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Abstract: In this investigation, an (un)forced third-order/jerk Van-der Pol oscillatory equation is
solved using two perturbative methods called the Krylov–Bogoliúbov–Mitropólsky method and the
multiple scales method. Both the first- and second-order approximations for the unforced and forced
jerk Van-der Pol oscillatory equations are derived in detail using the proposed methods. Comparative
analysis is performed between the analytical approximations using the proposed methods and the
numerical approximations using the fourth-order Runge–Kutta scheme. Additionally, the global max-
imum error to the analytical approximations compared to the Runge–Kutta numerical approximation
is estimated.

Keywords: jerk oscillator; third-order non-linear ordinary differential equation; Van-der Pol equation;
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1. Introduction

The concept of rate of change is central to classical mechanics, particularly in kinemat-
ics where all the quantities refer to the extent to which a variable changes with respect to
time. In this way the change in position~r of a body with respect to time defines its speed
~v and, in turn, the change of this quantity with respect to time defines its acceleration. In
general in the teaching-learning processes of the movement of bodies, these three con-
cepts (position, velocity and acceleration) are addressed in the vast majority of academic
programs. The first approach to the concept of the jerk, denoted as~j , is a consequence
of a rate of change as mentioned above, and corresponds to the change in acceleration
with respect to time. In physics and engineering, it is understandable that the jerk is an
important concept in the explanation of kinematic phenomena, which occur for example in
amusement parks. Because mechanical games produce abrupt changes in the direction and
magnitude of the trajectory of the objects moved, the movement is not simple to explain
in conventional terms of velocity and acceleration. They involve observing changes in
acceleration; therefore, the concept of jerk is very pertinent.

Numerous studies have been conducted on non-linear jerk oscillatory equations [1–4].
For instance, the dynamics of two different models of jerk oscillators and their applications
in telecommunication and electrical engineering have been investigated. The authors
used a two-parameter perturbation technique to identify periodic solutions for the two
suggested models of jerk oscillators [5]. A linearizing method was carried out to de-
termine the approximate values to the displacement amplitude and frequency for the
conservative/non-conservative third-order oscillatory equations [6]. In addition, the frac-
tional Van der Pol–Duffing jerk oscillator was solved using the simplest method without
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using any perturbative approach [7]. Many other effective methods have been used to solve
third-degree oscillatory equations. For example, the harmonic balance method (HBM) was
employed for investigating and deriving the lowest-order analytical approximations to
some different types of non-linear jerk oscillatory equations [8]. Moreover, a new technique
based on classical HBM was implemented to find higher periodic approximations for the
different types of non-linear differential equations, including various types of second-
order and more-than-second-order derivatives [9]. The multiple scales Lindstedt–Poincare
(MSLP) approach was employed to identify approximate analytical solutions to jerk-type
equations with cubic non-linearities [10]. Ramos [11] applied approximation techniques to
analyze different types of non-linear jerk equations that have analytical periodic solutions.
Feng and Chen [12] employed a homotopy analysis technique to identify periodic solutions
to a non-linear jerk equation. In addition, an iterative algorithm was applied to find the
periods and periodic solutions to non-linear jerk oscillatory equations [13]. He’s homotopy
perturbation method (He’s HPM) was applied to solve non-linear jerk oscillatory equa-
tions [14]. The authors found that the first-order approximation using He’s HPM produced
close matches with the solution using the harmonic balance method. However, in the
present investigation, the following different types of third-order non-linear modes/jerk
oscillatory equations are considered{ ...

x + αẍ + ω2 ẋ + αω2x + F(t, x, ẋ, ẍ) = 0,
x(0) = x0, ẋ(0) = ẋ0, and ẍ(0) = ẍ0.

(1)

Equation (1) is called a jerk oscillatory equation. In our investigation, we are interested
in studying the following (un)forced jerk oscillatory equation, which is sometimes called
the third-order Van-der Pol (VdP) oscillatory equation{ ...

x + αẍ + ω2 ẋ + αω2x− ε(1− x2)ẋ = 0,
x(0) = x0, ẋ(0) = ẋ0, and ẍ(0) = ẍ0,

(2)

and { ...
x + αẍ + ω2 ẋ + αω2x− ε(1− x2)ẋ = f (t),

x(0) = x0, ẋ(0) = ẋ0, and ẍ(0) = ẍ0.
(3)

The main objectives of this study can be summarized in the following points:

• With respect to the first objective, we seek to find some approximate solutions to
Equation (2) using two perturbative methods, known as, the Krylov–Bogoliúbov-
Mitropólsky (KBM) method (KBMM) and the multiple scales method (MSM).

• With respect to the second objective, we apply a linear suitable transformation to
obtain an approximate solution to the forced jerk oscillatory Equation (3).

• Furthermore, the proposed problem is analyzed numerically via the fourth-order
Runge–Kutta (RK4) method. Then, a comparison between the accuracy of all the
obtained approximations is considered.

Before starting, let us provide an indication of the suggested methods. Both the
KBMM and MSM have been applied for analyzing many second-order oscillatory equa-
tions. For instance, Salas et al. [15] used the KBMM for solving coupled damped Duffing
oscillators with excited force and to derive some analytical approximations. In addition,
the authors compared the KBM approximations and the RK4 numerical approximations.
They found that both the analytical and numerical solutions were completely identical,
which confirmed the high efficiency of the KBM approximations. Moreover, the KBMM
was implemented to find a highly accurate analytic approximation to the generalized
VdP oscillatory equation [16]. Both forced and unforced damped/undamped parametric
pendulum oscillatory equations were analyzed to obtain approximate solutions using
certain effectiveness, and more accurate, analytical and numerical techniques, including
He’s frequency-amplitude formulation, He’s HPM, the KBMM, and many others [17]. In
addition, a general form to the KBMM was applied for solving a class of weakly non-linear
partial differential equations [18]. The MSM was employed for analyzing a class of linear
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ordinary differential equations (odes) with variable coefficients to find highly accurate so-
lutions [19]. The equation of the VdP oscillator with strong non-linearity was solved using
the multiple scales modified Lindstedt–Poincare method and MSM. Then, a convergence
criterion for the obtained solutions using the two methods was discussed [20]. Moreover,
the modified multiple time scale (MTS) technique was implemented for solving forced
vibrational systems with strong non-linearities [21]. The authors [21] only derived the
first-order approximation to prevent complexity. Furthermore, the authors proved that the
MTS technique was valid for both weakly and strongly non-linear damped forced systems.
Based on many published studies, it has been demonstrated that KBMM and MSM are
effective and give highly accurate solutions for both weak and strong non-linear oscillatory
equations. Motivated by these studies, we focused our investigation on deriving some
approximations to the (un)forced jerk oscillatory equation using both KBMM and MSM
and compared them with RK4 numerical approximations.

The rest of this paper is structured as follows: In Section 2, a solution to the (un)forced
jerk-type oscillatory equation is written in the form of a linear combination consisting of
two parts (x(t) = u(t) + v(t)): the first part u(t) represents the solution of the unforced
jerk-type oscillatory equation in the absence of the excitation force ( f (t) = 0), while the
second part v(t) appears only if the excitation force is included. The value of the second
part v(t) is directly derived in this section. However, to find the solution of the unforced
jerk-type oscillatory equation u(t), the two suggested perturbative methods (KBMM and
MSM) should be considered. The KBMM is used to analyze and derive the second-order
approximation to the unforced jerk Van-der Pol oscillatory equation in the first sub-section
to Section 2. In the second sub-section to Section 2, the first-order approximation to the
unforced jerk Van-der Pol oscillatory equation using the MSM is derived in detail. Finally,
the conclusions of our study are presented in Section 3.

2. Methodology of Solution

To analyze the (un)forced jerk oscillatory equation to find some symmetric and highly
accurate approximations via KBMM and MSM, we first use the following linear transformation

x(t) = u(t) + v(t), (4)

where for v(t) = 0 then u(t) represents the solution of the i.v.p. (2) or the following initial
values problem (i.v.p.) in the absence of the excitation force ( f (t) = 0){

C1 =
...
u + αü + ω2u̇ + αω2u− ε(1− u2)u̇ = 0,

u(0) = x0, u̇(0) = ẋ0, and ü(0) = ẍ0,
(5)

while x(t) = u(t) + v(t) (4) represents the solution of the i.v.p. (3) for f (t) 6= 0. In this case,
the value of v(t) reads

v(t) =
sin(ωt)

ω(ω2 + α2)

∫ t

0
[α cos(ωτ −ω sin(ωτ)] f (τ)dτ

− cos(ωt)
ω(ω2 + α2)

∫ t

0
[ω cos(ωτ) + α sin(ωτ)] f (τ)dτ

+ e−αt
∫ t

0

eατ f (τ)
α2 + ω2 dτ. (6)

For example, if we choose

f (t) = Γ1 cos(ω1t) + Γ2 cos(ω2t), (7)

then the following value of v(t) is obtained

v(t) =
P1

P2
, (8)
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with

P1 = −αΩ1Ω2eα(−t)
[
α2(Γ1 + Γ2) + Γ2ω2

1 + Γ1ω2
2

]
+ Γ2Ω1ω2ΛΛ1 sin(tω2) + αΓ2Ω1ΛΛ1 cos(tω2)

+ Λ2

[
Γ1ω1Ω2Λ sin(tω1) + αΓ1Ω2Λ cos(tω1)

−Λ1(Γ2Ω1 + Γ1Ω2)(α cos(tω) + ω sin(tω))

]
,

and
P2 = Ω1Ω2ΛΛ1Λ2,

where

Ω1 =
(

ω2 −ω2
1

)
, Ω2 =

(
ω2 −ω2

2

)
,

Λ =
(

α2 + ω2
)

, Λ1 =
(

α2 + ω2
1

)
,

Λ2 =
(

α2 + ω2
2

)
.

Now, to find some approximations to the forced jerk oscillatory equation (3), it is
sufficient to solve the i.v.p. (5) using the above-mentioned methods and then to insert the
value of u(t) into solution (4). In the below subsections, we solve the i.v.p. (5) using both
KBMM and MSM.

2.1. KBMM for Anatomy Jerk Van-der Pol Oscillatory Equation

The solution to the i.v.p. (5) can be written in the following ansatz form

u(t) = a(t) cos ψ(t) + εU(a(t), ψ(t)) + ε2V(a(t), ψ(t)), (9)

where the functions a ≡ a(t) and ψ ≡ ψ(t) are, respectively, given by{
ȧ = εA1(a) + ε2 A2(a),
ψ̇ = ω + εφ1(a) + ε2φ2(a),

(10)

where ȧ ≡ ∂ta and ψ̇ ≡ ∂tψ and other unknown functions A1(a), A2(a), φ1(a), and φ2(a)
need to be determined.

Now, by inserting Equations (9) and (10) into C1 =
...
u + αü+ω2u̇+ αω2u− ε(1− u2)u̇,

and rearranging the obtained results, we finally get

C1 = εF1 + ε2F2 + O(ε3), (11)

with

F1 =

αω2U(0,2)(a, ψ) + ω3U(0,1)(a, ψ)

+ω3U(0,3)(a, ψ) + αω2U(a, ψ)− 1
4 a3ω sin(3ψ)

+
(
− a3ω

4 − 2αωA1(a) + aω + 2aω2φ1(a)
)

sin(ψ)
−2
(
aαωφ1(a) + ω2 A1(a)

)
cos(ψ),

and
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F2 =

1
2 a2ωU(0,1)(a, ψ) + 1

2 a2ω cos(2ψ)U(0,1)(a, ψ)− a2ω sin(2ψ)U(a, ψ)

+2αωA1(a)U(1,1)(a, ψ) + ω2 A1(a)U(1,0)(a, ψ) + 3ω2 A1(a)U(1,2)(a, ψ)

+2αωφ1(a)U(0,2)(a, ψ)−ωU(0,1)(a, ψ) + ω2φ1(a)U(0,1)(a, ψ)

+3ω2φ1(a)U(0,3)(a, ψ) + αω2V(0,2)(a, ψ) + ω3V(0,1)(a, ψ)

+ω3V(0,3)(a, ψ) + αω2V(a, ψ) + 1
4 a2 A1(a) cos(3ψ)− 1

4 a3φ1(a) sin(3ψ)

+

(
− 1

4 a3φ1(a)− 3ωA1(a)A′(a)− 2αωA2(a)− αaA1(a)φ′1(a)
−2αA1(a)φ1(a) + 2aω2φ2(a) + 3aωφ1(a)2 + aφ1(a)

)
sin(ψ)

+

( 3
4 a2 A1(a)− 2αaωφ2(a)− αaφ1(a)2

+αA1(a)A′2 A2(a)− 3aωA1(a)φ′1(a)− 6ωA1(a)φ1(a)− A1(a)

)
cos(ψ).

Now, by equating to zero the coefficients of ε, ε2, cos ψ and sin ψ, the following systems
are obtained {

(aαφ1(a) + ωA1(a)) = 0,(
a3 + 8αA1(a)− 8aωφ1(a)− 4a

)
= 0,

(12)
a3(−φ1(a))− 12ωA1(a)A′1(a)− 4αaA1(a)φ′1(a)− 8αA1(a)φ1(a)

−8αωA2(a) + 12aωφ1(a)2 + 4aφ1(a) + 8aω2φ1(a) = 0
,

3a2 A1(a)− 4αaφ1(a)2 − 8αaωφ2(a) + 4αA1(a)A′(a)
−12aωA1(a)φ′1(a)− 24ωA1(a)φ1(a)− 4A1(a)− 8ω2 A2(a) = 0,

(13)

and
−4αωU(0,2)(a, ψ)− 4ω2U(0,1)(a, ψ)

−4ω2U(0,3)(a, ψ)− 4αωU(a, ψ) + a3 sin(3ψ) = 0,
2a2ωU(0,1)(a, ψ) + 2a2ω cos(2ψ)U(0,1)(a, ψ)

−4a2ω sin(2ψ)U(a, ψ) + 8αωA1(a)U(1,1)(a, ψ)

+4ω2 A1(a)U(1,0)(a, ψ) + 12ω2 A1(a)U(1,2)(a, ψ)

+8αωφ1(a)U(0,2)(a, ψ)− 4ωU(0,1)(a, ψ)

+4ω2φ1(a)U(0,1)(a, ψ) + 12ω2φ1(a)U(0,3)(a, ψ)

+4αω2V(0,2)(a, ψ) + 4ω3V(0,1)(a, ψ) + 4ω3V(0,3)(a, ψ)
+4αω2V(a, ψ) + a2 A1(a) cos(3ψ) + a3φ1(a)(− sin(3ψ)) = 0.

(14)

By solving system (12), the values of A1(a) and φ1(a) are obtained

A1(a) = −
a
(
a2 − 4

)
α

8(α2 + ω2)
and φ1(a) =

(
a2 − 4

)
ω

8(α2 + ω2)
. (15)

Using Equation (15) in system (13) and solving the obtained results, we get

A2(a) = −
a
(
a2 − 4

)
α
((

5a2 − 8
)
α2 +

(
8− 3a2)ω2)

64(α2 + ω2)
3 ,

φ2(a) = −
(a− 2)(a + 2)

(
−4α4 + 3a2α4 − 12a2α2ω2 + a2ω4 + 24α2ω2 − 4ω4)

128ω(α2 + ω2)
3 . (16)

Using the value of A1(a) and φ1(a) given in Equation (15) in system (14) and solving
the obtained results for zero constant integration, we finally get

U(a, ψ) =
a3(3ω cos(3ψ)− α sin(3ψ))

32ω(α2 + 9ω2)
, (17)

and
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V(a, ψ) = c2e−
αψ
ω + a3

3072ω2(α2+ω2)(α2+9ω2)
2
(α2+25ω2)

× 4αω

(
3
(
α2 + 25ω2) sin(3ψ)

((
10− 7a2)α2 + 9

(
9a2 − 38

)
ω2)

−10a2(α2 + ω2)(α2 + 9ω2) sin(5ψ)

)
−5a2(α2 − 15ω2)(α2 + ω2)(α2 + 9ω2) cos(5ψ)− 3

(
α2 + 25ω2)×

cos(3ψ)
((

a2 + 8
)
α4 + 6

(
92− 27a2)α2ω2 + 27

(
7a2 − 32

)
ω4)

.
(18)

The following values of a(t) and ψ(t) are obtained

a =

√√√√√ C

e2Ct
(

C
c2

0
− D

)
+ D

,

ψ = c1 +
1

256CD2ω(α2 + ω2)
3
(e2Ct(C− c02D) + c02D)

× F3, (19)

with

C = −
αε
(
1024α4 + α2(2048ω2 − 649ε

)
+ 799εω2 + 1024ω4)

2048(α2 + ω2)
3 ,

D = −
αε
(
232α4 + α2(464ω2 − 147ε

)
+ 181εω2 + 232ω4)

1856(α2 + ω2)
3 ,

where the value of F3 is defined in Appendix A and the constants (c0, c1, c2) are obtained
from the initial conditions (ICs) u(0) = x0, u̇(0) = ẋ0, and ü(0) = ẍ0. By inserting
Equation (15) into Equation (9), we finally get the second-order KBM analytical approxima-
tion to the i.v.p. (5).

2.2. MSM for Anatomy Jerk Van-der Pol Oscillatory Equation

According to the MSM, the first-order approximation to the i.v.p. (5) can be constructed
in the following form

u(t) = a(τ) cos(ωt + φ(τ)) + εU(t, τ) + O
(

ε2
)

, (20)

or
u(t) = a(τ, η) cos(ωt + φ(τ, η)) + εU(t, τ, η) + ε2V(t, τ, η) + O

(
ε3
)

, (21)

where τ = εt and η = ε2t. Here, U(t, τ) ≡ U(t, εt), U(t, τ, η) ≡ U(t, εt, ε2t), V(t, τ, η) ≡
V(t, εt, ε2t), a(τ) ≡ a(εt), φ(τ) ≡ φ(εt), a(τ, η) ≡ a(εt, ε2t), and φ(τ, η) ≡ φ(εt, ε2t) are
undermined time-dependent functions. We can use relation (20) to find the first-order
approximation, while the relation (21) can be used to find the second-order approximation.

In this investigation, we seek to find the first-order approximation to the suggested
problem. By substituting solution (20) into C1 =

...
u + αü + ω2u̇ + αω2u− ε(1− u2)u̇, and

with the help of the following MATHEMATICA commands,

u[t_] := a[ε t] Cos[ω t + φ[ε t]] + ε U[ t, ε t];

H0 = u′′′[t] + α u′′[t] + ω2 u′[t] + α ω2 u[t]− ε(1− u2) u′[t]//.{ε t→ τ, ω t + φ[τ]→ θ};
H1 = Normal[Series[H0, {ε, 0, 1}]];
H2 = H1//TrigReduce;

Cof = CoefficientList[H2,{ε, Cos[θ], Sin[θ]}]//Flatten//Factor

we get
C1 = ε(S1 sin(θ) + S2 cos(θ) + S3), (22)
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with

S1 = ω
4
(
4a(τ)− a(τ)3 − 8α∂τa(τ) + 8ωa(τ)∂τφ(τ)

)
,

S2 = −2ω(ω∂τa(τ) + αa(τ)∂τφ(τ)),

S3 = 1
4

(
−ωa(τ)3 sin(3θ) + 4αU(2,0)(t, τ) + 4ω2U(1,0)(t, τ) + 4U(3,0)(t, τ) + 4αω2U(t, τ)

)
,

where θ = ωt + φ(τ, η), τ = εt, and η = ε2t.
By solving the system S1 = 0, S2 = 0, and S3 = 0, using the following MATHEMAT-

ICA commands

S1= 4 a[τ]− a[τ]3 − 8 α a(1,0)[τ] + 8 ω a[τ] φ(1,0)[τ];
S2= −2 ω

(
ω a(1,0)[τ] + α a[τ] φ(1,0)[τ]

)
;

S3= −ω a[τ]3 Sin[3 θ] + 4 α ω2 U[t, τ] + 4 ω2 U(1,0)[t, τ] + 4 α U(2,0)[t, τ] + 4 U(3,0)[t, τ];
(DSolve[{S1 == 0, S2 == 0, a[0] == c0, φ[0] == c1}, {a[τ], φ[τ]}, τ])1//FullSimplify

TrigReduce[DSolve[S3 == 0, U[t, τ], t][[1, 1, 2]]]//.{Sin[ω t]→ 0, Cos[ω t]→ 0, C[3]→ c2}

we finally get

a(τ) = − 2√
1 +

(
−1 + 4

c2
0

)
e−

ατ
α2+ω2

, (23)

φ(τ) = c1 −
ω

2α
log

 4

c2
0 −

(
c2

0 − 4
)
e−

ατ
α2+ω2

, (24)

and

U(t, τ) =
e−tα

4αω

(
4c2αω + etαa(τ)3 sin(3θ)

)
. (25)

The values of c0, c1, and c2 can be found from the initial conditions u(0) = x0,
u̇(0) = ẋ0, and ü(0) = ẍ0. By inserting Equations (23)–(25) into Equation (20), the first-
order approximation to the i.v.p. (5) is obtained. Using relation (21), and by following the
same steps as above, we can obtain the second-order approximation.

3. Results and Discussion

The second-order KBM analytical approximation (9) and the RK4 numerical approx-
imation are numerically analyzed as illustrated in Figures 1–3 for different values of the
parameters (ε, α, ω). In addition, the maximum residual error Ld is estimated according to
the following relation

Ld = max
0<t<60

|RK4−KBM Approx. (9)|.

This error is estimated numerically for different values of the parameters (ε, α, ω), as
shown in Table 1. It is observed from both Figures 1–3 and Table 1 that there is excellent
agreement between both the KBM analytical approximation (9) and the RK4 numerical
approximation. Additionally, it is found that the accuracy of the KBM analytical approx-
imation (9) increases with increase in the values of (α, ω), while ε has an opposite effect.
Moreover, it is noted that the second-order KBM analytical approximation (9) is stable for
long time intervals—a feature which may not exist in many other methods.

Furthermore, both the second-order KBM analytical approximation (9) and the first-
order MSM analytical approximation (20) are compared with the RK4 numerical approxi-
mation, as shown in Figure 4a,b for ε = 0.1 and Figure 4c,d for ε = 0.25. It is noted from
these figures that there is an almost perfect match between both analytical and numeri-
cal solutions, which enhances the accuracy of the solutions obtained. Additionally, it is
observed that all the obtained approximations are extremely accurate. Furthermore, the
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solutions of the forced i.v.p. (3), i.e., x(t) = u(t) + v(t), using both the second-order KBM
analytical approximation (9) and the first-order MSM analytical approximation (20) with
the value of v(t) given in Equation (8), are compared with the RK4 numerical approxima-
tion, as demonstrated in Figure 5 for (Γ1, Γ2, ω1, ω2) = (0.05, 0.05, 1, 1). Additionally, the
maximum residual error Ld for the second-order KBM analytical approximation (9) and
the first-order MSM approximation (20) to the forced i.v.p. (3) are estimated, as shown in
Figure 5. It can be seen that the accuracy of the first-order MSM analytical approximation
to both the unforced i.v.p. (2) and the forced i.v.p. (3) is better than the second-order KBM
analytical approximation. However, both the obtained analytical approximations give
satisfactory results and are highly compatible with the RK4 numerical approximations.

Table 1. The maximum residual error Ld to the second-order KBM analytical approximation (9) is
estimated for different values of the parameters (ε, α, ω).

The Parameter Ld

(ε, α, ω) = (0.1, 1, 1) 0.134834
(α, ω, ε) = (1, 1, 0.01) 0.00835117
(ε, ω, α) = (0.1, 1, 2) 0.0368
(ε, α, ω) = (0.1, 1, 2) 0.0441987
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Figure 1. The KBM second-order approximation (9) (dashed black curve) and RK4 numerical approx-
imation (solid red curve) to the i.v.p. (2) are plotted against different values of damping parameter ε:
(a) for ε = 0.01 and (b) for ε = 0.1.
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Figure 2. The KBM second-order approximation (9) (dashed black curve) and RK4 numerical approx-
imation (solid red curve) to the i.v.p. (2) are plotted against different values ω: (a) for ω = 1 and
(b) for ω = 2.
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Figure 3. The KBM second-order approximation (9) (dashed black curve) and RK4 numerical approx-
imation (solid red curve) to the i.v.p. (2) are plotted against different values of α: (a) for α = 1 and
(b) for α = 2.
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Figure 4. The KBM second-order approximation (9) (dashed black curve) and RK4 numerical approx-
imation (solid red curve), as well as the MSM first-order approximation (20) (solid red curve) and
RK4 numerical approximation (dashed black curve) to the i.v.p. (2), are compared with each other for
different values of the damping parameter ε: (a,b) for ε = 0.1 and (c,d) for ε = 0.25.



Symmetry 2023, 15, 89 10 of 12

RK4

KBM Approx.
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Figure 5. The solution x(t) = u(t) + v(t) to the forced i.v.p. (3) using (a) the KBM second-order
approximation (9) (dashed black curve) and (b) the MSM first-order approximation (20) (dashed black
curve) is compared with the RK4 numerical approximation (solid red curve) as for (Γ1, Γ2, ω1, ω2) =

(0.05, 0.05, 1, 1).

4. Conclusions

The third-order/jerk Van-der Pol oscillatory equation has been solved analytically
using two perturbative methods, known as, the Krylov–Bogoliúbov-Mitropólsky method
(KBMM) and the multiple scales method (MSM). Using the MSM and KBMM, the first-
and second-order analytical approximations for both unforced and forced jerk Van-der Pol
oscillatory equations have been derived in detail. To investigate the efficiency and the accu-
racy of all the obtained analytical approximations, a comparison with the RK4 numerical
approximations has been reported. In addition, the maximum residual error for all the
derived analytical approximations has been estimated. It was found that the accuracy of the
first-order MSM analytical approximation was better than the second-order KBM analytical
approximation, which means that the second-order MSM analytical approximation will
become more accurate than the second-order KBM analytical approximation. However,
the two obtained analytical approximations give satisfactory results compared to the RK4
numerical approximations. Thus, we can conclude that the two proposed perturbative
methods are effective and accurate for analyzing many non-linear differential equations
with higher-order derivatives and higher non-linearities.

Future work: The proposed two perturbative methods can be employed for analyzing
the forced jerk oscillatory equation having cosine hyperbolic non-linearity [22].
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Appendix A. The Coefficients F3 of Equation (19)

F3 =

c2
0CDε2(3α4 − 12α2ω2 + ω4)(e2Ct − 1

)(
C− c2

0D
)
−
(
c2

0D
(
e2Ct − 1

)
− Ce2Ct)×

Cε log
(
c2

0D
(
e2Ct − 1

)
− Ce2Ct) Cε

(
3α4 − 12α2ω2 + ω4)

−8D
(

2α4(ε + ω2)
+α2(4ω4 − 9εω2)+ ω4(ε + 2ω2) )


+ log

(
e2Ct) ω4(32α2Dε(C− 4D)− ε2(C− 4D)2 + 384α4D2)

+4α2ω2(4α2Dε(C− 4D) + 3ε2(C− 4D)(C− 2D) + 32α4D2)
−α4ε2(C− 4D)(3C− 4D) + 16Dω6(Cε + 24α2D− 4Dε

)
+ 128D2ω8


+Cε log(−C)

(
8D
(
2α4(ε + ω2)+ α2(4ω4 − 9εω2)+ ω4(ε + 2ω2))

−Cε
(
3α4 − 12α2ω2 + ω4) )


.
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