to the large spatial overlaps of the two orbitals involved in such pairs [111]. In
other words, 0[110] Nilsson pairs are very similar since they possess identical angular
momentum and spin properties (identical projections of the orbital angular momentum,
the spin, and the total angular momentum) and very similar spatial shapes since they differ
only by one excitation quantum in the z-axis (and, therefore, also by one quantum in the
total number of quanta). The similarity holds equally well if one considers a 0[110] pair of
protons, or a 0[110] pair of neutrons. Such pairs will still have identical angular momentum
and spin properties and very similar spatial shapes. Therefore, in the framework of an ap-
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proximation needed for some reason, each member of a 0[110] pair could replace the other,
i.e., acting as a proxy, with minimal changes inflicted in the physical system under study.

Such a situation appears in the shells of the shell model beyond 28 nucleons. The
intruder orbitals, which come down from the shell above, form 0[110] pairs with the
orbitals, which desert the shell by fleeing into the shell below. We can, therefore, think
of replacing the intruder orbitals with their 0[110] counterparts, which are the deserting
orbitals, expecting that the changes caused in the physical system under study would be
minimal. In other words, the deserting orbitals can act as proxies of the intruder orbitals.
However, in this way, the shell obtains the SU(3) symmetry of the 3D-HO, which it lost
after the deserting of the orbitals, which fled to the shell below.

An example can be seen in Figure 1, in which the sdg shell is depicted, consisting of
the 3s1/2, 2d3/2, 2d5/2, 1g7/2, 1g9/2 orbitals, having an overall symmetry of U(15), which
possesses SU(3) subalgebra. The spin–orbit interaction pushes the orbital with the highest j,
i.e., 1g9/2, to the shell below, while it brings down the 1h11/2 orbital from the shell above. In
this way, the 50–82 shell of the shell model is formed, in which the SU(3) symmetry is lost.
Looking into the details of the orbitals, a sign of hope appears. The intruder 1h11/2 orbital
consists of the Nilsson orbitals 1/2[550], 3/2[541], 5/2[532], 7/2[523], 9/2[514], 11/2[505],
while the deserting 1g9/2 orbital consists of Nilsson orbitals 1/2[440], 3/2[431], 5/2[422],
7/2[413], 9/2[404]. We observe that the first five Nilsson orbitals of 1h11/2 are 0[110]
partners with the five orbitals making up 1g9/2. Therefore, it is plausible to replace the
1/2[550], 3/2[541], 5/2[532], 7/2[523], 9/2[514] orbitals by the 1/2[440], 3/2[431], 5/2[422],
7/2[413], 9/2[404] orbitals, hoping that the changes inflicted in the physical system would
be minimal. In other words, the 1/2[440], 3/2[431], 5/2[422], 7/2[413], and 9/2[404] orbitals
will act as proxies of the 1/2[550], 3/2[541], 5/2[532], 7/2[523], and 9/2[514] orbitals.

 

1 g 9 / 2

2 d 5 / 2
1 g 7 / 2

1 h 1 1 / 2

2 d 3 / 2
3 s 1 / 2

En
erg

y

Figure 1. Schematic representation of the 50–82 shell and the replacement leading to the proxy sdg
shell, adapted from Reference [88]. See Section 4 for further discussion.

It is now time to consider the gains and losses of this replacement. The gain is that
the SU(3) symmetry is re-established in the 50–82 shell since the shell will now contain
all orbitals composing the sdg shell. However, a couple of losses are lurking. First, the
11/2[505] Nilsson orbital has no 0[110] partner; thus, it is left behind within the 50–82 shell,
where it stays outside the SU(3) symmetry, and in principle, it has to be treated separately
by shell model techniques [45,46]. The good news in this case is that the 11/2[505] Nilsson
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orbital lies at the very top of the 50–82 shell, as one can see in the standard Nilsson
diagrams [19,114]. Thus, it should be empty for most nuclei and, therefore, have little
influence on the structures of most of them. The second problem arises from the fact that
the intruder and deserting orbitals have opposite parities since they belong to adjacent
shells differing by one unit in N. For even–even nuclei, this should not cause any trouble,
since, for example, a pair of 9/2[514] particles will be replaced by a pair of 9/2[404]
particles; therefore, no differences caused by parity should be seen. For odd nuclei, one
would probably have to use projection techniques [115], a problem that has not been
considered yet.

5. Corroboration of Proxy-SU(3) through Nilsson Model Calculations

The first test [88] of the accuracy of the proxy-SU(3) approximation described in the
previous section was performed in the framework of the Nilsson model. In each shell of
the shell model, two calculations were performed, one with the real orbitals composing
the shell, and another one with the intruder orbitals replaced by their 0[110] counterparts.
Numerical results for the 82–126 shell are shown in Table 2. In the upper part of the table,
the matrix elements of the Nilsson Hamiltonian, using the standard set of parameters [15],
are shown, while in the lower partm the matrix elements occurring within the PFH shell
(resulting after the proxy-SU(3) approximation) are reported. We remark that in the last
seven columns of the upper part, corresponding to the 1i13/2 orbitals, all non-diagonal
matrix elements vanish, due to the fact that they connect orbitals of the opposite parity.
On the contrary, in the last six columns of the lower part of the table, in which the proxies
of the 1i13/2 orbitals, i.e., the 1h11/2 orbitals appear, not all off-diagonal matrix elements
vanish since (in this case) they connect to orbitals of the same parity. However, the number
of these off-diagonal matrix elements is small, and in addition, their sizes are small in
comparison to the diagonal matrix elements; thus, they are not expected to affect the
single-particle energy levels substantially. The diagonal matrix elements in the last six
columns of the lower part of the table are also slightly modified in comparison to the
corresponding matrix elements in the upper half of the table, but again the changes are
small and are not expected to affect the single-particle energy levels radically. The evolution
of the single-particle energy levels with deformation, depicted in Figure 2, shows that the
changes caused in the Nilsson diagrams by the proxy-SU(3) approximation are minimal.
Neither the order of the orbitals nor their dependence on the deformation (upward-sloping
or downward-sloping) is modified. Similar tables and figures for other shells can be found
in the supplemental material for Reference [88]. It can be seen there that the quality of the
proxy-SU(3) approximation becomes better in higher shells.
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Table 2. Nilsson Hamiltonian matrix elements (in units of h̄ω0) with ε = 0.3 for Nilsson orbitals in the 82–126 neutron shell (upper part) and in the full PFH neutron
shell (lower part). Matrix elements in the lower part of the table, which differ from their counterparts in the upper part, are shown in boldface, adapted from
Reference [88]. See Section 5 for further discussion.

1
2 [501] 1

2 [521] 3
2 [512] 1

2 [510] 3
2 [501] 5

2 [503] 1
2 [541] 3

2 [532] 5
2 [523] 7

2 [514] 1
2 [530] 3

2 [521] 5
2 [512] 7

2 [503] 9
2 [505] 1

2 [660] 3
2 [651] 5

2 [642] 7
2 [633] 9

2 [624] 11
2 [615] 13

2 [606]

1/2[501] 7.44 0.19 0 0.16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1/2[521] 6.46 0 −0.18 0 0 0.26 0 0 0 0.22 0 0 0 0 0 0 0 0 0 0 0
3/2[512] 6.88 0 −0.13 0 0 0.23 0 0 0 0.22 0 0 0 0 0 0 0 0 0 0
1/2[510] 6.86 0 0 0 0 0 0 0.26 0 0 0 0 0 0 0 0 0 0 0
3/2[501] 7.31 0 0 0 0 0 0 0.19 0 0 0 0 0 0 0 0 0 0
5/2[503] 7.35 0 0 0.15 0 0 0 0.18 0 0 0 0 0 0 0 0 0
1/2[541] 5.92 0 0 0 −0.18 0 0 0 0 0 0 0 0 0 0 0
3/2[532] 6.12 0 0 0 −0.16 0 0 0 0 0 0 0 0 0 0
5/2[523] 6.38 0 0 0 −0.13 0 0 0 0 0 0 0 0 0
7/2[514] 6.69 0 0 0 −0.09 0 0 0 0 0 0 0 0
1/2[530] 6.10 0 0 0 0 0 0 0 0 0 0 0
3/2[521] 6.34 0 0 0 0 0 0 0 0 0 0
5/2[512] 6.63 0 0 0 0 0 0 0 0 0
7/2[503] 6.97 0 0 0 0 0 0 0 0
9/2[505] 7.05 0 0 0 0 0 0 0

1/2[660] 6.70 0 0 0 0 0 0
3/2[651] 6.67 0 0 0 0 0
5/2[642] 6.69 0 0 0 0
7/2[633] 6.77 0 0 0
9/2[624] 6.90 0 0
11/2[615] 7.08 0
13/2[606] 7.32

1/2[501] 7.44 0.19 0 0.16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1/2[521] 6.46 0 −0.18 0 0 0.26 0 0 0 0.22 0 0 0 0 0 0 0 0 0 0
3/2[512] 6.88 0 −0.13 0 0 0.23 0 0 0 0.22 0 0 0 0 0 0 0 0 0
1/2[510] 6.86 0 0 0 0 0 0 0.26 0 0 0 0 0 0 0 0 0 0
3/2[501] 7.31 0 0 0 0 0 0 0.19 0 0 0 0 0 0 0 0 0
5/2[503] 7.35 0 0 0.15 0 0 0 0.18 0 0 0 0 0 0 0 0
1/2[541] 5.92 0 0 0 −0.18 0 0 0 0 0.20 0 0 0 0 0
3/2[532] 6.12 0 0 0 −0.16 0 0 0 0 0.25 0 0 0 0
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Table 2. Cont.

1
2 [501] 1

2 [521] 3
2 [512] 1

2 [510] 3
2 [501] 5

2 [503] 1
2 [541] 3

2 [532] 5
2 [523] 7

2 [514] 1
2 [530] 3

2 [521] 5
2 [512] 7

2 [503] 9
2 [505] 1

2 [550] 3
2 [541] 5

2 [532] 7
2 [523] 9

2 [514] 11
2 [505]

5/2[523] 6.38 0 0 0 −0.13 0 0 0 0 0.27 0 0 0
7/2[514] 6.69 0 0 0 −0.09 0 0 0 0 0.25 0 0
1/2[530] 6.10 0 0 0 0 0.24 0 0 0 0 0
3/2[521] 6.34 0 0 0 0 0.26 0 0 0 0
5/2[512] 6.63 0 0 0 0 0.23 0 0 0
7/2[503] 6.97 0 0 0 0 0.15 0 0
9/2[505] 7.05 0 0 0 0 0.20 0

1/2[550] 6.57 0 0 0 0 0
3/2[541] 6.59 0 0 0 0
5/2[532] 6.67 0 0 0
7/2[523] 6.80 0 0
9/2[514] 6.98 0
11/2[505] 7.21
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Figure 2. Diagonal matrix elements (in units of h̄ω0) of the Nilsson Hamiltonian for the 82–126 (a)
and PFH (c) neutron shells compared to the results of the full diagonalization for the 82–126 (b)
and PFH (d) neutron shells, as functions of the deformation parameter ε. The intruder orbitals are
indicated by dashed lines and their labels appear in boldface. Orbitals are grouped in color only to
facilitate visualizing the patterns of orbital evolution, adapted from Reference [88]. See Section 5 for
further discussion.
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6. Proxy-SU(3) Symmetry in the Spherical Shell Model Basis

The proxy-SU(3) symmetry is established in the nuclear shells beyond the sd shell in
the framework of the Nilsson model by taking advantage of the 0[110] Nilsson pairs. The
issue arises if such a process is possible within the framework of the spherical shell model,
allowing for the replacement of certain orbitals by their proxies in order to reestablish the
SU(3) symmetry.

In order to examine if such a possibility exists, we start with the Elliott
model [26–28,30,31], in which the Cartesian basis of the 3D isotropic HO is used. This basis
is labeled [nznxnyms], in which the number of quanta along the z, x, y directions and the
z-projection of the spin appear. The first step is to transform this basis into the spherical
basis, [nlmlms] in the l-s coupling, labeled by the principal quantum number n, the orbital
angular momentum l, its z-projection (ml), and the z-projection of the spin (ms). This can
be achieved through a unitary transformation [116–118]

[nznxnyms] = R[nlmlms], (1)

the details of which can be found in Reference [119]. Using Clebsch–Gordan coeffi-
cients [120,121], the spherical basis can be recoupled from the l-s coupling to the j-j coupling
in the following way

[nlmlms] = C[nljmj], (2)

in which the total angular momentum j and its z-projection appear. Combining these two
transformations, one obtains

[nznxnyms] = RC[nljmj], (3)

i.e., the connection between the Cartesian Elliott basis and the spherical shell model basis
in j-j coupling. Details of the calculations and transformation tables up to the n = 3 shell
can be found in Reference [119], while a succinct discussion of the approach, similar to the
present section, was given by some of the present authors in Reference [87].

Using the above transformation, one sees that the Nilsson 0[110] replacements made
within the proxy-SU(3) scheme are “translated” into |0110〉 replacements within the spheri-
cal shell model basis. The resulting correspondences between original shell model orbitals
and proxy-SU(3) orbitals are summarized in Table 3. This correspondence paves the way for
taking advantage of the proxy-SU(3) symmetry in shell model calculations for heavy nuclei,
in a way similar to that of the symmetry-adapted no-core shell model approach [81,82]
used in light nuclei.

Table 3. Shell model orbitals of the original spin–orbit-like shells and of the proxy-SU(3) shells. The
magic number 14 was proposed as a sub-shell closure in Reference [122]. The symmetry of each
proxy-SU(3) shell is U(Ω) with Ω = (N + 1)(N + 2)/2. Orbitals being replaced are indicated in
boldface, adapted from Reference [119]. See Section 6 for further discussion.

Spin–Orbit Proxy-SU(3) 3D-HO

Magic Numbers Original Orbitals Proxy Orbitals Proxy U(Ω)
Symmetry Magic Numbers Magic Numbers

6–14 1p1/2
±1/2 1p1/2

±1/2 U(3) 6–12 2–8

1d5/2
±1/2,±3/2 1p3/2

±1/2,±3/2

1d5/2
±5/2 -

14–28 2s1/2
±1/2 2s1/2

±1/2 U(6) 14–26 8–20

1d3/2
±1/2,±3/2 1d3/2

±1/2,±3/2

1f7/2
±1/2,±3/2,±5/2 1d5/2

±1/2,±3/2,±5/2

1f7/2
±7/2 -
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Table 3. Cont.

Spin–Orbit Proxy-SU(3) 3D-HO

Magic Numbers Original Orbitals Proxy Orbitals Proxy U(Ω)
Symmetry Magic Numbers Magic Numbers

28–50 2p1/2
±1/2 2p1/2

±1/2 U(10) 28–48 20–40

2p3/2
±1/2,±3/2 2p3/2

±1/2,±3/2

1 f 5/2
±5/2,±3/2,±1/2 1 f 5/2

±5/2,±3/2,±1/2

1g9/2
±1/2,...,±7/2 1f7/2

±1/2,...,±7/2

1g9/2
±9/2 -

50–82 3s1/2
±1/2 3s1/2

±1/2 U(15) 50–80 40–70

2d3/2
±1/2,±3/2 2d3/2

±1/2,±3/2

2d5/2
±1/2,...,±5/2 2d5/2

±1/2,...,±5/2

1g7/2
±1/2,...,±7/2 1g7/2

±1/2,...,±7/2

1h11/2
±1/2,...,±9/2 1g9/2

±1/2,...,±9/2

1h11/2
±11/2 -

82–126 3p1/2
±1/2 3p1/2

±1/2 U(21) 82–124 70–112

3p3/2
±1/2,±3/2 3p3/2

±1/2,±3/2

2 f 5/2
±1/2,...,±5/2 2 f 5/2

±1/2,...,±5/2

2 f 7/2
±1/2,...,±7/2 2 f 7/2

±1/2,...,±7/2

1h9/2
±1/2,...,±9/2 1h9/2

±1/2,...,±9/2

1i13/2
±1/2,...,±11/2 1h11/2

±1/2,...,±11/2

1i13/2
±13/2 -

126–184 4s1/2
±1/2 4s1/2

±1/2 U(28) 126–182 112–168

3d3/2
±1/2,±3/2 3d3/2

±1/2,±3/2

3d5/2
±1/2,...,±5/2 3d5/2

±1/2,...,±5/2

2g7/2
±1/2,...,±7/2 2g7/2

±1/2,...,±7/2

2g9/2
±1/2,...,±9/2 2g9/2

±1/2,...,±9/2

1i11/2
±1/2,...,±11/2 1i11/2

±1/2,...,±11/2

1j15/2
±1/2,...,±13/2 1i13/2

±1/2,...,±13/2

1j15/2
±15/2 -

A unitary transformation connecting the orbitals being replaced within the proxy-
SU(3) scheme was found [119] within the shell model basis, as depicted in Figure 3. This is
reminiscent of the unitary transformation occurring in the framework of the pseudo-SU(3)
symmetry [48–50].

A by-product of the above transformation is that the 0[110] Nilsson pairs identified
in Reference [110], and used within the proxy-SU(3) scheme [88–90], are identical to the
de Shalit–Goldhaber pairs [91] and the Federman–Pittel pairs [96–98] within the spherical
shell model basis, where they are expressed as |0110〉 pairs.

The correspondence between Nilsson pairs and shell model pairs was corroborated
by calculations [123] within the Nilsson model, in which the first justification of the proxy-
SU(3) scheme was found, as described in Section 5. As one can see in Tables 4 and 5, the
correspondence used in proxy-SU(3) works only for the Nilsson orbitals, which possess the
highest total angular momentum j within their shell, which are exactly the orbitals, which
are replaced within the proxy-SU(3) scheme.
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Figure 3. Unitary transformation of the intruder orbitals 1h11/2
mj (except for the 1h11/2

±11/2) in the

50–82 shell onto the orbitals 1g9/2
mj , adapted from Reference [119]. See Section 6 for further discussion.

Table 4. Expansions of Nilsson orbitals K[NnzΛ] in the shell model basis |Nljmj〉 for three different
values of the deformation ε. The Nilsson orbitals shown possess the highest total angular momenta
j in their shells. The existence of a leading shell model eigenvector is evident at all deformations,
adapted from Reference [123]. See Section 6 for further discussion.

3
2 [541] ε |Nljmj〉

∣∣51 3
2

3
2
〉 ∣∣53 5

2
3
2
〉 ∣∣53 7

2
3
2
〉 ∣∣55 9

2
3
2
〉 ∣∣55 11

2
3
2
〉

0.05 0.0025 −0.0015 0.0641 −0.0122 0.9979
0.22 0.0371 −0.0286 0.2565 −0.0640 0.9633
0.30 0.0601 −0.0506 0.3287 −0.0922 0.9366

3
2 [651] ε |Nljmj〉

∣∣62 3
2

3
2
〉 ∣∣62 5

2
3
2
〉 ∣∣64 7

2
3
2
〉 ∣∣64 9

2
3
2
〉 ∣∣66 11

2
3
2
〉 ∣∣66 13

2
3
2
〉

0.05 −0.0002 0.0046 −0.0013 0.0821 −0.0086 0.9966
0.22 −0.0100 0.0711 −0.0278 0.3240 −0.0469 0.9418
0.30 −0.0207 0.1149 −0.0509 0.4091 −0.0687 0.9010

Table 5. Expansions of Nilsson orbitals K[NnzΛ] in the shell model basis |Nljmj〉 for three different
values of the deformation ε. The Nilsson orbitals shown do not possess the highest total angular
momenta j in their shells. The existence of leading shell model eigenvectors is evident in small
deformations, but this is not the case anymore at higher deformations, at which several shell model
eigenvectors make considerable contributions, adapted from Reference [123]. See Section 6 for
further discussion.

1
2 [431] ε |Nljmj〉

∣∣40 1
2

1
2
〉 ∣∣42 3

2
1
2
〉 ∣∣42 5

2
1
2
〉 ∣∣44 7

2
1
2
〉 ∣∣44 9

2
1
2
〉

0.05 −0.0213 0.1254 −0.0702 0.9893 0.0127
0.22 −0.2248 0.4393 −0.2791 0.8057 0.1717
0.30 −0.2630 0.5003 −0.2458 0.7447 0.2559

1
2 [541] ε |Nljmj〉

∣∣51 1
2

1
2
〉 ∣∣51 3

2
1
2
〉 ∣∣53 5

2
1
2
〉 ∣∣53 7

2
1
2
〉 ∣∣55 9

2
1
2
〉 ∣∣55 11

2
1
2
〉

0.05 −0.0200 0.1770 −0.0295 0.9780 −0.0446 −0.0944
0.22 −0.2492 0.4619 −0.3768 0.5550 −0.4161 −0.3185
0.30 −0.3121 0.4331 −0.4829 0.3430 −0.4789 −0.3671
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7. The Dominance of the Highest Weight Irreducible Representations of SU(3)

In order to start examining the consequences of the existence of the proxy-SU(3)
symmetry in medium mass and heavy nuclei, we should first consider a few properties of
the irreducible representations (irreps) of SU(3).

In Elliott’s notation [26–31], the irreps of SU(3) are labeled by (λ, µ), where the Elliott
quantum numbers λ and µ are connected to the number of boxes in the corresponding
Young diagram through the relations

λ = f1 − f2, µ = f2, (4)

where f1 ( f2) is the number of boxes in the first (second) line of the relevant Young diagram.
Irreps with λ > µ are known to correspond to prolate (rugby ball-like) shapes, while
irreps with λ < µ are known to describe oblate (pancake-like) shapes, with λ = µ irreps
corresponding to maximally triaxial shapes [124–126].

A quantity characterizing the SU(3) irreps is the eigenvalue of the second-order Casimir
operator of SU(3), given by [8,10]

C2(λ, µ) =
2
3
(λ2 + µ2 + λµ + 3λ + 3µ). (5)

This quantity is known to be connected to the eigenvalues of the quadrupole–quadrupole
interaction by [26–28,47]

QQ = 4C2 − 3L(L + 1), (6)

where L is the eigenvalue of the orbital angular momentum. For the ground state bands of
even–even nuclei, in which L = 0, it is clear that the eigenvalue of C2 is proportional to the
eigenvalue of the quadrupole–quadrupole interaction, QQ = 4C2. Since the quadrupole–
quadrupole interaction is known to cause nuclear deformation, it is expected that the
irrep with the highest value of C2 should correspond to the preferred ground state with
maximum deformation.

There is, however, another factor that should be taken into account. The nucleon–
nucleon interaction is known to be attractive and of short-range [127], therefore favoring
the maximal spatial overlap [111] among the nucleons, which can be achieved for the
most symmetric SU(3) irrep. In the Young diagrams, it is known that boxes on the same
line correspond to symmetrized particles, while boxes in the same column correspond to
anti-symmetrized particles [8,10]. The degree of symmetrization of a given SU(3) irrep can,
therefore, be measured by the ratio of the symmetrized boxes over the total number of
boxes, which is

r =
f1

f1 + f2
=

λ + µ

λ + 2µ
. (7)

It was proved [128] that the irreps with the highest value of r, i.e., with the highest
degree of symmetry, correspond to what is called the highest weight (hw) irreps of SU(3). As
such, these irreps are favored by the nucleon–nucleon interaction and, therefore, dominate
the related nuclear properties.

The irreps possessing the highest eigenvalues of the second-order Casimir operator,
called the highest C2 irreps, for brevity, and the highest hw irreps of SU(3) in the various
nuclear shells, are shown in Table 6. It is clear that up to the mid-shell, the C2 and hw irreps
are identical, while in the upper half of each shell, the C2 and hw irreps are different, with
the exception of the last 5 particle numbers (which correspond to states with up to 4 holes
at the top of the shell). Further mathematical details on the dominance of the hw irreps can
be found in References [129,130].
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8. Physical Consequences of the Dominance of the Highest Weight Irreps
8.1. Prolate over Oblate Dominance

One of the long-standing puzzles in a nuclear structure is the dominance of pro-
late (rugby ball-like) shapes over oblate (pancake-like) shapes in the ground state bands
of even–even nuclei. In Elliott’s notation, prolate (oblate) irreps correspond to λ > µ
(λ < µ) [26–31,131], while irreps with λ = µ correspond to maximal triaxiality. Despite
several attempts [102,132–135] to resolve this puzzle, the issue is still considered open [136].

The dominance of the hw irreps over the highest C2 irreps offers a simple, parameter-
free justification of the prolate over oblate dominance. As an example, in Table 7, the hw
irreps corresponding to the rare earth nuclei with valence protons in the 82–126 shell and
valence neutrons in the 126–184 shell are shown. These hw irreps are obtained by adding up
the hw irrep (λπ , µπ) corresponding to the valence protons and the hw irrep (λν, µν) and
corresponding to the valence neutrons into the most stretched irrep [45] (λπ + λν, µπ + µν).
We notice that prolate irreps are obtained over most of the table, with the exception of
its lower right corner, near which, a few oblate irreps (underlined in Table 7) appear in
nuclei lying below the tops of both the proton valence shell and the neutron valence shell.
The same effect appears in other shells as well, as one can see using the irreps appearing
in Table 6. For example, results for rare earth with valence protons in the 50–82 shell
and valence neutrons within the 50–82 and the 82–126 shells are given in Reference [89].
The conclusion of this subsection was recently corroborated by a heuristic method in
Reference [137].

Table 6. Highest weight SU(3) irreps (labeled by hw) for U(n), n = 6, 10, 15, 21, 28, 36, and highest C2

irreps (labeled by C) for n = 6, 10, 15, 21. The highest weight (hw) irreps differing from their highest
C2 counterparts are shown in boldface. The results were obtained by the code of Reference [138];
moreover, a new version exists [139] (see also Reference [140]), and were presented in [141]. An
analytic formula for the calculation of the hw irreps was given in Reference [142]. Adapted from
Reference [143]. See Section 7 for further discussion.

8–20 8–20 28–50 28–50 50–82 50–82 82–126 82–126 126–184 184–258

sd sd pf pf sdg sdg PFH PFH sdgi PFHj
M irrep U(6) U(6) U(10) U(10) U(15) U(15) U(21) U(21) U(28) U(36)

hw C hw C hw C hw C hw hw
0 (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0)
1 [1] (2,0) (2,0) (3,0) (3,0) (4,0) (4,0) (5,0) (5,0) (6,0) (7,0)
2 [2] (4,0) (4,0) (6,0) (6,0) (8,0) (8,0) (10,0) (10,0) (12,0) (14,0)
3 [21] (4,1) (4,1) (7,1) (7,1) (10,1) (10,1) (13,1) (13,1) (16,1) (19,1)
4 [22] (4,2) (4,2) (8,2) (8,2) (12,2) (12,2) (16,2) (16,2) (20,2) (24,2)
5 [221] (5,1) (5,1) (10,1) (10,1) (15,1) (15,1) (20,1) (20,1) (25,1) (30,1)
6 [23] (6,0) (0,6) (12,0) (12,0) (18,0) (18,0) (24,0) (24,0) (30,0) (36,0)
7 [231] (4,2) (1,5) (11,2) (11,2) (18,2) (18,2) (25,2) (25,2) (32,2) (39,2)
8 [24] (2,4) (2,4) (10,4) (10,4) (18,4) (18,4) (26,4) (26,4) (34,4) (42,4)
9 [241] (1,4) (1,4) (10,4) (10,4) (19,4) (19,4) (28,4) (28,4) (37,4) (46,4)

10 [25] (0,4) (0,4) (10,4) (4,10) (20,4) (20,4) (30,4) (30,4) (40,4) (50,4)
11 [251] (0,2) (0,2) (11,2) (4,10) (22,2) (22,2) (33,2) (33,2) (44,2) (55,2)
12 [26] (0,0) (0,0) (12,0) (4,10) (24,0) (24,0) (36,0) (36,0) (48,0) (60,0)
13 [261] (9,3) (2,11) (22,3) (22,3) (35,3) (35,3) (48,3) (61,3)
14 [27] (6,6) (0,12) (20,6) (20,6) (34,6) (34,6) (48,6) (62,6)
15 [271] (4,7) (1,10) (19,7) (7,19) (34,7) (34,7) (49,7) (64,7)
16 [28] (2,8) (2,8) (18,8) (6,20) (34,8) (34,8) (50,8) (66,8)
17 [281] (1,7) (1,7) (18,7) (3,22) (35,7) (35,7) (52,7) (69,7)
18 [29] (0,6) (0,6) (18,6) (0,24) (36,6) (36,6) (54,6) (72,6)
19 [291] (0,3) (0,3) (19,3) (2,22) (38,3) (38,3) (57,3) (76,3)
20 [210] (0,0) (0,0) (20,0) (4,20) (40,0) (40,0) (60,0) (80,0)
21 [2101] (16,4) (4,19) (37,4) (4,37) (58,4) (79,4)
22 [211] (12,8) (4,18) (34,8) (0,40) (56,8) (78,8)
23 [2111] (9,10) (2,18) (32,10) (3,38) (55,10) (78,10)
24 [212] (6,12) (0,18) (30,12) (6,36) (54,12) (78,12)
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Table 6. Cont.

8–20 8–20 28–50 28–50 50–82 50–82 82–126 82–126 126–184 184–258

25 [2121] (4,12) (1,15) (29,12) (7,35) (54,12) (79,12)
26 [213] (2,12) (2,12) (28,12) (8,34) (54,12) (80,12)
27 [2131] (1,10) (1,10) (28,10) (7,34) (55,10) (82,10)
28 [214] (0.8) (0,8) (28,8) (6,34) (56,8) (84,8)
29 [2141] (0,4) (0,4) (29,4) (3,35) (58,4) (87,4)
30 [215] (0,0) (0,0) (30,0) (0,36) (60,0) (90,0)
31 [2151] (25,5) (2,33) (56,5) (87,5)
32 [216] (20,10) (4,30) (52,10) (84,10)
33 [2161] (16,13) (4,28) (49,13) (82,13)
34 [217] (12,16) (4,26) (46,16) (80,16)
35 [2171] (9,17) (2,25) (44,17) (79,17)
36 [218] (6,18) (0,24) (42,18) (78,18)
37 [2181] (4,17) (1,20) (41,17) (78,17)
38 [219] (2,16) (2,16) (40,16) (78,16)
39 [2191] (1,13) (1,13) (40,13) (79,13)
40 [220] (0,10) (0,10) (40,10) (80,10)
41 [2201] (0,5) (0,5) (41,5) (82,5)
42 [221] (0,0) (0,0) (42,0) (84,0)
43 [2211] (36,6) (79,6)
44 [222] (30,12) (74,12)
45 [2221] (25,16) (70,16)
46 [223] (20,20) (66,20)
47 [2231] (16,22) (63,22)
48 [224] (12,24) (60,24)
49 [2241] (9,24) (58,24)
50 [225] (6,24) (56,24)
51 [2251] (4,22) (55,22)
52 [226] (2,20) (54,20)
53 [2261] (1,16) (54,16)
54 [227] (0,12) (54,12)
55 [2271] (0,6) (55,6)
56 [228] (0,0) (56,0)

8.2. Parameter-Free Predictions for the Collective Variables β and γ

Further consequences of the dominance of the hw irreps over the highest C2 irreps
become evident if one considers the connection between the Elliott quantum numbers λ, µ
and the collective variables β, γ of the Bohr–Mottelson model. This connection is obtained
by employing a linear mapping between the invariant quantities of the two theories, which
are the invariants β2 and β3 cos 3γ of the collective model [14,15] and the Casimir operators
of the second and third order of SU(3) [8,10]. This mapping provides the angle collective
variable γ of the expression [124,126]

γ = arctan

(√
3(µ + 1)

2λ + µ + 3

)
, (8)

while for the square of the deformation parameter β, being proportional to the second-order
Casimir operator of SU(3) [58], it gives [124,126]

β2 =
4π

5
1

(Ar̄2)2
(λ2 + λµ + µ2 + 3λ + 3µ + 3), (9)

where A is the mass number of the nucleus and r̄2 is related to the dimensionless mean
square radius [115],

√
r̄2 = r0 A1/6. The dimensionless mean square radius is obtained by

dividing the mean square radius, which is proportional to A1/3, by the oscillator length,
which grows as A1/6 [115]. The constant r0 is determined from a fit over a wide range of
nuclei [144,145]. We stick to the value used in Reference [124], r0 = 0.87, in agreement with
Reference [145].
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Table 7. Highest weight SU(3) irreps for nuclei with protons in the 82–126 shell and neutrons in the 126–184 shell. Oblate irreps are underlined, adapted from
Reference [143]. See Section 8.1 for further discussion.

Rn Ra Th U Pu Cm Cf Fm No Rf Sg Hs Ds Cn Fl Lv Og
Z 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122

Zval 4 6 8 10 12 14 16 18 20 22 24 26 28

N Nval irrep (16,2) (24,0) (26,4) (30,4) (36,0) (34,6) (34,8) (36,6) (40,0) (34,8) (30,12) (28,12) (28,8) (30,0) (20,10) (12,16) (6,18) (2,16) (0,10)
130 4 (20,2) (36,4) (44,2) (46,6) (50,6) (56,2) (54,8) (54,10) (56,8) (60,2) (54,10) (50,14) (48,4) (48,10) (50,2) (40,12) (32,18) (26,20) (22,18) (20,12)
132 6 (30,0) (46,2) (54,0) (56,4) (60,4) (66,0) (64,6) (64,8) (66,6) (70,0) (64,8) (60,12) (58,12) (58,8) (60,0) (50,10) (42,16) (36,18) (32,16) (30,10)
134 8 (34,4) (50,6) (58,4) (60,8) (64,8) (70,4) (68,10) (68,12) (70,10) (74,4) (68,12) (64,16) (62,16) (62,14) (64,4) (54,14) (46,20) (40,22) (36,20) (34,14)
136 10 (40,4) (56,6) (64,4) (66,8) (70,8) (76,4) (74,10) (74,12) (76,10) (80,4) (74,12) (70,16) (68,16) (68,12) (70,4) (60,14) (52,20) (46,22) (42,20) (40,14)
138 12 (48,0) (64,2) (72,0) (74,4) (78,4) (84,0) (82,6) (82,8) (84,6) (88,0) (82,8) (78,12) (76,12) (76,8) (78,0) (68,10) (60,16) (54,18) (50,16) (48,10)
140 14 (48,6) (64,8) (72,6) (74,10) (78,10) (84,6) (82,12) (82,14) (84,12) (88,6) (82,14) (78,18) (76,18) (76,14) (78,6) (68,16) (60,22) (54,24) (50,22) (48,16)
142 16 (50,8) (66,10) (74,8) (76,12) (80,12) (86,8) (84,14) (84,16) (86,14) (90,8) (84,16) (80,20) (78,20) (78,16) (80,8) (70,18) (62,24) (56,26) (52,24) (50,18)
144 18 (54,6) (70,8) (78,6) (80,10) (84,10) (90,6) (88,12) (88,14) (90,12) (94,6) (88,14) (84,18) (82,18) (82,14) (84,6) (74,16) (66,22) (60,24) (56,22) (54,16)
146 20 (60,0) (76,2) (84,0) (86,4) (90,4) (96,0) (94,6) (94,8) (96,6) (100,0) (94,8) (90,12) (88,12) (88,8) (90,0) (80,10) (72,16) (66,18) (62,16) (60,10)
148 22 (56,8) (72,10) (80,8) (82,12) (86,12) (92,8) (90,14) (90,16) (92,14) (96,8) (90,16) (86,20) (84,20) (84,16) (86,8) (76,18) (68,24) (62,26) (58,24) (56,18)
150 24 (54,12) (70,14) (78,12) (80,16) (84,16) (90,12) (88,18) (88,20) (90,18) (94,12) (88,20) (84,24) (82,24) (82,20) (84,12) (74,22) (66,28) (60,30) (56,28) (54,22)
152 26 (54,12) (70,14) (78,12) (80,16) (84.16)) (90,12) (88,18) (88,20) (90,18) (94,12) (88,20) (84,24) (82,24) (82,20) (84,12) (74,22) (66,28) (60,30) (56,28) (54,22)
154 28 (56,8) (72,10) (80,8) (82,12) (86,12) (92,8) (90,14) (90,16) (92,14) (96,8) (90,16) (86,20) (84,20) (84,16) (86,8) (76,18) (68,24) (62,26) (58,24) (56,18)
156 30 (60,0) (76,2) (84,0) (86,4) (90,4) (96,0) (94,6) (94,8) (96,6) (100,0) (94,8) (90,12) (88,12) (88,8) (90,0) (80,10) (72,16) (66,18) (62,16) (60,10)
158 32 (52,10) (68,12) (76,10) (78,14) (82,14) (88,10) (86,16) (86,18) (88,16) (92,10) (86,18) (82,22) (80,22) (80,18) (82,10) (72,20) (64,26) (58,28) (54,26) (52,20)
160 34 (46,16) (62,18) (70,16) (72,20) (76,20) (82,16) (80,22) (80,24) (82,22) (86,16) (80,24) (76,28) (74,28) (74,24) (76,16) (66,26) (58,32) (52,34) (48,32) (46,26)
162 36 (42,18) (58,20) (66,18) (68,22) (72,22) (78,18) (76,24) (76,26) (78,24) (82,18) (76,26) (72,30) (70,30) (70,26) (72,18) (62,28) (54,34) (48,36) (44,34) (42,28)
164 38 (40,16) (56,18) (64,16) (66,20) (70,20) (76,16) (74,22) (74,24) (76,22) (80,16) (74,24) (70,28) (68,28) (68,24) (70,16) (60,26) (52,32) (46,24) (42,32) (40,26)
166 40 (40,10) (56,12) (64,10) (66,14) (70,14) (76,10) (74,16) (74,18) (76,16) (80,10) (74,18) (70,22) (68,22) (68,18) (70,10) (60,20) (52,26) (46,28) (42,26) (40,20)
168 42 (42,0) (58,2) (66,0) (68,4) (72,4) (78,0) (76,6) (76,8) (78,6) (82,0) (76,8) (72,12) (70,12) (70,8) (72,0) (62,10) (54,16) (48,18) (44,16) (42,10)
170 44 (30,12) (46,14) (54,12) (56,16) (60,16) (66,12) (64,18) (64,20) (66,18) (70,12) (64,20) (60,24) (58,24) (58,20) (60,12) (50,22) (42,28) (36,30) (32,28) (30,22)
172 46 (20,20) (36,22) (44,20) (46,24) (50,24) (56,20) (54,26) (54,28) (56,26) (60,20) (54,28) (50,32) (48,32) (48,28) (50,20) (40,30) (32, 36) (26, 38) (22, 36) (20, 30)
174 48 (12,24) (28,26) (36,24) (38,28) (42,28) (48,24) (46,30) (46,32) (48,30) (52,24) (46,32) (42,36) (40,36) (40,32) (42,24) (32, 34) (24, 40) (18, 42) (14, 40) (12, 34)
176 50 (6,24) (22,26) (30,24) (32,28) (36,28) (42,24) (40,30) (40,32) (42,30) (46,24) (40,32) (36,36) (34,36) (34,32) (36,24) (26, 34) (18, 40) (12, 42) (8, 40) (6, 34)
178 52 (2,20) (18,22) (26,20) (28,24) (32,24) (38,20) (36,26) (36,28) (38,26) (42,20) (36,28) (32,32) (30,32) (30,28) (32,20) (22, 30) (14, 36) (8, 38) (4, 36) (2, 30)
180 54 (0,12 ) (16,14) (24,12) (26,16) (30,16) (36,12) (34,18 (34,18) (36,18) (40,12) (34,20) (30,24) (28,24) (28,20) (30,12) (20, 22) (12, 28) (6, 30) (2, 28) (0, 22)
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A word of warning: since only the valence nucleons are taken into account in proxy-
SU(3), the values of β obtained from Equation (9) should be rescaled by multiplying them
by a factor A/(Sπ + Sν), where Sπ (Sν) is the size of the proton (neutron) valence shell. The
need for this rescaling is discussed in detail in Section 5 of Reference [89]. In practice, this
rescaling means that Equation (9), when used in the proxy-SU(3) framework, should read

β2 =
4π

5
1

((Sπ + Sν)r̄2)2
(λ2 + λµ + µ2 + 3λ + 3µ + 3). (10)

Numerical results for the collective variable β (γ) for several rare earth nuclei are
shown in Figures 4 and 5 and are compared to other theoretical approaches, such as the
D1S–Gogny interaction [146] and relativistic mean field theory [147], as well as experimental
values [148]. By “Gogny D1S min”, we label the values of the deformation variables, β
and γ, at the HFB minimum energy (entries 4 and 5 in Reference [146]); “Gogny D1S
mean” involves the mean ground state values (entries 11 and 12 in Reference [146]). It
is seen that the parameter-free proxy-SU(3) predictions are in good agreement with both
the theoretical approaches and the empirical values. Additional numerical results for β
and γ obtained within the proxy-SU(3) approach can be found in [149–151]. Additional
comparisons of proxy-SU(3) predictions to covariant density functional theory can be found
in References [152–154], while comparisons to recent experimental findings can be found
in [155,156].
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Figure 4. Proxy SU(3) predictions for Gd-Pt isotopes for the collective variable β, obtained from
Equation (10), as described in detail in Reference [89], compared with results by the D1S–Gogny
interaction (D1S–Gogny) [146] and by relativistic mean field theory (RMF) [147], as well as with
empirical values (exp.) [148], adapted from Reference [157]. See Section 8.2 for further discussion.
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Figure 5. The same as Figure 4, but for the collective variable γ, derived from Equation (8), adapted
from Reference [157]. See Section 8.2 for further discussion.

In Figure 4, it is clear that the β curve is not symmetric around the mid-shell, but it
appears to exhibit higher values in the first half of the shell. The origin of this discrepancy
can be traced in Figure 6, in which the square root of C2, which is proportional to β,
according to Equation (10), is shown. We see that the breaking of the symmetry around the
mid-shell is due to the fact that in the upper half of the shell the highest weight irreps enter
in the place of the highest C2 irreps, as indicated by Table 6.
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 U ( 1 5 )  p - h                  U ( 2 1 )  p - h  

 C 2

M
Figure 6. Values of the square root of the second-order Casimir operator of SU(3), obtained from
Equation (5), vs. particle number M, for different shells, obtained through proxy-SU(3) (columns hw
in Table 6) or through the particle–hole symmetry assumption (columns C in Table 6), adapted from
Reference [89]. See Section 8.2 for further discussion.

8.3. Prolate to Oblate Shape/Phase Transition

A second important consequence of the hw irreps dominance is seen in Figure 7,
in which the proxy-SU(3) predictions for the collective variable β for the rare earth with
valence protons in the 50–82 shell and valence neutrons in the 82–126 shell are collected.
The dip seen at n = 116 signifies the occurrence of a shape/phase transition [158–166] from
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prolate to oblate shapes, for which extended experimental evidence exists [167–171], along
with microscopic theoretical considerations [172–178], and relevant searches within the in-
teracting boson model (IBM) [179–184] and the Bohr–Mottelson collective model [185,186].
In the framework of the Bohr Hamiltonian, this shape/phase transition is referred to
as Z(5) [185]. A posteriori corroboration of the findings of Reference [89] is found in
References [187–189].
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N e u t r o n  N u m b e r
Figure 7. Proxy-SU(3) predictions for the collective variable β, obtained from Equation (10), as de-
scribed in detail in Reference [89], adapted from Reference [89]. See Section 8.3 for further discussion.

The robustness of this result is emphasized by the fact that it also appears in atomic
clusters [190–195]. The valence electrons in alkali metal clusters, in particular, are supposed
to be free, thus forming shells with major magic numbers 2, 8, 20, 40, 58, 92, . . . [196–203].
Prolate and oblate shapes in alkali metal clusters were observed experimentally through op-
tical response measurements, finding oblate shapes below cluster sizes 20 and 40 [204–207],
while prolate shapes were seen above cluster sizes 8, 20, 40 [204–208]. In other words, pro-
late (oblate) shapes are seen above (below) the magic numbers, exactly as in atomic nuclei.

It should be noticed that the shape/phase transition from prolate to oblate shapes is
seen equally clearly in the framework of pseudo-SU(3), if the dominance of the hw irreps
over the highest C2 irreps is taken into account, as discussed in detail in Reference [209].
Although pseudo-SU(3) and proxy-SU(3) are based on different approximations, involv-
ing different unitary transformations, they lead to the same physical conclusion, a fact
providing evidence for the compatibility of the two approaches.

The compatibility of the proxy-SU(3) and pseudo-SU(3) approaches has also been
pointed out recently [210–212] in the framework of the semi-microscopic algebraic quartet
model (SAQM) [213], which generates the excitation spectra of shell-like quartets, formed
by two protons and two neutrons in a well-defined shell configuration. Based on the
SU(3) symmetry, in its initial form [213] the model had been applicable only to light
nuclei, based on the Elliott SU(3) symmetry. However, it has recently [210–212] been
extended to heavy nuclei, based on the proxy-SU(3) symmetry and on the pseudo-SU(3)
symmetry, with similar results provided by both approaches. The use of proxy-SU(3)
could also be extended in a similar way to the semi-microscopic algebraic cluster model
(SACM) [214–216], in which the internal structures of the clusters are described in terms
of the shell model SU(3) symmetry, while the relative motion is described in terms of the
phenomenological algebraic vibron model [60,217–219].

9. Islands of Shape Coexistence
9.1. Harmonic Oscillator (HO) and Spin–Orbit (SO) Magic Numbers

The shape coexistence (SC) involves the appearance in a nucleus of two bands lying
close in energy but having radically different structures; for example, one of them being
spherical and the other deformed, or both of them being spherical, but one of them exhibit-
ing prolate (rugby ball-like) deformation and the other oblate (pancake-like) deformation.
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Shape coexistence has first been suggested in 1956 by Morinaga [220], in relation to the
spectrum of 16O. Since then many experimental examples were found in both odd and
even nuclei, as summarized in the relevant review articles [221–224]. From the theoretical
point of view, SC was attributed to the existence of particle–hole excitations across shell or
subshell closures, and was believed to be able to appear all over the nuclear chart, although
in Figure 8 of the authoritative review article by Heyde and Wood [223], the regions in
which SC was experimentally observed appear to form certain islands on the nuclear chart.
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Figure 8. The eigenvalues of the second-order Casimir operator of SU(3) versus the proton (Z) or
neutron number (N). Islands of shape coexistence are predicted by the dual shell mechanism within
proton or neutron numbers 7–8, 17–20, 34–40, 59–70, 96–112, 145–168, in which C2,SO ≥ C2,HO,
adapted from Reference [225]. See Section 9.2 for further discussion.

As already mentioned, SC is supposed to be due to particle–hole excitations across
shell or subshell closures. However, the magic numbers of the shell models, 2, 8, 20, 28,
50, 82, 126, . . . , are known to be valid only at zero deformations. These magic numbers
originate from the 3D-HO magic numbers 2, 8, 20, 40, 70, 112, 168, . . . , [8,10] (to be called the
HO magic numbers in what follows) because of the action of the spin–orbit interaction [4–7].
As deformation sets in, the energy gaps separating different shells soon disappear, as one
can see in the standard Nilsson diagrams [17–19,114] (see also References [122,226] for
the evolution of magic numbers away from stability). Furthermore, as seen in Table 3



Symmetry 2023, 15, 169 22 of 34

(see also Reference [227]), in the framework of the proxy-SU(3) symmetry a set of magic
numbers 6, 14, 28, 50, 82, 126, 184, . . . (to be called the SO magic numbers in what follows)
appears, corresponding to the strong presence of the spin–orbit interaction everywhere.
The standard shell model magic numbers follow the HO magic numbers up to 20, while
they follow the SO magic numbers beyond this point.

9.2. A Dual Shell Mechanism for Shape Coexistence

It was suggested [225,228,229] that the interplay between HO and SO magic numbers
offers a simple justification for the appearance of islands of SC on the nuclear chart. Let us
see how this is occurring.

Because of the collapse of the shell model quantum numbers as deformation sets in,
the protons and/or the neutrons of a nucleus can follow either the HO or the SO magic
numbers. The same number of protons or neutrons will then correspond to a different
irrep in the HO framework and another irrep in the SO framework. These irreps can be
seen in Table 8. As an example, let us consider 60 nucleons. In the HO framework, 40 is
a magic number; thus, there are 20 nucleons left in the 40–70 shell, which has the U(15)
symmetry and, therefore, the 20 nucleons correspond to the (20,0) hw irrep according to
Table 6. In the SO framework, 50 is a magic number; thus, there are 10 nucleons left in the
50–82 shell, which in the proxy-SU(3) approximation has the U(15) symmetry; therefore,
the 10 nucleons correspond to the (20,4) hw irrep of SU(3) according to Table 6. Indeed,
in Table 8 for 60 nucleons, the hw irreps given are (20,4) for the SO case and (20,0) for the
HO case.

Table 8. The highest weight SU(3) irreps for the spin–orbit (SO)-like magic numbers 6, 14, 28, 50, 82,
and 126, according to the proxy-SU(3) symmetry and for the harmonic oscillator (HO) magic numbers
2, 8, 20, 40, 70, 112, and 168 according to the Elliott SU(3) symmetry are given for each nucleon number
M, as obtained from Table 6, adapted from Reference [225]. See Section 9 for further discussion.

M (λ, µ)SO (λ, µ)HO M (λ, µ)SO (λ, µ)HO M (λ, µ)SO (λ, µ)HO M (λ, µ)SO (λ, µ)HO

2 (0, 0) (0, 0) 1 (0, 0) (0, 0) 94 (36, 0) (30, 12) 93 (33, 2) (32, 10)
4 (0, 0) (2, 0) 3 (0, 0) (1, 0) 96 (34, 6) (28, 12) 95 (35, 3) (29, 12)
6 (0, 0) (0, 2) 5 (0, 0) (1, 1) 98 (34, 8) (28, 8) 97 (34, 7) (28, 10)
8 (2, 0) (0, 0) 7 (1, 0) (0, 1) 100 (36, 6) (30, 0) 99 (35, 7) (29, 4)

10 (0, 2) (4, 0) 9 (1, 1) (2, 0) 102 (40, 0) (20, 10) 101 (38, 3) (25, 5)
12 (0, 0) (4, 2) 11 (0, 1) (4, 1) 104 (34, 8) (12, 16) 103 (37, 4) (16, 13)
14 (0, 0) (6, 0) 13 (0, 0) (5, 1) 106 (30, 12) (6, 18) 105 (32, 10) (9, 17)
16 (4, 0) (2, 4) 15 (2, 0) (4, 2) 108 (28, 12) (2, 16) 107 (29, 12) (4, 17)
18 (4, 2) (0, 4) 17 (4, 1) (1, 4) 110 (28, 8) (0, 10) 109 (28, 10) (1, 13)
20 (6, 0) (0, 0) 19 (5, 1) (0, 2) 112 (30, 0) (0, 0) 111 (29, 4) (0, 5)
22 (2, 4) (6, 0) 21 (4, 2) (3, 0) 114 (20, 10) (12, 0) 113 (25, 5) (6, 0)
24 (0, 4) (8, 2) 23 (1, 4) (7, 1) 116 (12, 16) (20, 2) 115 (16, 13) (16, 1)
26 (0, 0) (12, 0) 25 (0, 2) (10, 1) 118 (6, 18) (30, 0) 117 (9, 17) (25, 1)
28 (0, 0) (10, 4) 27 (0, 0) (11, 2) 120 (2, 16) (34, 4) 119 (4, 17) (32, 2)
30 (6, 0) (10, 4) 29 (3, 0) (10, 4) 122 (0, 10) (40, 4) 121 (1, 13) (37, 4)
32 (8, 2) (12, 0) 31 (7, 1) (11, 2) 124 (0, 0) (48, 0) 123 (0, 5) (44, 2)
34 (12, 0) (6, 6) 33 (10, 1) (9, 3) 126 (0, 0) (48, 6) 125 (0, 0) (48, 3)
36 (10, 4) (2, 8) 35 (11, 2) (4, 7) 128 (12, 0) (50, 8) 127 (6, 0) (49, 7)
38 (10, 4) (0, 6) 37 (10, 4) (1, 7) 130 (20, 2) (54, 6) 129 (16, 1) (52, 7)
40 (12, 0) (0, 0) 39 (11, 2) (0, 3) 132 (30, 0) (60, 0) 131 (25, 1) (57, 3)
42 (6, 6) (8, 0) 41 (9, 3) (4, 0) 134 (34, 4) (56, 8) 133 (32, 2) (58, 4)
44 (2, 8) (12, 2) 43 (4, 7) (10, 1) 136 (40, 4) (54, 12) 135 (37, 4) (55, 10)
46 (0, 6) (18, 0) 45 (1, 7) (15, 1) 138 (48, 0) (54, 12) 137 (44, 2) (54, 12)
48 (0, 0) (18, 4) 47 (0, 3) (18, 2) 140 (48, 6) (56, 8) 139 (48, 3) (55, 10)
50 (0, 0) (20, 4) 49 (0, 0) (19, 4) 142 (50, 8) (60, 0) 141 (49, 7) (58, 4)
52 (8, 0) (24, 0) 51 (4, 0) (22, 2) 144 (54, 6) (52, 10) 143 (52, 7) (56, 5)
54 (12, 2) (20, 6) 53 (10, 1) (22, 3) 146 (60, 0) (46, 16) 145 (57, 3) (49, 13)
56 (18, 0) (18, 8) 55 (15, 1) (19, 7) 148 (56, 8) (42, 18) 147 (58, 4) (44, 17)
58 (18, 4) (18, 6) 57 (18, 2) (18, 7) 150 (54, 12) (40, 16) 149 (55, 10) (41, 17)
60 (20, 4) (20, 0) 59 (19, 4) (19, 3) 152 (54, 12) (40, 10) 151 (54, 12) (40, 13)
62 (24, 0) (12, 8) 61 (22, 2) (16, 4) 154 (56, 8) (42, 0) 153 (55, 10) (41, 5)
64 (20, 6) (6, 12) 63 (22, 3) (9, 10) 156 (60, 0) (30, 12) 155 (58, 4) (36, 6)
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Table 8. Cont.

M (λ, µ)SO (λ, µ)HO M (λ, µ)SO (λ, µ)HO M (λ, µ)SO (λ, µ)HO M (λ, µ)SO (λ, µ)HO

66 (18, 8) (2, 12) 65 (19, 7) (4, 12) 158 (52, 10) (20, 20) 157 (56, 5) (25, 16)
68 (18, 6) (0, 8) 67 (18, 7) (1, 10) 160 (46, 16) (12, 24) 159 (49, 13) (16, 22)
70 (20, 0) (0, 0) 69 (19, 3) (0, 4) 162 (42, 18) (6, 24) 161 (44, 17) (9, 24)
72 (12, 8) (10, 0) 71 (16, 4) (5, 0) 164 (40, 16) (2, 20) 163 (41, 17) (4, 22)
74 (6, 12) (16, 2) 73 (9, 10) (13, 1) 166 (40, 10) (0, 12) 165 (40, 13) (1, 16)
76 (2, 12) (24, 0) 75 (4, 12) (20, 1) 168 (42, 0) (0, 0) 167 (41, 5) (0, 6)
78 (0, 8) (26, 4) 77 (1, 10) (25, 2) 170 (30, 12) (14, 0) 169 (36, 6) (7, 0)
80 (0, 0) (30, 4) 79 (0, 4) (28, 4) 172 (20, 20) (24, 2) 171 (25, 16) (19, 1)
82 (0, 0) (36, 0) 81 (0, 0) (33, 2) 174 (12, 24) (36, 0) 173 (16, 22) (30, 1)
84 (10, 0) (34, 6) 83 (5, 0) (35, 3) 176 (6, 24) (42, 4) 175 (9, 24) (39, 2)
86 (16, 2) (34, 8) 85 (13, 1) (34, 7) 178 (2, 20) (50, 4) 177 (4, 22) (46, 4)
88 (24, 0) (36, 6) 87 (20, 1) (35, 7) 180 (0, 12) (60, 0) 179 (1, 16) (55, 2)
90 (26, 4) (40, 0) 89 (25, 2) (38, 3) 182 (0, 0) (62, 6) 181 (0, 6) (61, 3)
92 (30, 4) (34, 8) 91 (28, 4) (37, 4) 184 (0, 0) (66, 8) 183 (0, 0) (64, 7)

For the L = 0 band heads of two coexisting bands, one can use the very simple
Hamiltonian [225]

H = H0 −
κ

2
QQ, (11)

where H0 corresponds to the 3D-HO Hamiltonian and QQ to the quadrupole–quadrupole
interaction. Both bands should belong to the same U(n) algebra within the SO and HO
schemes. From Table 3, we see that this is possible for the nucleon number intervals 6–8,
14–20, 28–40, 50–70, 82–112, 126–168, in which both bands belong to the U(3), U(6), U(10),
U(15), U(21), and U(28) algebra, respectively. We remark that the right borders of these
regions are the HO magic numbers. The successful parameter-free predictions of the β
and γ collective variables for the ground states of nuclei seen in Section 8.2 imply that the
ground-state band will belong to the SO irrep, thus the band head of the coexisting band
should lie higher in energy. One can easily see that this requirement leads to the condition

QQSO ≥ QQHO; (12)

the full details of the argument are given explicitly in Section 8 of Reference [225]. From
Equation (6), one then sees that this condition is equivalent to the condition

C2(λSO, µSO) ≥ C2(λHO, µHO). (13)

The eigenvalues of the Casimir operator C2 in the SO and HO frameworks are shown
for the various shells in Figure 8. We see that the condition of Equation (13) starts being
fulfilled at the nucleon numbers 7, 17, 34, 59, 96, and 146, which, therefore, stand for the
left borders of the regions in which SC could be possible, with the right borders given
by the HO magic numbers mentioned above. Therefore, we conclude that SC can occur
only within the nucleon intervals 7–8, 17–20, 34–40, 59–70, 96–112, and 146–168, bearing
U(3), U(6), U(10), U(15), U(21), and U(28) symmetry, respectively. These intervals define
horizontal and vertical stripes on the nuclear chart, shown in color in Figure 9. One can
easily see that the islands of SC seen in Figure 8 of Reference [223] do lie within the stripes
predicted by the dual shell mechanism within the proxy-SU(3) framework just found.
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Figure 9. This map indicates which nuclei have to be examined both theoretically and experimentally
for manifesting shape coexistence according to the proposed dual shell mechanism. The colored
regions possess proton or neutron numbers (7–8, 17–20, 34–40, 59–70, 96–112, and 145–168). The
horizontal stripes correspond to the neutron-induced shape coexistence, while the vertical stripes
correspond to the proton-induced shape coexistence, adapted from Reference [225]. See Section 9 for
further discussion.

9.3. From Stripes to Islands of Shape Coexistence

The stripes 7–8, 17–20, 34–40, 59–70, 96–112, and 146–168 (determined in the previous
subsection) represent necessary conditions for the appearance of SC, but not sufficient
ones. Further work is needed in order to narrow down the stripes into islands. A step in
this direction was taken within the covariant density functional theory [230–236], using
the DDME2 functional [237] and the code of Reference [238]. A systematic search was
made [239,240] for particle–hole excitations, which are believed to be the microscopic mech-
anisms behind SC. Indeed, specific islands of SC were located [239,240] around the proton
shell closures Z = 82 and Z = 50, in which proton particle–hole excitations were caused by
the neutrons, characterizing these cases as part of neutron-induced shape coexistence. In
addition, specific islands of SC were located [239,240] around the neutron numbers n = 90
and n = 60, in which neutron particle–hole excitations were caused by the protons, therefore
characterizing these cases as part of proton-induced shape coexistence. Furthermore, an
island of SC was found around Z = n = 40, in which both the proton-induced and neutron-
induced mechanisms are present simultaneously. All of these islands are consistent with
the stripes of the dual shell mechanism within the proxy-SU(3) symmetry, as well as with
the empirical islands reviewed in Figure 8 of Reference [223].

Further corroboration of the predictions of the dual shell mechanism was provided by
various relativistic microscopic calculations [241–246], as well as by calculations using the
Bohr Hamiltonian [246,247] and the IBM [248].
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The above predictions of specific islands of SC are based on the particle–hole excitation
mechanism. Some other microscopic mechanisms may create SC in regions of the nuclear
chart outside the islands predicted here. This can be the subject of further investigation.

9.4. Multiple-Shape Coexistence

Recent experimental evidence shows that multiple-shape coexistence (of up to four
bands) can be seen in certain nuclei [249,250], while it is also predicted theoretically in
others [245]. Multiple-shape coexistence can occur within the dual shell mechanism de-
scribed above, since the protons can follow either the SO or the HO scheme, and so can
(independently) the neutrons. As a result, four different irreps, based on the proton–neutron
combinations SO-SO, SO-HO, HO-SO, and HO-HO can occur in general, giving rise to mul-
tiple coexistence of four bands, or three bands in the special case in which equal numbers
of valence protons and valence neutrons occupy the same shell. This idea, however, still
needs to be tested against experimental evidence.

10. Conclusions and Outlook

In this article, we discussed the following: the physical ideas that led to the intro-
duction of the proxy-SU(3) symmetry, the calculations proving its validity and its con-
nection to the shell model framework, the first successful applications in predicting (in a
parameter-free way) the values of the collective variables (β and γ) for even–even nuclei,
the dominance of prolate over oblate shapes in the ground states of even–even nuclei, a
prolate to oblate shape/phase transition, and the existence of islands on the nuclear chart
in which shape coexistence can appear. Several directions for further investigations are
briefly presented below.

The proxy-SU(3) symmetry offers the possibility of making parameter-free predictions
for B(E2) transition rates. The value of B(E2; 2+1 → 0+1 ) is known to be connected to
the collective variable β [148,251]; thus, it can be determined in a parameter-free way
from the β values calculated as described in Section 8.2. Since ratios of B(E2)s will only
depend on angular momentum coupling coefficients of SO(3) [120,121] and SU(3) [252–257],
parameter-free predictions for all B(E2)s could be obtained in principle. Some first steps in
this direction were taken in [151,157].

Based on the experience acquired within the pseudo-SU(3) model [45,46], it is expected
that the description of nuclear spectra within the proxy-SU(3) symmetry will require the
use of third-order and fourth-order operators. In particular, the O(3) symmetry-preserving
three-body operator Ω and four-body operator Λ (their mathematical names being the
O0

l and Q0
l shift operators, respectively) [258–261], will be needed in order to break the

degeneracy between the ground state band (GSB) and the γ1 band, which in the proxy-
SU(3) approach lies within the same SU(3) irrep. This can be seen, for example, in Table 7,
where almost all nuclei are characterized by SU(3) irreps with µ ≥ 2. Since K takes the
values K = 0, 2, . . . , µ [10,26,58], the hw irrep will contain both the K = 0 (GSB) and K = 2
(γ1) bands [262]. The parameter-free reproduction of the empirical observation (where the
energy differences between the γ1 band and the ground state band decrease as functions
of the angular momentum L in deformed nuclei [263], with an opposite trend seen in
vibrational and γ-unstable nuclei) should be tested. Some first steps in this direction were
taken in References [264,265]. The energy scale can be fixed in an even–even nucleus by
determining the energy of the first excited state 2+1 from the value of the B(E2; 2+1 → 0+1 ),
determined in a parameter-free way, as described in Section 8.2. This can be achieved
through the microscopically derived [266,267] Grodzins relation [268], connecting the
energy of the 2+1 state and B(E2; 2+1 → 0+1 ).

Nuclear binding energies and nucleon separation energies are basic nuclear structure
quantities, for which extended experimental data [269] and theoretical predictions [147,270,271]
exist. It would be an interesting project to examine the degree to which proxy-SU(3) is
able to predict these quantities, preferably in a parameter-free way. Some first steps in this
direction were taken in References [272,273]. The calculations of two-neutron separation
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energies are of particular interest due to the recently discovered [274,275] connections
between them and the neutron capture cross sections, which are essential for understanding
the astrophysical s and r processes.

Author Contributions: Conceptualization, D.B., A.M., S.K.P., T.J.M. and N.M.; methodology, D.B.,
A.M., S.K.P., T.J.M. and N.M.; writing—original draft preparation, D.B.; writing—review and editing,
D.B., A.M., S.K.P., T.J.M. and N.M.; supervision, D.B. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the Bulgarian National Science Fund (BNSF) under contract
no. KP-06-N48/1.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Wigner, E. On the consequences of the symmetry of the nuclear Hamiltonian on the spectroscopy of nuclei. Phys. Rev. 1937,

51, 106. [CrossRef]
2. Franzini, P.; Radicati, L.A. On the validity of the supermultiplet model. Phys. Lett. 1963, 6, 322. [CrossRef]
3. Hecht, K.T.; Pang, S.C. On the Wigner supermultiplet scheme. J. Math. Phys. 1969, 10, 1571. [CrossRef]
4. Mayer, M.G. On closed shells in nuclei. Phys. Rev. 1948, 74, 235. [CrossRef]
5. Mayer, M.G. On closed shells in nuclei. II. Phys. Rev. 1949, 75, 1969. [CrossRef]
6. Haxel, O.; Jensen, J.H.D.; Suess, H.E. On the “magic numbers” in nuclear structure. Phys. Rev. 1949, 75, 1766. [CrossRef]
7. Mayer, M.G.; Jensen, J.H.D. Elementary Theory of Nuclear Shell Structure; Wiley: New York, NY, USA, 1955.
8. Wybourne, B.G. Classical Groups for Physicists; Wiley: New York, NY, USA, 1974.
9. Moshinsky, M.; Smirnov, Y.F. The Harmonic Oscillator in Modern Physics; Harwood: Amsterdam, The Netherlands, 1996.
10. Iachello, F. Lie Algebras and Applications; Springer: Berlin/Heidelberg, Germany, 2006.
11. Bonatsos, D.; Klein, A. Exact boson mappings for nuclear neutron (proton) shell-model algebras having SU(3) subalgebras. Ann.

Phys. 1986, 169, 61. [CrossRef]
12. Nobel Foundation. Nobel Lectures, Physics 1963–1970; Elsevier: Amsterdam, The Netherlands, 1972.
13. Rainwater, J. Nuclear energy level argument for a spheroidal nuclear model. Phys. Rev. 1950, 79, 432. [CrossRef]
14. Bohr, A. The coupling of nuclear surface oscillations to the motion of individual nucleons. Mat. Fys. Medd. K. Dan. Vidensk. Selsk.

1952, 26. Available online: http://www.xuantianlinyu.com.cn/Jabref/RefPdf/Bohr1952pp.pdf (accessed on 1 January 2022).
15. Bohr, A.; Mottelson, B.R. Nuclear Structure Vol. II: Nuclear Deformations; Benjamin: New York, NY, USA, 1975.
16. Nobel Foundation. Nobel Lectures, Physics 1971–1980; Lundqvist, S., Ed.; World Scientific: Singapore, 1992.
17. Nilsson, S.G. Binding states of individual nucleons in strongly deformed nuclei. Mat. Fys. Medd. K. Dan. Vidensk. Selsk. 1955, 29.

Available online: http://gymarkiv.sdu.dk/MFM/kdvs/mfm%2020-29/MFM%2029-16.pdf (accessed on 1 January 2022).
18. Ragnarsson, I.; Nilsson, S.G.; Sheline, R.K. Shell structure in nuclei. Phys. Rep. 1978, 45, 1. [CrossRef]
19. Nilsson, S.G.; Ragnarsson, I. Shapes and Shells in Nuclear Structure; Cambridge University Press: Cambridge, UK, 1995.
20. Takahashi, Y. SU(3) shell model in a deformed harmonic oscillator basis. Prog. Theor. Phys. 1975, 53, 461. [CrossRef]
21. Asherova, R.M.; Smirnov, Y.F.; Tolstoy, V.N.; Shustov, A.P. Algebraic approach to the projected deformed oscillator model. Nucl.

Phys. A 1981, 355, 25. [CrossRef]
22. Rosensteel, G.; Draayer, J.P. Symmetry algebra of the anisotropic harmonic oscillator with commensurate frequencies. J. Phys. A

Math. Gen. 1989, 22, 1323. [CrossRef]
23. Nazarewicz, W.; Dobaczewski, J. Dynamical symmetries, multiclustering, and octupole susceptibility in superdeformed and

hyperdeformed nuclei. Phys. Rev. Lett. 1992, 68, 154. [CrossRef] [PubMed]
24. Nazarewicz, W.; Dobaczewski, J.; Isacker, P.V. Shell model calculations at superdeformed shapes. AIP Conf. Proc. 1992, 259, 30.
25. Bonatsos, D.; Daskaloyannis, C.; Kolokotronis, P.; Lenis, D. The symmetry algebra of the N-dimensional anisotropic quantum

harmonic oscillator with rational ratios of frequencies and the Nilsson model. arXiv 1994, arXiv:hep-th/9411218.
26. Elliott, J.P. Collective motion in the nuclear shell model. I. Classification schemes for states of mixed configurations. Proc. R. Soc.

Lond. Ser. A 1958, 245, 128.
27. Elliott, J.P. Collective motion in the nuclear shell model. II. The introduction of intrinsic wave-functions. Proc. R. Soc. Lond. Ser. A

1958, 245, 562.
28. Elliott, J.P.; Harvey, M. Collective motion in the nuclear shell model. III. The calculation of spectra. Proc. R. Soc. Lond. Ser. A 1963,

272, 557.

http://doi.org/10.1103/PhysRev.51.106
http://dx.doi.org/10.1016/0031-9163(63)90155-0
http://dx.doi.org/10.1063/1.1665007
http://dx.doi.org/10.1103/PhysRev.74.235
http://dx.doi.org/10.1103/PhysRev.75.1969
http://dx.doi.org/10.1103/PhysRev.75.1766.2
http://dx.doi.org/10.1016/0003-4916(86)90159-4
http://dx.doi.org/10.1103/PhysRev.79.432
http://www.xuantianlinyu.com.cn/Jabref/RefPdf/Bohr1952pp.pdf
http://gymarkiv.sdu.dk/MFM/kdvs/mfm%2020-29/MFM%2029-16.pdf
http://dx.doi.org/10.1016/0370-1573(78)90004-2
http://dx.doi.org/10.1143/PTP.53.461
http://dx.doi.org/10.1016/0375-9474(81)90130-5
http://dx.doi.org/10.1088/0305-4470/22/9/021
http://dx.doi.org/10.1103/PhysRevLett.68.154
http://www.ncbi.nlm.nih.gov/pubmed/10045549


Symmetry 2023, 15, 169 27 of 34

29. Wilsdon, C.E. A Survey of the Nuclear s-d Shell Using the SU(3) Coupling Scheme. Ph.D. Thesis, University of Sussex, Brighton,
UK, 1965.

30. Elliott, J.P.; Wildson, C.E. Collective motion in the nuclear shell model. IV. Odd-mass nuclei in the sd shell. Proc. R. Soc. Lond. Ser.
A 1968, 302, 509.

31. Harvey, M. The nuclear SU3 model. Adv. Nucl. Phys. 1968, 1, 67.
32. Cseh, J. Some new chapters of the long history of SU(3). EPJ Web Conf. 2018, 194, 05001. [CrossRef]
33. Raychev, P.P. On the broken Sp(3,3) symmetry and the spectra of deformed even–even nuclei. Compt. Rend. Acad. Bulg. Sci. 1972,

25, 1503.
34. Afanas’ev, G.N.; Abramov, S.A.; Raychev, P.P. Realization of the physical basis for SU(3) and the probabilities of E2 transitions in

the SU(3) formalism. Yad. Fiz. 1972, 16, 53; Erratum in Sov. J. Nucl. Phys. 1973, 16, 27.
35. Raychev, P.P. Parametrization of B(E2) transitions in deformed even–even nuclei within the framework of the SU(3) scheme. Yad.

Fiz. 1972, 16, 1171; Erratum in Sov. J. Nucl. Phys. 1973, 16, 643.
36. Raychev, P.P.; Roussev, R.P. Energy levels and reduced E2-transition probabilities of deformed even–even nuclei in the SU(3)

scheme. Yad. Fiz. 1978, 27, 1501; Erratum in Sov. J. Nucl. Phys. 1978, 27, 792.
37. Minkov, N.; Drenska, S.B.; Raychev, P.P.; Roussev, R.P.; Bonatsos, D. Broken SU(3) symmetry in deformed even–even nuclei. Phys.

Rev. C 1997, 55, 2345. [CrossRef]
38. Minkov, N.; Drenska, S.B.; Raychev, P.P.; Roussev, R.P.; Bonatsos, D. Ground-γ band coupling in heavy deformed nuclei and SU(3)

contraction limit. Phys. Rev. C 1999, 60, 034305. [CrossRef]
39. Minkov, N.; Drenska, S.B.; Raychev, P.P.; Roussev, R.P.; Bonatsos, D. Ground-γ band mixing and odd-even staggering in heavy

deformed nuclei. Phys. Rev. C 2000, 61, 064301. [CrossRef]
40. Afanas’ev, G.N.; Raychev, P.P. Dynamical symmetry groups in nuclei. Fiz. Elem. Chast. At. Yadra 1972, 3, 436; Erratum in Sov. J.

Nucl. Phys. 1972, 3, 229.
41. Hecht, K.T.; Adler, A. Generalized seniority for favored J 6= 0 pairs in mixed configurations. Nucl. Phys. A 1969, 137, 129.

[CrossRef]
42. Arima, A.; Harvey, M.; Shimizu, K. Pseudo LS coupling and pseudo SU3 coupling schemes. Phys. Lett. B 1969, 30, 517. [CrossRef]
43. Raju, R.D.R.; Draayer, J.P.; Hecht, K.T. Search for a coupling scheme in heavy deformed nuclei: The pseudo SU(3) model. Nucl.

Phys. A 1973, 202, 433. [CrossRef]
44. Draayer, J.P.; Weeks, K.J.; Hecht, K.T. Strength of the Qπ ·Qν interaction and the strong-coupled pseudo-SU(3) limit. Nucl. Phys.

A 1982, 381, 1. [CrossRef]
45. Draayer, J.P.; Weeks, K.J. Shell-model description of the low-energy structure of strongly deformed nuclei. Phys. Rev. Lett. 1983,

51, 1422. [CrossRef]
46. Draayer, J.P.; Weeks, K.J. Towards a shell model description of the low-energy structure of deformed nuclei I. even–even systems.

Ann. Phys. 1984, 156, 41. [CrossRef]
47. Draayer, J.P. Fermion models. In Algebraic Approaches to Nuclear Structure; Casten, R.F., Ed.; Harwood: Chur, Switzerland, 1993;

p. 423.
48. Castaños, O.; Moshinsky, M.; Quesne, C. Transformations from U(3) to pseudo U(3) basis. In Group Theory and Special Symmetries

in Nuclear Physics Ann Arbor, 1991; Draayer, J.P., Jänecke, J., Eds.; World Scientific: Singapope, 1992; p. 80
49. Castaños, O.; Moshinsky, M.; Quesne, C. Transformation to pseudo-SU(3) in heavy deformed nuclei. Phys. Lett. B 1992, 277, 238.

[CrossRef]
50. Castaños, O.; Velázquez, A.V.; Hess, P.O.; Hirsch, J.G. Transformation to pseudo-spin-symmetry of a deformed Nilsson hamilto-

nian. Phys. Lett. B 1994, 321, 303. [CrossRef]
51. Ginocchio, J.N. Pseudospin as a relativistic symmetry. Phys. Rev. Lett. 1997, 78, 436. [CrossRef]
52. Ginocchio, J.N. On the relativisitic origins of pseudo-spin symmetry in nuclei. J. Phys. G Nucl. Part. Phys. 1999, 25, 617. [CrossRef]
53. Janssen, D.; Jolos, R.V.; Dönau, F. An algebraic treatment of the nuclear quadrupole degree of freedom. Nucl. Phys. A 1974, 224,

93. [CrossRef]
54. Arima, A.; Iachello, F. Collective nuclear states as representations of a SU(6) group. Phys. Rev. Lett. 1975, 35, 1069. [CrossRef]
55. Arima, A.; Iachello, F. Interacting boson model of collective states I. The vibrational limit. Ann. Phys. 1976, 99, 253. [CrossRef]
56. Arima, A.; Iachello, F. Interacting boson model of collective nuclear states II. The rotational limit. Ann. Phys. 1978, 111, 201.

[CrossRef]
57. Arima, A.; Iachello, F. Interacting boson model of collective nuclear states IV. The O(6) limit. Ann. Phys. 1979, 123, 468. [CrossRef]
58. Iachello, F.; Arima, A. The Interacting Boson Model; Cambridge University Press: Cambridge, UK, 1987.
59. Iachello, F.; Isacker, P.V.; The Interacting Boson-Fermion Model; Cambridge University Press: Cambridge, UK, 1991.
60. Frank, A.; Isacker, P.V.; Symmetry Methods in Molecules and Nuclei; S y G Editores: México, Mexico, 2005.
61. Rosensteel, G.; Rowe, D.J. Nuclear Sp(3,R) Model. Phys. Rev. Lett. 1977, 38, 10. [CrossRef]
62. Rosensteel, G.; Rowe, D.J. On the algebraic formulation of collective models III. The symplectic shell model of collective motion.

Ann. Phys. 1980, 126, 343. [CrossRef]
63. Park, P.; Carvalho, J.; Vassanji, M.; Rowe, D.J. The shell-model theory of nuclear rotational states. Nucl. Phys. A 1984, 414, 93.

[CrossRef]
64. Rowe, D.J. Microscopic theory of the nuclear collective model. Rep. Prog. Phys. 1985, 48, 1419. [CrossRef]

http://dx.doi.org/10.1051/epjconf/201819405001
http://dx.doi.org/10.1103/PhysRevC.55.2345
http://dx.doi.org/10.1103/PhysRevC.60.034305
http://dx.doi.org/10.1103/PhysRevC.61.064301
http://dx.doi.org/10.1016/0375-9474(69)90077-3
http://dx.doi.org/10.1016/0370-2693(69)90443-2
http://dx.doi.org/10.1016/0375-9474(73)90635-0
http://dx.doi.org/10.1016/0375-9474(82)90497-3
http://dx.doi.org/10.1103/PhysRevLett.51.1422
http://dx.doi.org/10.1016/0003-4916(84)90210-0
http://dx.doi.org/10.1016/0370-2693(92)90741-L
http://dx.doi.org/10.1016/0370-2693(94)90246-1
http://dx.doi.org/10.1103/PhysRevLett.78.436
http://dx.doi.org/10.1088/0954-3899/25/4/008
http://dx.doi.org/10.1016/0375-9474(74)90165-1
http://dx.doi.org/10.1103/PhysRevLett.35.1069
http://dx.doi.org/10.1016/0003-4916(76)90097-X
http://dx.doi.org/10.1016/0003-4916(78)90228-2
http://dx.doi.org/10.1016/0003-4916(79)90347-6
http://dx.doi.org/10.1103/PhysRevLett.38.10
http://dx.doi.org/10.1016/0003-4916(80)90180-3
http://dx.doi.org/10.1016/0375-9474(84)90499-8
http://dx.doi.org/10.1088/0034-4885/48/10/003


Symmetry 2023, 15, 169 28 of 34

65. Rowe, D.J.; Wood, J.L. Fundamentals of Nuclear Models: Foundational Models; World Scientific: Singapore, 2010.
66. Wybourne, B.G. The representation space of the nuclear symplectic Sp(6,R) shell model. J. Phys. A Math. Gen. 1992, 25, 4389.

[CrossRef]
67. Escher, J.; Draayer, J.P. Fermion realization of the nuclear Sp(6,R) model. J. Math. Phys. 1998, 39, 5123. [CrossRef]
68. Ganev, H.G. Shell-model representations of the proton–neutron symplectic model. Eur. Phys. J. A 2015, 51, 84. [CrossRef]
69. Ganev, H.G. Microscopic shell-model description of transitional nuclei. Eur. Phys. J. A 2022, 58, 182. [CrossRef]
70. Ganev, H.G. Microscopic shell-model description of strongly deformed nuclei: 158Gd. Int. J. Mod. Phys. E 2022, 31, 2250047.

[CrossRef]
71. Georgieva, A.; Raychev, P.; Roussev, R. Interacting two-vector-boson model of collective motions in nuclei. J. Phys. G Nucl. Phys.

1982, 8, 1377. [CrossRef]
72. Georgieva, A.; Raychev, P.; Roussev, R. Rotational limit of the interacting two-vector boson model. J. Phys. G Nucl. Phys. 1983,

9, 521. [CrossRef]
73. Wu, C.-L.; Feng, D.H.; Chen, X.-G.; Chen, J.-Q.; Guidry, M.W. Fermion dynamical symmetry model of nuclei: Basis, Hamiltonian,

and symmetries. Phys. Rev. C 1987, 36, 1157. [CrossRef]
74. Navrátil, P.; Vary, J.P.; Barrett, B.R. Properties of 12C in the ab initio nuclear shell model. Phys. Rev. Lett. 2000, 84, 5728. [CrossRef]
75. Navrátil, P.; Vary, J.P.; Barrett, B.R. Large-basis ab initio no-core shell model and its application to 12C. Phys. Rev. C 2000,

62, 054311. [CrossRef]
76. Dytrych, T.; Sviratcheva, K.D.; Bahri, C.; Draayer, J.P.; Vary, J.P. Evidence for symplectic symmetry in ab initio no-core shell model

results for light nuclei. Phys. Rev. Lett. 2007, 98, 162503. [CrossRef] [PubMed]
77. Dytrych, T.; Sviratcheva, K.D.; Bahri, C.; Draayer, J.P.; Vary, J.P. Dominant role of symplectic symmetry in ab initio no-core shell

model results for light nuclei. Phys. Rev. C 2007, 76, 014315. [CrossRef]
78. Dytrych, T.; Sviratcheva, K.D.; Draayer, J.P.; Bahri, C.; Vary, J.P. Ab initio symplectic no-core shell model. J. Phys. G Nucl. Part.

Phys. 2008, 35, 123101. [CrossRef]
79. Tobin, G.K.; Ferriss, M.C.; Launey, K.D.; Dytrych, T.; Draayer, J.P.; Dreyfuss, A.C.; Bahri, C. Symplectic no-core shell-model

approach to intermediate-mass nuclei. Phys. Rev. C 2014, 89, 034312. [CrossRef]
80. Dytrych, T.; Maris, P.; Launey, K.D.; Draayer, J.P.; Vary, J.P.; Langr, D.; Saule, E.; Caprio, M.A.; Catalyurek, U.; Sosonkina, M.

Efficacy of the SU(3) scheme for ab initio large-scale calculations beyond the lightest nuclei. Comp. Phys. Commun. 2016, 207, 202.
[CrossRef]

81. Launey, K.D.; Draayer, J.P.; Dytrych, T.; Sun, G.-H.; Dong, S.-H. Approximate symmetries in atomic nuclei from a large-scale
shell-model perspective. Int. J. Mod. Phys. E 2015, 24, 1530005. [CrossRef]

82. Launey, K.D.; Dytrych, T.; Draayer, J.P. Symmetry-guided large-scale shell-model theory. Prog. Part. Nucl. Phys. 2016, 89, 101.
[CrossRef]

83. Dytrych, T.; Launey, K.D.; Draayer, J.P.; Rowe, D.J.; Wood, J.L.; Rosensteel, G.; Bahri, C.; Langr, D.; Baker, R.B. Physics of Nuclei:
Key Role of an Emergent Symmetry. Phys. Rev. Lett. 2020, 124, 042501. [CrossRef]

84. Launey, K.D.; Dytrych, T.; Sargsyan, G.H.; Baker, R.B.; Draayer, J.P. Emergent symplectic symmetry in atomic nuclei. Eur. Phys. J.
Spec. Top. 2020, 229, 2429. [CrossRef]

85. Launey, K.D.; Marcenne, A.; Dytrych, T. Nuclear dynamics and reactions in the ab initio symmetry-adapted framework. Annu.
Rev. Nucl. Part. Sci. 2021, 71, 253. [CrossRef]

86. Kota, V.K.B. SU(3) Symmetry in Atomic Nuclei; Springer: Singapore, 2020.
87. Bonatsos, D.; Martinou, A.; Assimakis, I.E.; Peroulis, S.K.; Sarantopoulou, S.; Minkov, N. Connecting the proxy-SU(3) symmetry

to the shell model. Eur. Phys. J. Web Conf. 2021, 252, 02004. [CrossRef]
88. Bonatsos, D.; Assimakis, I.E.; Minkov, N.; Martinou, A.; Cakirli, R.B.; Casten, R.F.; Blaum, K. Proxy-SU(3) symmetry in heavy

deformed nuclei. Phys. Rev. C 2017, 95, 064325. [CrossRef]
89. Bonatsos, D.; Assimakis, I.E.; Minkov, N.; Martinou, A.; Sarantopoulou, S.; Cakirli, R.B.; Casten, R.F.; Blaum, K. Analytic

predictions for nuclear shapes, prolate dominance, and the prolate-oblate shape transition in the proxy-SU(3) model. Phys. Rev. C
2017, 95, 064326. [CrossRef]

90. Bonatsos, D. Prolate over oblate dominance in deformed nuclei as a consequence of the SU(3) symmetry and the Pauli principle.
Eur. Phys. J. A 2017, 53, 148. [CrossRef]

91. de Shalit, A.; Goldhaber, M. Mixed configurations in nuclei. Phys. Rev. 1953, 92, 1211. [CrossRef]
92. Talmi, I. Effective interactions and coupling schemes in nuclei. Rev. Mod. Phys. 1962, 34, 704. [CrossRef]
93. Talmi, I. Generalized seniority and structure of semi-magic nuclei. Nucl. Phys. A 1971, 172, 1. [CrossRef]
94. Talmi, I. Coupling schemes in nuclei. Riv. Nuovo Cim. 1973, 3, 85. [CrossRef]
95. Talmi, I. Simple Models of Complex Nuclei; Harwood: Chur, Switzerland, 1993.
96. Federman, P.; Pittel, S. Towards a unified microscopic description of nuclear deformation. Phys. Lett. B 1977, 69, 385. [CrossRef]
97. Federman, P.; Pittel, S. Hartree-Fock-Bogolyubov study of deformation in the Zr-Mo region. Phys. Lett. B 1978, 77, 29. [CrossRef]
98. Federman, P.; Pittel, S. Unified shell-model description of nuclear deformation. Phys. Rev. C 1979, 20, 820. [CrossRef]
99. Casten, R.F. Possible Unified interpretation of heavy nuclei. Phys. Rev. Lett. 1985, 54, 1991. [CrossRef] [PubMed]
100. Casten, R.F. Np Nn systematics in heavy nuclei. Nucl. Phys. A 1985, 443, 1. [CrossRef]

http://dx.doi.org/10.1088/0305-4470/25/16/015
http://dx.doi.org/10.1063/1.532562
http://dx.doi.org/10.1140/epja/i2015-15084-1
http://dx.doi.org/10.1140/epja/s10050-022-00834-3
http://dx.doi.org/10.1142/S0218301322500471
http://dx.doi.org/10.1088/0305-4616/8/10/008
http://dx.doi.org/10.1088/0305-4616/9/5/005
http://dx.doi.org/10.1103/PhysRevC.36.1157
http://dx.doi.org/10.1103/PhysRevLett.84.5728
http://dx.doi.org/10.1103/PhysRevC.62.054311
http://dx.doi.org/10.1103/PhysRevLett.98.162503
http://www.ncbi.nlm.nih.gov/pubmed/17501416
http://dx.doi.org/10.1103/PhysRevC.76.014315
http://dx.doi.org/10.1088/0954-3899/35/12/123101
http://dx.doi.org/10.1103/PhysRevC.89.034312
http://dx.doi.org/10.1016/j.cpc.2016.06.006
http://dx.doi.org/10.1142/S0218301315300052
http://dx.doi.org/10.1016/j.ppnp.2016.02.001
http://dx.doi.org/10.1103/PhysRevLett.124.042501
http://dx.doi.org/10.1140/epjst/e2020-000178-3
http://dx.doi.org/10.1146/annurev-nucl-102419-033316
http://dx.doi.org/10.1051/epjconf/202125202004
http://dx.doi.org/10.1103/PhysRevC.95.064325
http://dx.doi.org/10.1103/PhysRevC.95.064326
http://dx.doi.org/10.1140/epja/i2017-12346-x
http://dx.doi.org/10.1103/PhysRev.92.1211
http://dx.doi.org/10.1103/RevModPhys.34.704
http://dx.doi.org/10.1016/0375-9474(71)90112-6
http://dx.doi.org/10.1007/BF02788092
http://dx.doi.org/10.1016/0370-2693(77)90825-5
http://dx.doi.org/10.1016/0370-2693(78)90192-2
http://dx.doi.org/10.1103/PhysRevC.20.820
http://dx.doi.org/10.1103/PhysRevLett.54.1991
http://www.ncbi.nlm.nih.gov/pubmed/10031195
http://dx.doi.org/10.1016/0375-9474(85)90318-5


Symmetry 2023, 15, 169 29 of 34

101. Casten, R.F.; Brenner, D.S.; Haustein, P.E. Valence p-n interactions and the development of collectivity in heavy nuclei. Phys. Rev.
Lett. 1987, 58, 658. [CrossRef] [PubMed]

102. Casten, R.F. Nuclear Structure from a Simple Perspective; Oxford University Press: Oxford, UK, 2000.
103. Zuker, A.P.; Retamosa, J.; Poves, A.; Caurier, E. Spherical shell model description of rotational motion. Phys. Rev. C 1995,

52, R1741. [CrossRef] [PubMed]
104. Zuker, A.P.; Poves, A.; Nowacki, F.; Lenzi, S.M. Nilsson-SU(3) self-consistency in heavy n = Z nuclei. Phys. Rev. C 2015,

92, 024320. [CrossRef]
105. Kaneko, K.; Shimizu, N.; Mizusaki, T.; Sun, Y. Quasi-SU(3) coupling of (1h11/2, 2 f7/2) across the n = 82 shell gap: Enhanced E2

collectivity and shape evolution in Nd isotopes. Phys. Rev. C 2021, 103, L021301. [CrossRef]
106. Cakirli, R.B.; Brenner, D.S.; Casten, R.F.; Millman, E.A. proton–neutron interactions and the new atomic masses. Phys. Rev. Lett.

2005, 94, 092501; Erratum in Phys. Rev. Lett. 2005, 95, 119903. [CrossRef]
107. Cakirli, R.B.; Casten, R.F. Direct empirical correlation between proton–neutron interaction strengths and the growth of collectivity

in nuclei. Phys. Rev. Lett. 2006, 96, 132501. [CrossRef]
108. Brenner, D.S.; Cakirli, R.B.; Casten, R.F. Valence proton–neutron interactions throughout the mass surface. Phys. Rev. C 2006,

73, 034315. [CrossRef]
109. Cakirli, R.B.; Casten, R.F.; Winkler, R.; Blaum, K.; Kowalska, M. Enhanced sensitivity of nuclear binding energies to collective

structure. Phys. Rev. Lett. 2009, 102, 082501. [CrossRef] [PubMed]
110. Cakirli, R.B.; Blaum, K.; Casten, R.F. Indication of a mini-valence Wigner-like energy in heavy nuclei. Phys. Rev. C 2010, 82, 061304.

[CrossRef]
111. Bonatsos, D.; Karampagia, S.; Cakirli, R.B.; Casten, R.F.; Blaum, K.; Susam, L.A. Emergent collectivity in nuclei and enhanced

proton–neutron interactions. Phys. Rev. C 2013, 88, 054309. [CrossRef]
112. Stoitsov, M.; Cakirli, R.B.; Casten, R.F.; Nazarewicz, W.; Satula, W. Empirical proton–neutron interactions and nuclear density

functional theory: Global, regional, and local comparisons. Phys. Rev. Lett. 2007, 98, 132502. [CrossRef] [PubMed]
113. Sieja, K. Single-particle and collective structures in neutron-rich Sr isotopes. Universe 2022, 8, 23. [CrossRef]
114. Lederer, C.M.; Shirley, V.S. (Eds.) Table of Isotopes, 7th ed.; Wiley: New York, NY, USA, 1978.
115. Ring, P.; Schuck, P. The Nuclear Many-Body Problem; Springer: Berlin/Heidelberg, Germany, 1980.
116. Davies, K.T.R.; Krieger, S.J. Harmonic-oscillator transformation coefficients. Can. J. Phys. 1991, 69, 62. [CrossRef]
117. Chasman, R.R.; Wahlborn, S. Transformation scheme for harmonic-oscillator wave functions. Nucl. Phys. A 1967, 90, 401.

[CrossRef]
118. Chacón, E.; de Llano, M. Transformation brackets between cartesian and angular momentum harmonic oscillator basis functions

with and without spin–orbit coupling. Tables for the 2s-1d nuclear shell. Rev. Mex. Fís. 1963, 12, 57.
119. Martinou, A.; Bonatsos, D.; Minkov, N.; Assimakis, I.E.; Peroulis, S.K.; Sarantopoulou, S.; Cseh, J. Proxy-SU(3) symmetry in the

shell model basis. Eur. Phys. J. A 2020, 56, 239. [CrossRef]
120. Edmonds, A.R. Angular Momentum in Quantum Mechanics; Princeton University Press: Princeton, NJ, USA, 1957.
121. Varshalovich, D.A.; Moskalev, A.N.; Khersonskii, V.K. Quantum Theory of Angular Momentum; World Scientific: Singapore, 1988.
122. Sorlin, O.; Porquet, M.-G. Nuclear magic numbers: New features far from stability. Prog. Part. Nucl. Phys. 2008, 61, 602. [CrossRef]
123. Bonatsos, D.; Sobhani, H.; Hassanabadi, H. Shell model structure of proxy-SU(3) pairs of orbitals. Eur. Phys. J. Plus 2020, 135, 710.

[CrossRef]
124. Castaños, O.; Draayer, J.P.; Leschber, Y. Shape variables and the shell model. Z. Phys. A 1988, 329, 33.
125. Elliott, J.P.; Evans, J.A.; Isacker, P.V. Definition of the shape parameter γ in the Interacting-Boson Model. Phys. Rev. Lett. 1986,

57, 1124. [CrossRef] [PubMed]
126. Draayer, J.P.; Park, S.C.; Castaños, O. Shell-model interpretation of the collective-model potential-energy surface. Phys. Rev. Lett.

1989, 62, 20. [CrossRef]
127. Mayer, M.G. Nuclear configurations in the spin–orbit coupling model. II. Theoretical considerations. Phys. Rev. 1950, 78, 22.

[CrossRef]
128. Martinou, A.; Bonatsos, D.; Sarantopoulou, S.; Assimakis, I.E.; Peroulis, S.K.; Minkov, N. Why nuclear forces favor the highest

weight irreducible representations of the fermionic SU(3) symmetry. Eur. Phys. J. A 2021, 57, 83. [CrossRef]
129. Bonatsos, D.; Casten, R.F.; Martinou, A.; Assimakis, I.E.; Minkov, N.; Sarantopoulou, S.; Cakirli, R.B.; Blaum, K. A new scheme for

heavy nuclei: Proxy-SU(3). Adv. Nucl. Phys. 2017, 25 , 6. [CrossRef]
130. Martinou, A.; Bonatsos, D.; Minkov, N.; Assimakis, I.E.; Sarantopoulou, S.; Peroulis, S. Highest weight SU(3) irreducible

representations for nuclei with shape coexistence. arXiv 2018, arXiv:1810.11870.
131. Guzmán, V.M.B.; Flores-Mendieta, R.; Hernández, J. Contributions of SU(3) higher-order interaction operators to rotational bands

in the interacting boson model. Eur. Phys. J. A 2022, 58, 61. [CrossRef]
132. Hamamoto, I.; Mottelson, B.R. Further examination of prolate-shape dominance in nuclear deformation. Phys. Rev. C 2009,

79, 034317. [CrossRef]
133. Tajima, N.; Suzuki, N. Prolate dominance of nuclear shape caused by a strong interference between the effects of spin–orbit and

l2 terms of the Nilsson potential. Phys. Rev. C 2001, 64, 037301. [CrossRef]
134. Takahara, S.; Onishi, N.; Shimizu, Y.R.; Tajima, N. The role of spin–orbit potential in nuclear prolate-shape dominance. Phys. Lett.

B 2011, 702, 429. [CrossRef]

http://dx.doi.org/10.1103/PhysRevLett.58.658
http://www.ncbi.nlm.nih.gov/pubmed/10035002
http://dx.doi.org/10.1103/PhysRevC.52.R1741
http://www.ncbi.nlm.nih.gov/pubmed/9970755
http://dx.doi.org/10.1103/PhysRevC.92.024320
http://dx.doi.org/10.1103/PhysRevC.103.L021301
http://dx.doi.org/10.1103/PhysRevLett.94.092501
http://dx.doi.org/10.1103/PhysRevLett.96.132501
http://dx.doi.org/10.1103/PhysRevC.73.034315
http://dx.doi.org/10.1103/PhysRevLett.102.082501
http://www.ncbi.nlm.nih.gov/pubmed/19257733
http://dx.doi.org/10.1103/PhysRevC.82.061304
http://dx.doi.org/10.1103/PhysRevC.88.054309
http://dx.doi.org/10.1103/PhysRevLett.98.132502
http://www.ncbi.nlm.nih.gov/pubmed/17501195
http://dx.doi.org/10.3390/universe8010023
http://dx.doi.org/10.1139/p91-010
http://dx.doi.org/10.1016/0375-9474(67)90242-4
http://dx.doi.org/10.1140/epja/s10050-020-00239-0
http://dx.doi.org/10.1016/j.ppnp.2008.05.001
http://dx.doi.org/10.1140/epjp/s13360-020-00749-2
http://dx.doi.org/10.1103/PhysRevLett.57.1124
http://www.ncbi.nlm.nih.gov/pubmed/10034253
http://dx.doi.org/10.1103/PhysRevLett.62.20
http://dx.doi.org/10.1103/PhysRev.78.22
http://dx.doi.org/10.1140/epja/s10050-021-00395-x
http://dx.doi.org/10.12681/hnps.1951
http://dx.doi.org/10.1140/epja/s10050-022-00712-y
http://dx.doi.org/10.1103/PhysRevC.79.034317
http://dx.doi.org/10.1103/PhysRevC.64.037301
http://dx.doi.org/10.1016/j.physletb.2011.07.030


Symmetry 2023, 15, 169 30 of 34

135. Takahara, S.; Tajima, N.; Shimizu, Y.R. Nuclear prolate-shape dominance with the Woods-Saxon potential. Phys. Rev. C 2012,
86, 064323. [CrossRef]

136. Hamamoto, I.; Mottelson, B. Shape deformations in atomic nuclei. Scholarpedia 2012, 7, 10693.
137. Sugawara, M. Prolate-shape dominance and dual-shell mechanism. Phys. Rev. C 2022, 106, 024301. [CrossRef]
138. Draayer, J.P.; Leschber, Y.; Park, S.C.; Lopez, R. Representations of U(3) in U(N). Comput. Phys. Commun. 1989, 56, 279. [CrossRef]
139. Langr, D.; Dytrych, T.; Draayer, J.P.; Launey, K.D.; Tvrdík, P. Efficient algorithm for representations of U(3) in U(N). Comput. Phys.

Commun. 2019, 244, 442. [CrossRef]
140. Alex, A.; Kalus, M.; Huckleberry, A.; von Delft, J. A numerical algorithm for the explicit calculation of SU(N) and SL(N,C)

Clebsch–Gordan coefficients. J. Math. Phys. 2011, 52, 023507. [CrossRef]
141. Assimakis, I.E. Algebraic Models of Nuclear Structure with SU(3) Symmetry. Master’s Thesis, National Technical University of

Athens, Athens, Greece, 2015. [CrossRef]
142. Kota, V.K.B. Simple formula for leading SU(3) irreducible representation for nucleons in an oscillator shell. arXiv 2018,

arXiv:1812.01810.
143. Sarantopoulou, S.; Bonatsos, D.; Assimakis, I.E.; Minkov, N.; Martinou, A.; Cakirli, R.B.; Casten, R.F.; Blaum, K. Proxy-SU(3)

symmetry in heavy nuclei: Prolate dominance and prolate-oblate shape transition. Bulg. J. Phys. 2017, 44, 417.
144. Vries, H.D.; Jager, C.W.D.; Vries, C.D. Nuclear charge-density-distribution parameters from elastic electron scattering. At. Data

Nucl. Data Tables 1987, 36, 495. [CrossRef]
145. Stone, J.R.; Stone, N.J.; Moszkowski, S. Incompressibility in finite nuclei and nuclear matter. Phys. Rev. C 2014, 89, 044316.

[CrossRef]
146. Delaroche, J.-P.; Girod, M.; Libert, J.; Goutte, H.; Hilaire, S.; Péru, S.; Pillet, N.; Bertsch, G.F. Structure of even–even nuclei using a

mapped collective Hamiltonian and the D1S Gogny interaction. Phys. Rev. C 2010, 81, 014303. [CrossRef]
147. Lalazissis, G.A.; Raman, S.; Ring, P. Ground-state properties of even–even nuclei in the relatitistic mean-field theory. At. Data

Nucl. Data Tables 1999, 71, 1. [CrossRef]
148. Raman, S.; Nestor, C.W., Jr.; Tikkanen, P. Transition probability from the ground to the first-excited 2+ state of even–even nuclides.

At. Data Nucl. Data Tables 2001, 78, 1. [CrossRef]
149. Bonatsos, D.; Assimakis, I.E.; Minkov, N.; Martinou, A.; Peroulis, S.K.; Sarantopoulou, S.; Cakirli, R.B.; Casten, R.F.; Blaum, K.

Proxy-SU(3): A symmetry for heavy nuclei. Bulg. J. Phys. 2017, 44, 385.
150. Bonatsos, D.; Assimakis, I.E.; Minkov, N.; Martinou, A.; Sarantopoulou, S.; Cakirli, R.B.; Casten, R.F.; Blaum, K. Parameter-

independent predictions for shape variables of heavy deformed nuclei in the proxy-SU(3) model. arXiv 2017, arXiv:1706.05832.
151. Martinou, A.; Peroulis, S.; Bonatsos, D.; Assimakis, I.E.; Sarantopoulou, S.; Minkov, N.; Cakirli, R.B.; Casten, R.F.; Blaum,

K. Parameter-independent predictions for nuclear shapes and B(E2) transition rates in the proxy-SU(3) model. arXiv 2017,
arXiv:1712.04134.

152. Awwad, N.J.A.; Abusara, H.; Ahmad, S. Ground state properties of Zn, Ge, and Se isotopic chains in covariant density functional
theory. Phys. Rev. C 2020, 101, 064322. [CrossRef]

153. Alstaty, M.I.; Abusara, H. Ground state deformation comparison between covariant density functional theory and proxy-SU(3)
model in transitional nuclei. Nucl. Phys. A 2022, 1027, 122504. [CrossRef]

154. Elsharkawy, H.N.; Kader, M.M.A.; Basha, A.M.; Lotfy, A. Ground state properties of Polonium isotopes using covariant density
functional theory. Phys. Scr. 2022, 97, 065302. [CrossRef]

155. Canavan, R.L.; Rudigier, M.; Regan, P.H.; Lebois, M.; Wilson, J.N.; Jovancevic, N.; Söderström, P.-A.; Collins, S.M.; Thisse, D.;
Benito, J.; et al. Half-life measurements in 164,166Dy using γ-γ fast-timing spectroscopy with the ν-Ball spectrometer. Phys. Rev. C
2020, 101, 024313. [CrossRef]

156. Knafla, L.; Häfner, G.; Jolie, J.; Régis, J.-M.; Karayonchev, V.; Blazhev, A.; Esmaylzadeh, A.; Fransen, C.; Goldkuhle, A.; Herb,
S.; et al. Lifetime measurements of 162Er: Evolution of collectivity in the rare-earth region. Phys. Rev. C 2020, 102, 044310.
[CrossRef]

157. Martinou, A.; Bonatsos, D.; Assimakis, I.E.; Minkov, N.; Sarantopoulou, S.; Cakirli, R.B.; Casten, R.F.; Blaum, K. Parameter free
predictions within the proxy-SU(3) model. Bulg. J. Phys. 2017, 44, 407.

158. Feng, D.H.; Gilmore, R.; Deans, S.R. Phase transitions and the geometric properties of the interacting boson model. Phys. Rev. C
1981, 23, 1254. [CrossRef]

159. Iachello, F. Dynamic symmetries at the critical point. Phys. Rev. Lett. 2000, 85, 3580. [CrossRef]
160. Casten, R.F.; Zamfir, N.V. Evidence for a possible E(5) symmetry in 134Ba. Phys. Rev. Lett. 2000, 85, 3584. [CrossRef]
161. Iachello, F. Analytic description of critical point nuclei in a spherical-axially deformed shape phase transition. Phys. Rev. Lett.

2001, 87, 052502. [CrossRef]
162. Casten, R.F.; Zamfir, N.V. Empirical realization of a critical point description in atomic nuclei. Phys. Rev. Lett. 2001, 87, 052503.

[CrossRef]
163. Iachello, F. Quantum phase transitions in mesoscopic systems. Int. J. Mod. Phys. B 2006, 20, 2687. [CrossRef]
164. Bonatsos, D.; Lenis, D.; Petrellis, D. Special solutions of the Bohr hamiltonian related to shape phase transitions in nuclei. Rom.

Rep. Phys. 2007, 59, 273.
165. Casten, R.F.; McCutchan, E.A. Quantum phase transitions and structural evolution in nuclei. J. Phys. G Nucl. Part. Phys. 2007,

34, R285. [CrossRef]

http://dx.doi.org/10.1103/PhysRevC.86.064323
http://dx.doi.org/10.1103/PhysRevC.106.024301
http://dx.doi.org/10.1016/0010-4655(89)90024-6
http://dx.doi.org/10.1016/j.cpc.2019.05.018
http://dx.doi.org/10.1063/1.3521562
http://dx.doi.org/10.26240/heal.ntua.3240
http://dx.doi.org/10.1016/0092-640X(87)90013-1
http://dx.doi.org/10.1103/PhysRevC.89.044316
http://dx.doi.org/10.1103/PhysRevC.81.014303
http://dx.doi.org/10.1006/adnd.1998.0795
http://dx.doi.org/10.1006/adnd.2001.0858
http://dx.doi.org/10.1103/PhysRevC.101.064322
http://dx.doi.org/10.1016/j.nuclphysa.2022.122504
http://dx.doi.org/10.1088/1402-4896/ac6a86
http://dx.doi.org/10.1103/PhysRevC.101.024313
http://dx.doi.org/10.1103/PhysRevC.102.044310
http://dx.doi.org/10.1103/PhysRevC.23.1254
http://dx.doi.org/10.1103/PhysRevLett.85.3580
http://dx.doi.org/10.1103/PhysRevLett.85.3584
http://dx.doi.org/10.1103/PhysRevLett.87.052502
http://dx.doi.org/10.1103/PhysRevLett.87.052503
http://dx.doi.org/10.1142/S0217979206035187
http://dx.doi.org/10.1088/0954-3899/34/7/R01


Symmetry 2023, 15, 169 31 of 34

166. Cejnar, P.; Jolie, J.; Casten, R.F. Quantum phase transitions in the shapes of atomic nuclei. Rev. Mod. Phys. 2010, 82, 2155.
[CrossRef]

167. Casten, R.F.; Namenson, A.I.; Davidson, W.F.; Warner, D.D.; Borner, H.G. Low-lying levels in 194Os and the prolate—Oblate phase
transition. Phys. Lett. B 1978, 76, 280. [CrossRef]

168. Alkhomashi, N.; Regan, P.H.; Podolyak, Z.; Pietri, S.; Garnsworthy, A.B.; Steer, S.J.; Benlliure, J.; Caserejos, E.; Casten, R.F.; Gerl, J.;
et al. β−-delayed spectroscopy of neutron-rich tantalum nuclei: Shape evolution in neutron-rich tungsten isotopes. Phys. Rev. C
2009, 80, 064308. [CrossRef]

169. Wheldon, C.; Narro, J.G.; Pearson, C.J.; Regan, P.H.; Podolyák, Z.; Warner, D.D.; Fallon, P.; Macchiavelli, A.O.; Cromaz, M. Yrast
states in 194Os: The prolate-oblate transition region. Phys. Rev. C 2000, 63, 011304. [CrossRef]

170. Podolyák, Z.; Steer, S.J.; Pietri, S.; Xu, F.R.; Liu, H.L.; Regan, P.H.; Rudolph, D.; Garnsworthy, A.B.; Hoischen, R.; Gorska, M.; et al.
Weakly deformed oblate structures in 198

76 Os122. Phys. Rev. C 2009, 79, 031305. [CrossRef]
171. Jolie, J.; Linnemann, A. Prolate-oblate phase transition in the Hf-Hg mass region. Phys. Rev. C 2003, 68, 031301. [CrossRef]
172. Kumar, K. Prolate-oblate difference and its effect on energy levels and quadrupole moments. Phys. Rev. C 1970, 1, 369. [CrossRef]
173. Kumar, K. Nuclear shapes, energy gaps and phase transitions. Phys. Scr. 1972, 6, 270. [CrossRef]
174. Sarriguren, P.; Rodríguez-Guzmán, R.; Robledo, L.M. Shape transitions in neutron-rich Yb, Hf, W, Os, and Pt isotopes within a

Skyrme Hartree-Fock + BCS approach. Phys. Rev. C 2008, 77, 064322. [CrossRef]
175. Robledo, L.M.; Rodríguez-Guzmán, R.; Sarriguren, P. Role of triaxiality in the ground-state shape of neutron-rich Yb, Hf, W, Os

and Pt isotopes. J. Phys. G Nucl. Part. Phys. 2009, 36, 115104. [CrossRef]
176. Nomura, K.; Otsuka, T.; Rodríguez-Guzmán, R.; Robledo, L.M.; Sarriguren, P.; Regan, P.H.; Stevenson, P.D.; Podolyák, Z.

Spectroscopic calculations of the low-lying structure in exotic Os and W isotopes. Phys. Rev. C 2011, 83, 054303. [CrossRef]
177. Nomura, K.; Otsuka, T.; Rodríguez-Guzmán, R.; Robledo, L.M.; Sarriguren, P. Collective structural evolution in neutron-rich Yb,

Hf, W, Os, and Pt isotopes. Phys. Rev. C 2011, 84, 054316. [CrossRef]
178. Sun, Y.; Walker, P.M.; Xu, F.-R.; Liu, Y.-X. Rotation-driven prolate-to-oblate shape phase transition in 190W: A projected shell

model study. Phys. Lett. B 2008, 659, 165. [CrossRef]
179. Jolie, J.; Casten, R.F.; von Brentano, P.; Werner, V. Quantum phase transition for γ-soft nuclei. Phys. Rev. Lett. 2001, 87, 162501.

[CrossRef]
180. Jolie, J.; Cejnar, P.; Casten, R.F.; Heinze, S.; Linnemann, A.; Werner, V. Triple point of nuclear deformations. Phys. Rev. Lett. 2002,

89, 182502. [CrossRef]
181. Thiamova, G.; Cejnar, P. Prolate–oblate shape-phase transition in the O(6) description of nuclear rotation. Nucl. Phys. A 2006,

765, 97. [CrossRef]
182. Bettermann, L.; Werner, V.; Williams, E.; Casperson, R.J. New signature of a first order phase transition at the O(6) limit of the

IBM. Phys. Rev. C 2010, 81, 021303. [CrossRef]
183. Zhang, Y.; Zhang, Z. The robust O(6) dynamics in the prolate–oblate shape phase transition. J. Phys. G Nucl. Part. Phys. 2013,

40, 105107. [CrossRef]
184. Zhang, Y.; Pan, F.; Liu, Y.-X.; Luo, Y.-A.; Draayer, J.P. Analytically solvable prolate-oblate shape phase transitional description

within the SU(3) limit of the interacting boson model. Phys. Rev. C 2012, 85, 064312. [CrossRef]
185. Bonatsos, D.; Lenis, D.; Petrellis, D.; Terziev, P.A. Z(5): critical point symmetry for the prolate to oblate nuclear shape phase

transition. Phys. Lett. B 2004, 588, 172. [CrossRef]
186. Bonatsos, D.; Lenis, D.; Petrellis, D.; Terziev, P.A.; Yigitoglu, I. γ-rigid solution of the Bohr Hamiltonian for γ = 30o compared to

the E(5) critical point symmetry. Phys. Lett. B 2005, 621, 102. [CrossRef]
187. Alimohammadi, M.; Fortunato, L.; Vitturi, A. Is 198Hg a soft triaxial nucleus with γ = 30o? Eur. Phys. J. Plus 2019, 134, 570.

[CrossRef]
188. Mutsher, S.M.; Sharrad, F.I.; Salman, E.A. Positive parity low-spin states of even–odd 129−133Ba isotopes. Nucl. Phys. A 2022,

1017, 122342. [CrossRef]
189. Bindra, A.; Mittal, H.M. The magnification of structural anomalies with Grodzins systematic in the framework of Asymmetric

Rotor Model. Nucl. Phys. A 2018, 975, 48. [CrossRef]
190. Clemenger, K. Ellipsoidal shell structure in free-electron metal clusters. Phys. Rev. B 1985, 32, 1359. [CrossRef]
191. de Heer, W.A. The physics of simple metal clusters: Experimental aspects and simple models. Rev. Mod. Phys. 1993, 65, 611.

[CrossRef]
192. Brack, M. The physics of simple metal clusters: Self-consistent jellium model and semiclassical approaches. Rev. Mod. Phys. 1993,

65, 677. [CrossRef]
193. Nesterenko, V.O. Metal clusters as a new application field of nuclear-physics ideas and methods. Fiz. Elem. Chastits At. Yadra

1992, 23, 1665; Erratum in Sov. J. Part. Nucl. 1992, 23, 726.
194. de Heer, W.A.; Knight, W.D.; Chou, M.Y.; Cohen, M.L. Electronic shell structure and metal clusters. Solid State Phys. 1987, 40, 93.
195. Greiner, W. Summary of the conference. Z. Phys. A Hadr. Nucl. 1994, 349, 315. [CrossRef]
196. Martin, T.P.; Bergmann, T.; Göhlich, H.; Lange, T. Observation of electronic shells and shells of atoms in large Na clusters. Chem.

Phys. Lett. 1990, 172, 209. [CrossRef]
197. Martin, T.P.; Bergmann, T.; Göhlich, H.; Lange, T. Electronic shells and shells of atoms in metallic clusters. Z. Phys. D At. Mol.

Clust. 1991, 19, 25. [CrossRef]

http://dx.doi.org/10.1103/RevModPhys.82.2155
http://dx.doi.org/10.1016/0370-2693(78)90787-6
http://dx.doi.org/10.1103/PhysRevC.80.064308
http://dx.doi.org/10.1103/PhysRevC.63.011304
http://dx.doi.org/10.1103/PhysRevC.79.031305
http://dx.doi.org/10.1103/PhysRevC.68.031301
http://dx.doi.org/10.1103/PhysRevC.1.369
http://dx.doi.org/10.1088/0031-8949/6/5-6/013
http://dx.doi.org/10.1103/PhysRevC.77.064322
http://dx.doi.org/10.1088/0954-3899/36/11/115104
http://dx.doi.org/10.1103/PhysRevC.83.054303
http://dx.doi.org/10.1103/PhysRevC.84.054316
http://dx.doi.org/10.1016/j.physletb.2007.10.067
http://dx.doi.org/10.1103/PhysRevLett.87.162501
http://dx.doi.org/10.1103/PhysRevLett.89.182502
http://dx.doi.org/10.1016/j.nuclphysa.2005.11.006
http://dx.doi.org/10.1103/PhysRevC.81.021303
http://dx.doi.org/10.1088/0954-3899/40/10/105107
http://dx.doi.org/10.1103/PhysRevC.85.064312
http://dx.doi.org/10.1016/j.physletb.2004.03.029
http://dx.doi.org/10.1016/j.physletb.2005.06.047
http://dx.doi.org/10.1140/epjp/i2019-12923-4
http://dx.doi.org/10.1016/j.nuclphysa.2021.122342
http://dx.doi.org/10.1016/j.nuclphysa.2018.04.004
http://dx.doi.org/10.1103/PhysRevB.32.1359
http://dx.doi.org/10.1103/RevModPhys.65.611
http://dx.doi.org/10.1103/RevModPhys.65.677
http://dx.doi.org/10.1007/BF01288984
http://dx.doi.org/10.1016/0009-2614(90)85389-T
http://dx.doi.org/10.1007/BF01448248


Symmetry 2023, 15, 169 32 of 34

198. Bjørnholm, S.; Borggreen, J.; Echt, O.; Hansen, K.; Pedersen, J.; Rasmussen, H.D. Mean-field quantization of several hundred
electrons in sodium metal clusters. Phys. Rev. Lett. 1990, 65, 1627. [CrossRef]

199. Bjørnholm, S.; Borggreen, J.; Echt, O.; Hansen, K.; Pedersen, J.; Rasmussen, H.D. The influence of shells, electron thermodynamics,
and evaporation on the abundance spectra of large sodium metal clusters. Z. Phys. D At. Mol. Clust. 1991, 19, 47. [CrossRef]

200. Knight, W.D.; Clemenger, K.; de Heer, W.A.; Saunders, W.A.; Chou, M.Y.; Cohen, M.L. Electronic shell structure and abundances
of sodium clusters. Phys. Rev. Lett. 1984, 52, 2141. [CrossRef]

201. Pedersen, J.; Bjørnholm, S.; Borggreen, J.; Hansen, K.; Martin, T.P.; Rasmussen, H.D. Observation of quantum supershells in
clusters of sodium atoms. Nature 1991, 353, 733. [CrossRef]

202. Bréchignac, C.; Cahuzac, P.; de Frutos, M.; Roux, J.-P.; Bowen, K. Observation of electronic shells in large Lithium clusters. In
Physics and Chemistry of Finite Systems: From Clusters to Crystals; NATO Science Series C: Mathematical and Physical Sciences ASIC
374; Jena, P., Khanna, S.N., Rao, B.K.N., Eds.; Kluwer: Dordrecht, The Netherlands, 1992; Volume 1, p. 369.

203. Bréchignac, C.; Cahuzac, P.; Carlier, F.; de Frutos, M.; Roux, J.P. Temperature effects in the electronic shells and supershells of
lithium clusters. Phys. Rev. B 1993, 47, 2271. [CrossRef]

204. Borggreen, J.; Chowdhury, P.; Kebaïli, N.; Lundsberg-Nielsen, L.; Lützenkirchen, K.; Nielsen, M.B.; Pedersen, J.; Rasmussen, H.D.
Plasma excitations in charged sodium clusters. Phys. Rev. B 1993, 48, 17507. [CrossRef]

205. Pedersen, J.; Borggreen, J.; Chowdhury, P.; Kebaïli, N.; Lundsberg-Nielsen, L.; Lützenkirchen, K.; Nielsen, M.B.; Rasmussen, H.D.
Plasmon profiles and shapes of sodium cluster ions. Z. Phys. D At. Mol. Clust. 1993, 26, 281. [CrossRef]

206. Pedersen, J.; Borggreen, J.; Chowdhury, P.; Kebaïli, N.; Lundsberg-Nielsen, L.; Lützenkirchen, K.; Nielsen, M.B.; Rasmussen, H.D.
Optical response and shapes of charged sodium clusters; an analogue of the nuclear giant dipole resonance. In Atomic and Nuclear
Clusters; Anagnostatos, G.S., von Oertzen, W., Eds.; Springer: Berlin/Heidelberg, Germany, 1995.

207. Haberland, H. Metal clusters and nuclei: Some similarities and differences. Nucl. Phys. A 1999, 649, 415. [CrossRef]
208. Schmidt, M.; Haberland, H. Optical spectra and their moments for sodium clusters, Na+n , with 3 ≤ n ≤ 64. Eur. Phys. J. D 1999,

6, 109.
209. Bonatsos, D.; Martinou, A.; Sarantopoulou, S.; Assimakis, I.E.; Peroulis, S.; Minkov, N. Parameter-free predictions for the collective

deformation variables β and γ within the pseudo-SU(3) scheme. Eur. Phys. J. ST 2020, 229, 2367. [CrossRef]
210. Cseh, J. Shell-like quarteting in heavy nuclei: Algebraic approaches based on the pseudo- and proxy-SU(3) schemes. Phys. Rev. C

2020, 101, 054306. [CrossRef]
211. Hess, P.O.; Chávez-Nu nez, L.J. A semimicroscopic algebraic cluster model for heavy nuclei. Eur. Phys. J. A 2021, 57, 146.

[CrossRef]
212. Berriel-Aguayo, J.R.M.; Hess, P.O. Approximate projection method for the construction of multi-α-cluster spaces. Phys. Rev. C

2021, 104, 044307. [CrossRef]
213. Cseh, J. Algebraic models for shell-like quarteting of nucleons. Phys. Lett. B 2015, 743, 213. [CrossRef]
214. Cseh, J. Semimicroscopic algebraic description of nuclear cluster states. Vibron model coupled to the SU(3) shell model. Phys.

Lett. B 1992, 281, 173. [CrossRef]
215. Cseh, J.; Lévai, G. Semimicroscopic algebraic cluster model of light nuclei. I. Two-cluster-systems with spin-isospin-free

interactions. Ann. Phys. 1994, 230, 165. [CrossRef]
216. Lohr-Robles, D.S.; López-Moreno, E.; Hess, P.O. Quantum phase transitions within a nuclear cluster model and an effective

model of QCD. Nucl. Phys. A 2021, 1016, 122335. [CrossRef]
217. Iachello, F.; Levine, R.D. Algebraic approach to molecular rotation-vibration spectra. I. Diatomic molecules. J. Chem. Phys. 1982,

77, 3046. [CrossRef]
218. van Roosmalen, O.S.; Iachello, F.; Levine, R.D.; Dieperink, A.E.L. Algebraic approach to molecular rotation-vibration spectra. II.

Triatomic molecules. J. Chem. Phys. 1983, 79, 2515. [CrossRef]
219. Daley, H.J.; Iachello, F. Nuclear vibron model. I. The SU(3) limit. Ann. Phys. 1986, 167, 73. [CrossRef]
220. Morinaga, H. Interpretation of some of the excited states of 4n self-conjugate nuclei. Phys. Rev. 1956, 101, 254. [CrossRef]
221. Heyde, K.; Isacker, P.V.; Waroquier, M.; Wood, J.L.; Meyer, R.A. Coexistence in odd-mass nuclei. Phys. Rep. 1983 102, 291.

[CrossRef]
222. Wood, J.L.; Heyde, K.; Nazarewicz, W.; Huyse, M.; Duppen, P.V. Coexistence in even-mass nuclei. Phys. Rep. 1992, 215, 101.

[CrossRef]
223. Heyde, K.; Wood, J.L. Shape coexistence in atomic nuclei. Rev. Mod. Phys. 2011, 83, 1467. [CrossRef]
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