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Abstract: The basic aspect of the research on coefficient problems for numerous families of uni-
valent functions is to describe the coefficients of functions in a specific family by the coefficients
of the Carathéodory functions. Thus, in utilizing the inequalities that are known for the class of
Carathéodory functions, coefficient functionals may be examined. Several coefficient problems will
be addressed in this study by utilizing the methodology for the abovementioned functions’ family.
The family of starlike functions with respect to symmetric points connected to a three-leaf-shaped
image domain is the topic of our investigation.
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1. Introduction and Definitions

To give a complete understanding of the main results given in this paper, the basic
terminology that are used throughout in our key findings are outlined, and some prelimi-
nary definitions followed by related results are discussed here. We begin with presenting
the most basic symbol for a unit disc that is open with Ud = {z ∈ C : |z| < 1}, and we
will use A to indicate the group of those analytic functions that have been normalized by
g(0) = g′(0)− 1 = 0. This signifies that g ∈ A , that is, every function of this group of
functions can be written as follows by using the Taylor’s series expansion

g(z) = z +
∞

∑
j=1

djzj, z ∈ Ud. (1)

To represent the group of univalent functions in A, we use the symbol S . This family of
functions was developed by Köebe in 1907.

In 1916, Bieberbach [1] earned the credit of stating one of the most popular and used
results of GFT, which is known as the “Bieberbach conjecture”. This conjecture states that
if g ∈ S , then |dn| ≤ n for every n ≥ 2. He gave his contribution by proving this stated
problem for one particular value, n = 2. It is evident that several well-known researchers
kept providing their input to prove interesting theories related to this unproved result,
and, for that, they used diversified approaches. This helped in the overall development of
GFT to a great extent. We will list the contributions of a few of them here. For example,
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for n = 3, the conjecture was proved in the remarkable work of Löwner [2], who used
Löwner differential equations followed by the other two well known researchers, Schaeffer
and Spencer [3], who used the variational method. Afterward, Jenkins [4] also proved
the same result, that is, the coefficient inequality |d3| ≤ 3, but he proved it by using
quadratic differentials. Garabedian and Schiffer [5] then continued this chain of proving
the related results, and they used the same variational technique but advanced the research
by determining the next results, that is, |d4| ≤ 4. Pederson and Schiffer [6] were the ones
who proved that the fifth coefficient in the aforementioned conjecture is less than or equal
to 5 by using the well-known Garabedian–Schiffer inequality ([7] p. 108). This sequence of
successful proofs by numerous authors continued, and then Pederson [8] and Ozawa [9,10]
gave the next level results that proved the “Bieberbach conjecture”, which was stated for
all n ≥ 2 and for n ≥ 6, that is, |d6| ≤ 6. They achieved it by using Grunsky inequality ([7]
p. 60). For some time, then, we see that no result was presented in any research paper to
show the proof for n ≥ 7. This conjecture remained unsolved for any other value of n in
particular, or as a general proof . Ultimately, it was then that de-Branges [11], who took the
credit in 1985, proved this well-known conjecture—which had been unsolved for a longer
period of time—for every n ≥ 2. He completed this remarkable piece of research with the
help of one of the special functions known as hypergeometric functions.

In an attempt to solve the above problem between the years 1916 and 1985, many other
interesting results were presented by numerous researchers, which ultimately gave a boost
to research in GFT. Some of those were the calculations of the estimates of the nth coefficient
bounds meant for a number of sub-collections of the family of univalent functions. To name
a few, we also had starlike functions represented by S∗, convex functions denoted by
C, close-to-convex functions known as K, etc. Some of the fundamental families are
defined below:

S∗ =

{
g ∈ S : < zg′(z)

g(z)
> 0, (z ∈ Ud)

}
,

C =

{
g ∈ S : < (zg′(z))′

g′(z)
> 0, (z ∈ Ud)

}
,

K =

{
g ∈ S : < zg′(z)

h(z)
> 0 with h ∈ S∗ (z ∈ Ud)

}
.

By choosing special values for these general parameters, we obtained some other sub-
collections with interesting geometrical properties. For example, if we select h(z) = z,—i.e.,
the close to convex family, which is represented byK—it becomes the collection of functions
for bounded turning. This special group of functions is represented by the symbol BT .
The notable contribution by the authors [12] in 1992 was the consideration that a function φ,
which is univalent in the domain that is an open unit disc and that satisfies the properties
φ′(0) > 0, is also <φ > 0. The interesting geometric property of the region φ(Ud) is that
it is star-shaped around the fixed point φ(0) = 1. Its axis of symmetry is the real line.
Continuing on the same lines, the authors defined the unified sub-collection of the class S
by using the idea of subordination as follows.

S∗(φ) =
{

g ∈ S :
zg′(z)
g(z)

≺ φ(z), (z ∈ Ud)

}
.

The authors kept their focus on some very basic and important results, all of which
were based on the geometrical properties of these functions. Some of them were covering,
growth of function, and/or distortion theorems. During the past few years, we have
observed in the literature that various sub-collections of the collection of univalent functions
S have been thoroughly studied as specific options for the class S∗(φ). Inspired by the
remarkable vital research in this direction, we list a few of these subfamilies that have been
discovered lately.
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(i). S∗L ≡ S∗(
√

1 + z) [13], S∗car ≡ S∗
(

1 + 2
3 z + 1

3 z2
)

[14] , S∗exp ≡ S∗(exp(z)) [15],

(ii). S∗cos ≡ S∗(cos(z)) [16], S∗sin ≡ S∗(1 + sin(z)) [17], S∗pet ≡ S∗
(

1 + sinh−1 z
)

[18],

(iii). S∗cosh ≡ S
∗(cosh(z)) [19], S∗tanh ≡ S

∗(1 + tanh(z)) [20], S∗c ≡ S∗(1 + z + 1
2 z2) [21],

(iv). S∗(n−1)L ≡ S
∗(Ψn−1(z)) [22] with Ψn−1(z) = 1 + n

n+1 z + 1
n+1 zn for n ≥ 4.

We now give a very important determinant denoted by Dλ,n(g) with n, λ ∈ N =
{1, 2, . . .}. This determinant is named after Hankel and consists of the coefficients of the
function g, which is an element of S

Dλ,n(g) =

∣∣∣∣∣∣∣∣∣
dn dn+1 . . . dn+λ−1
dn+1 dn+2 . . . dn+λ
...

... . . .
...

dn+λ−1 dn+λ . . . dn+2λ−2

∣∣∣∣∣∣∣∣∣.
The above equation was provided by Pommerenke [23,24]. The Hankel determinants have
extensively been used in many technological studies, especially where mathematical tools
come into consideration. They are used in the theory of non-stationary signals in the
Hamburger moment problem, the theory of Markov processes, and in many others, and
these can be accessed from [25–27].

The first and second determinants mentioned above have been thoroughly utilized by
researchers in a number of articles. They have been particularly studied in the perspectives
of various sub-collections of univalent functions. It would be unjust not to mention the
contributions provided by the researchers [28–31]. This piece of work is important to
highlight because, in these articles, the authors calculated the sharp bounds for the second
Hankel determinant. More interesting results on this determinant can be seen in the
articles of [32–36].

The most challenging problem to study is the above third-order determinant, especially
in finding its sharp bounds. Although there are several papers on the investigation of the
non-sharp bounds of this determinant, we cite here a few of them. (See [37–42].) In fact,
Babalola was the very first person to study the bounds of the third-order determinant for
the K, S∗ and BT families in a paper [43] that surfaced in 2010. After that, with the use
of a novel technique, Zaprawa [44] enhanced Babalola’s findings in 2017. He proved the
following non-sharp bounds

|D3,1(g)| ≤


49

540 , for g ∈ C,
1, for g ∈ S∗,
41
60 , for g ∈ BT .

Following that, certain scientists have worked hard to prove the sharp bounds for these
inequalities, and some of them [45,46] were successful in obtaining improved bounds for
the class S∗. The sharp bounds of this determinant were finally obtained for classes C, S∗,
and BT in the articles [47,48], and [49], respectively. These sharp bounds are

|D3,1(g)| ≤


4

135 , for g ∈ C,
4
9 , for g ∈ S∗,
1
4 , for g ∈ BT .

The sharp bounds for the abovementioned subclass of starlike functions S∗(φ) have
been found by many researchers with different values of the function φ. Some of the recent
developments are listed in Table 1.
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Table 1. Sharp bounds on |D3,1(g)| for some subclasses of S∗.

Author/s φ(z) Sharp Bound Year Reference

B. Rath et al. 1
1−z 1/9 2022 [50]

S. Banga and S.S. Kumar
√

1 + z 1/36 2020 [51]
K. Ullah et al. 1 + tanh(z) 1/9 2021 [52]
Shi et al. 1 + sin(z) 1/9 2022 [53]
Riaz et al. 2

1+e−z 1/36 2022 [54]
V. Neha and S.S Kumar. 1 + zez 1/9 2022 [55]
Z.-G Wang et al. 1 + sinh−1(z) 1/9 2023 [56]

Using the same methodology, Lecko et al. [57] computed the sharp bounds of |D3,1(g)|
for the functions belonging to the family S∗(1/2). (We recommend the much appreciated
work by[58–65].) In some of these articles, the authors proved the sharp bounds of the
third-order Hankel determinant, and they performed this for the various sub-collections of
univalent functions.

In [22], a subclass of starlike functions was introduced by Gandhi as follows

S∗3l =

{
g ∈ S :

zg′(z)
g(z)

≺ 1 +
4
5

z +
1
5

z4 (z ∈ Ud)

}
.

Motivated by the last definition, we now introduce the class S∗3l,s of starlike functions with
respect to the symmetric points associated with the three-leaf-shaped region, which is
given by

S∗3l,s =

{
g ∈ S :

2zg′(z)
g(z)− g(−z)

≺ 1 +
4
5

z +
1
5

z4 (z ∈ Ud)

}
. (2)

In this article, our focus is the computation of the sharp estimates of the coefficients
dn with n = 2, . . . , 5, as well as the Fekete-Szegö, Zalcman, and Krushkal inequalities for
the class S∗3l,s with respect to the symmetric points linked with a three-leaf-shaped domain.
Furthermore, the estimates of |D2,2(g)|, |D2,3(g)|, and |D3,1(g)| were also obtained for the
same class.

2. A Set of Lemmas

Let P represent the class of all functions p that are regular in Ud with <(p(z)) > 0,
and which has the series representation given below

p(z) = 1 +
∞

∑
n=1

cnzn ( z ∈ Ud). (3)

Lemma 1. Let p ∈ P be given by (3). Then∣∣cp
∣∣ ≤ 2 for p ≥ 1. (4)

and ∣∣cp+q − δcpcq
∣∣ ≤ 2 max{1, |2δ− 1|} =

{
2 for δ ∈ [0, 1];

2|2δ− 1| otherwise.
. (5)

Also, If B ∈ [0, 1] with B(2B− 1) ≤ D ≤ B, we achieve∣∣∣c3 − 2Bc1c2 + Dc3
1

∣∣∣ ≤ 2. (6)

The inequalities (4), (5) and (6) are taken from [7,66] and [67] respectively.

Lemma 2 ([68]). If a, γ, α, and β satisfy a ∈ (0, 1) and α ∈ (0, 1) with(
(−β + α(α + a))2 + (−2γ + βα)2

)
8(1− a)a + (−2aα + β)2(1− α)α ≤ 4α2(1− α)2(1− a)a. (7)
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Let p ∈ P be given by (3). Then∣∣∣∣γc4
1 + ac2

2 + 2αc1c3 −
3
2

βc2
1c2 − c4

∣∣∣∣ ≤ 2.

Lemma 3. If p ∈ P be given by (3), then for x, ς, ρ ∈ Ud, we have

2c2 =
(

4− c2
1

)
x + c2

1, (8)

4c3 = 2
(

4− c2
1

)
xc1 − x2

(
4− c2

1

)
c1 + 2ς

(
1− |x|2

)(
4− c2

1

)
+ c3

1, (9)

8c4 =
[
c2

1

(
−3x + x2 + 3

)
+ 4x

](
4− c2

1

)
x− 4

(
1− |x|2

)(
4− c2

1

)
[
(x− 1)ςc + ς2x− ρ

(
1− |ς|2

)]
+ c4

1. (10)

The formulae c2, c3, and c4 are studied in [7], [69], and [70], respectively.

3. Coefficient Inequalities

First, we can study the upper estimates up to the fifth coefficient d5 for g ∈ S∗3l,s.

Theorem 1. If g ∈ S∗3l,s has the series expansion (1), then

|d2| ≤
2
5

, (11)

|d3| ≤
2
5

, (12)

|d4| ≤
1
5

, (13)

|d5| ≤
1
5

. (14)

These outcomes are sharp.

Proof. Let g ∈ S∗3l,s, then (2), if written in the form of Schwarz function, has the follow-
ing form

2zg′(z)
g(z)− g(−z)

= 1 +
4
5

w(z) +
1
5
(w(z))4, (z ∈ Ud).

If a function p ∈ P , then we can write it in terms of Schwarz function w(z) as

p(z) =
1 + w(z)
1− w(z)

= 1 + c1z + c2z2 + c3z3 + · · · , (15)

or, correspondingly, as

w(z) =
p(z)− 1
p(z) + 1

=
c1z + c2z2 + c3z3 + · · ·

2 + c1z + c2z2 + c3z3 + · · · . (16)

Using Equation (1), it follows that

2zg′(z)
g(z)− g(−z)

= 1 + 2d2z + 2d3z2 + (4d4 − 2d2d3)z3

+
(

4d5 − 2d2
3

)
z4 + · · · . (17)
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By simplification and using the series expansion of (16) , we obtain

1 +
4
5

w(z) +
1
5

w(z)4 = 1 +
(

2
5

c1

)
z +

(
2
5

c2 −
1
5

c2
1

)
z2 +

(
1
10

c3
1 −

2
5

c1c2 +
2
5

c3

)
z3

+

(
− 3

80
c4

1 +
3
10

c2
1c2 −

1
5

c2
2 −

2
5

c1c3 +
2
5

c4

)
z4 + · · · . (18)

In comparing (17) and (18), we obtain

d2 =
1
5

c1, (19)

d3 =
1
2

(
2
5

c2 −
1
5

c2
1

)
, (20)

d4 =
3

200
c3

1 −
2
25

c1c2 +
1
10

c3, (21)

d5 = − 3
100

c2
2 +

11
200

c2
1c2 −

7
1600

c4
1 −

1
10

c1c3 +
1

10
c4. (22)

For d2, implementing (4) in (19), we obtain

|d2| ≤
2
5

.

For d3, by reordering (20), we obtain

d3 =
1
5

(
c2 −

1
2

c1c1

)
.

Using (5), we have

|d3| ≤
2
5

.

For d4, we can write (21) as

|d4| =
1
10

∣∣∣∣(c3 − 2
(

2
5

)
c1c2 +

3
20

c3
1

)∣∣∣∣.
From (6), let

B =
2
5

and D =
3
20

.

It is clear that 0 ≤ B ≤ 1, and B ≥ D with

B(2B− 1) = − 2
25
≤ D.

Thus, all the conditions of (6) are satisfied. Hence, we have

|d4| ≤
1
5

.

For d5, we can rewrite (22) as

d5 = − 1
10

(
7

160
c4

1 +

(
3

10

)
c2

2 + 2
(

1
2

)
c1c3 −

3
2

(
11
30

)
c2

1c2 − c4

)
= − 1

10

(
γc4

1 + dc2
2 + 2αc1c3 −

3
2

βc2
1c2 − c4

)
, (23)

where
γ =

7
160

, a =
3

10
, α =

1
2

, β =
11
30

,
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are such that(
(−β + α(α + a))2 + (−2γ + βα)2

)
8(1− a)a + (−2aα + β)2(1− α)α ≤ 4aα2(1− α)2(1− a),

a ∈ (0, 1), α ∈ (0, 1); therefore, by (7) and (23), we have

|d5| ≤
1
5

.

These results are sharp and equality is achieved from the following functions

2zg′(z)
g(z)− g(−z)

= 1 +
4
5

z +
1
5

z4 + · · · ,

2zg′(z)
g(z)− g(−z)

= 1 +
4
5

z2 +
1
5

z8 + · · · ,

2zg′(z)
g(z)− g(−z)

= 1 +
4
5

z3 +
1
5

z12 + · · · ,

2zg′(z)
g(z)− g(−z)

= 1 +
4
5

z4 +
1
5

z16 + · · · .

The required proof is thus accomplished.

Theorem 2. If g ∈ S∗3l,s, then

∣∣∣d3 − δd2
2

∣∣∣ ≤ max
{

2
5

,
2|δ|
25

}
, for δ ∈ C.

The outcome is sharp.

Proof. By putting (19) and (20), we obtain∣∣∣d3 − δd2
2

∣∣∣ = ∣∣∣∣15 c2 −
1

10
c2

1 − δ
1
25

c2
1

∣∣∣∣.
The application of (5) leads us to∣∣∣d3 − δd2

2

∣∣∣ ≤ 1
5

max
{

2, 2
∣∣∣∣(5 + 2δ

5

)
− 1
∣∣∣∣}.

After the simplification, we obtain∣∣∣d3 − δd2
2

∣∣∣ ≤ max
{

2
5

,
2|δ|
25

}
.

This outcome is best possible and is obtained by

2zg′(z)
g(z)− g(−z)

= 1 +
4
5

z2 +
1
5

z8 + · · · .

Theorem 3. If g belongs to S∗3l,s and is given by (1). Then

|d2d3 − d4| ≤
1
5

.

This inequality is the best possible.
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Proof. By putting (19)–(21), we have

|d2d3 − d4| =
1
10

∣∣∣∣c3 − 2
(

3
5

)
c1c2 +

7
20

c3
1

∣∣∣∣.
From (6), we have

0 ≤ B =
3
5
≤ 1, B =

3
5
≥ D =

7
20

and
B(2B− 1) =

3
25
≤ D =

7
20

.

Using (6), we obtain

|d2d3 − d4| ≤
1
5

.

This outcome is sharp. Equality is achieved from

2zg′(z)
g(z)− g(−z)

= 1 +
4
5

z3 +
1
5

z12 + · · · .

We can now calculate the determinant D2,2(g) for g ∈ S∗3l,s.

Theorem 4. If g ∈ S∗3l,s and has the form (1), then

|D2,2(g)| =
∣∣∣d2d4 − d2

3

∣∣∣ ≤ 4
25

.

This outcome is the best possible.

Proof. From (19)—(21), we have

D2,2(g) =
3

125
c2

1c2 +
1

50
c1c3 −

7
1000

c4
1 −

1
25

c2
2.

By applying (8) and (9) to write c2 and c3 in terms of c1 and observing that we can write
c1 = c, we achieve

|D2,2(g)| =

∣∣∣∣ 1
500

(
4− c2

)
c2x− 1

200

(
4− c2

)
c2x2 − 1

100

(
4− c2

)2
x2

+
1

100
c
(

4− c2
)(

1− |x|2
)

ς

∣∣∣∣,
By invoking |x| = t, |ς| ≤ 1 with t ≤ 1 we have the following form if we use triangular
inequality to simplify

|D2,2(g)| ≤
∣∣∣∣ 1
500

(
4− c2

)
c2t +

1
200

(
4− c2

)
c2t2 +

1
100

(
4− c2

)2
t2

+
1

100
c
(

4− c2
)(

1− t2
)∣∣∣∣ := ϕ(c, t).

It is now a straightforward task to illustrate that ϕ′(c, t) ≥ 0 on [0, 1], and hence ϕ(c, t) ≤
ϕ(c, 1). Thus,

|D2,2(g)| ≤ 7
1000

c2
(

4− c2
)
+

1
100

(
4− c2

)2
:= ϕ(c, 1).
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Without many complicated calculations, it follows that ϕ(c, 1) obtains its maxima at 0.
Hence,

|D2,2(g)| ≤ 4
25

.

The required D2,2(g) is sharp, and equality is achieved from

2zg′(z)
g(z)− g(−z)

= 1 +
4
5

z2 +
1
5

z8 + · · · .

Theorem 5. If g ∈ S∗3l,s, then

|d5 − d2d4| ≤
1
5

.

The outcome is sharp.

Proof. From (19), (21), and (22), we obtain

|d5 − d2d4| =
∣∣∣∣ 71
1000

c2
1c2 −

3
25

c1c3 −
59

8000
c4

1 −
3

100
c2

2 +
1
10

c4

∣∣∣∣.
After simplifying, we have

|d5 − d2d4| =
1
10

∣∣∣∣ 59
800

c4
1 +

3
10

c2
2 + 2

(
3
5

)
c1c3 −

3
2

(
71
150

)
c2

1c2 − c4

∣∣∣∣. (24)

Comparing the right side of (24) with∣∣∣∣γc4
1 + ac2

2 + 2αc1c3 −
3
2

βc2
1c2 − c4

∣∣∣∣,
we obtain

γ =
59

800
, a =

3
10

, α =
3
5

, β =
71
150

.

Thus, it follows that(
(−β + α(α + a))2 + (−2γ + βα)2

)
8(1− a)a + (−2aα + β)2(1− α)α = 0.04185

and
4aα2(1− α)2(1− a) = 0.048384.

From (7), we deduce that

|d5 − d2d4| ≤
1
5

.

This outcome is sharp and equality is attained from

2zg′(z)
g(z)− g(−z)

= 1 +
4
5

z4 +
1
5

z16 + · · · .

Theorem 6. If g ∈ S∗3l,s be given by (1), then∣∣∣d5 − d2
3

∣∣∣ ≤ 1
5

.

This is the finest possible inequality.
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Proof. Using (20) and (22), we obtain∣∣∣d5 − d2
3

∣∣∣ = ∣∣∣∣− 7
100

c2
2 +

19
200

c2
1c2 −

23
1600

c4
1 −

1
10

c1c3 +
1

10
c4

∣∣∣∣.
After simplifying, we have∣∣∣d5 − d2

3

∣∣∣ = 1
10

∣∣∣∣ 23
160

c4
1 +

7
10

c2
2 + 2

(
1
2

)
c1c3 −

3
2

(
19
30

)
c2

1c2 − c4

∣∣∣∣. (25)

In comparing the right side of (25) with∣∣∣∣γc4
1 + ac2

2 + 2αc1c3 −
3
2

βc2
1c2 − c4

∣∣∣∣,
where

γ =
23

160
, a =

7
10

, α =
1
2

, β =
19
30

,

it follows that(
(−β + α(α + a))2 + (−2γ + βα)2

)
8(1− a)a + (−2aα + β)2(1− α)α = 0.004406

and
4aα2(1− α)2(1− a) = 0.05250.

From (7), we deduce that ∣∣∣d5 − d2
3

∣∣∣ ≤ 1
5

.

This inequality is sharp and is attained by

2zg′(z)
g(z)− g(−z)

= 1 +
4
5

z4 +
1
5

z16 + · · · .

4. Krushkal Inequalities

This section contains an important result where we give a direct proof of the follow-
ing result ∣∣∣dp

n − dp(n−1)
2

∣∣∣ ≤ 2p(n−1) − np,

particularly for the class S∗3l,s with the forthcoming values of parameters, i.e., n = 4, p = 1,
etc., for n = 5 and p = 1. Krushkal discussed this abovementioned result along with its
proof for the whole collection of univalent functions in his article [71].

Theorem 7. If g ∈ S∗3l,s and is given by (1), then∣∣∣d4 − d3
2

∣∣∣ ≤ 1
5

.

The outcome of this is sharp.

Proof. By putting (19) and (21), we have∣∣∣d4 − d3
2

∣∣∣ = 1
10

∣∣∣∣c3 − 2
(

2
5

)
c1c2 +

7
100

c3
1

∣∣∣∣.
From (6), let

B =
2
5

and D =
7

100
,
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and let 0 ≤ B ≤ 1 and B ≥ D be with

B(2B− 1) = − 2
25
≤ D.

Thus, all the conditions of (6) are satisfied. Hence, we have∣∣∣d4 − d3
2

∣∣∣ ≤ 1
5

.

This equality is attained from

2zg′(z)
g(z)− g(−z)

= 1 +
4
5

z3 +
1
5

z12 + · · · .

Theorem 8. If g ∈ S∗3l,s and is given by (1), then∣∣∣d5 − d4
2

∣∣∣ ≤ 1
5

.

This outcome is sharp.

Proof. From (19) and (22), we obtain∣∣∣d5 − d4
2

∣∣∣ = ∣∣∣∣− 239
40000

c4
1 −

3
100

c2
2 +

11
200

c2
1c2 −

1
10

c1c3 +
1

10
c4

∣∣∣∣.
After simplifying, we have∣∣∣d5 − d4

2

∣∣∣ = 1
10

∣∣∣∣ 239
4000

c4
1 +

3
10

c2
2 + 2

(
1
2

)
c1c3 −

3
2

(
11
30

)
c2

1c2 − c4

∣∣∣∣. (26)

Comparing the right side of (26) with∣∣∣∣γc4
1 + ac2

2 + 2αc1c3 −
3
2

βc2
1c2 − c4

∣∣∣∣,
we obtain

γ =
239

4000
, a =

3
10

, α =
1
2

, β =
11
30

.

Thus, it follows that(
(−β + α(α + a))2 + (−2γ + βα)2

)
8(1− a)a + (−2aα + β)2(1− α)α = 0.009823

and
4aα2(1− α)2(1− a) = 0.0525.

From (7), we deduce that ∣∣∣d5 − d4
2

∣∣∣ ≤ 1
5

.

This equality is attained from

2zg′(z)
g(z)− g(−z)

= 1 +
4
5

z4 +
1
5

z16 + · · · .
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5. Third Hankel Determinant

Finally, we can calculate the determinant D3,1(g) for g ∈ S∗3l,s.

Theorem 9. If g ∈ S∗3l,s, then
|D3,1(g)| ≤ 0.047.

Proof. The determinant D3,1(g) is described as follows

D3,1(g) = 2d2d3d4 − d3
3 − d2

4 + d3d5 − d2
2d5.

Plugging (19)–(22) with c1 = c we obtain

D3,1(g) =
1

80000

(
63c6 − 622c4c2 + 560c3c3 + 1152c2c2

2 − 1120c2c4 + 320cc2c3

−1120c3
2 + 1600c2c4 − 800c2

3

)
. (27)

Let s = 4− c2 in (8)–(10). Now, using these lemmas, we obtain

622c4c2 = 311
(

c6 + c4sx
)

,

560c3c3 = −140c4sx2 + 280c3s
(

1− |x|2
)

ς + 280c4sx + 140c6,

1152c2c2
2 = 288c6 + 576c4sx + 288c2s2x2,

1120c2c4 = −560
(

1− |x|2
)

c2xς2s− 420c4sx2 + 560
(

1− |x|2
)

c3ςs + 560c2sx2

+ 140c4sx3 + 140c6 + 560
(

1− |ς|2
)(

1− |x|2
)

c2ρs + 420c4sx

− 560
(

1− |x|2
)

c3sςx,

320cc2c3 = −40c2s2x3 − 40c4sx2 + 80cxs2
(

1− |x|2
)

ς + 80c2x2s2 + 80c3s(
1− |x|2

)
ς + 120c4sx + 40c6,

1120c3
2 = 140c6 + 420c4sx + 420c2s2x2 + 140s3x3,

1600c2c4 = 100c6 + 100c4sx3 + 400c4sx− 400c2sx2 − 400
(

1− |x|2
)

sxς2c2

−400
(

1− |x|2
)

c3sςx− 300c4sx2 + 400
(

1− |ς|2
)(

1− |x|2
)

c2ρ s

+ 100c2s2x4 − 300c2s2x3 + 400
(

1− |x|2
)

c3ςs + 300c2s2x2

+ 400s2x3 − 400cs2x2
(

1− |x|2
)

ς− 400xs2x
(

1− |x|2
)

ς2

+ 400
(

1− |ς|2
)(

1− |x|2
)

s2ρx + 400
(

1− |x|2
)

s2xςc,

800c2
3 = 200

(
1− |x|2

)2
s2ς2 + 50c2s2x4 − 200

(
1− |x|2

)
s2x2ςc− 100c4sx2

+200c2s2x2 − 200c2s2x3 + 400
(

1− |x|2
)

s2xςc + 200c4sx

+ 50c6 + 200
(

1− |x|2
)

c3ςs.
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Plugging the above expressions in (27), we obtain

D3,1(g) =
1

80000

{
48c2x2s2 − 140c2x3s2 + 40c4x2s− 160c2x2s− 40c4x3s

+50c2x4s2 − 200s2
(

1− |x|2
)2

ς2 − 140x3s3 + 160c3xs
(

1− |x|2
)

ς

+160
(

1− |x|2
)

sxς2c2 − 200
(

1− |x|2
)

x2s2cς + 80
(

1− |x|2
)

cxs2ς

−400
(

1− |x|2
)

xs2xς2 + 400x3s2 + 400
(

1− |ς|2
)(

1− |x|2
)

s2xρ

+25c4xs− 160
(

1− |ς|2
)(

1− |x|2
)

c2ρs− 10c6
}

.

Since s = 4− c2, then

D3,1(g) =
1

80000

(
I0(c, x) + I1(c, x)ς + I2(c, x)ς2 + $(c, x, ς)ρ

)
,

where ς, x, ρ ∈ Ud, and

I0(c, x) = −10c6 +
(

4− c2
)[(
−160x3 + 50c2x4 + 48c2x2

)(
4− c2

)
+25c4x− 160c2x2 − 40c4x3 + 40c4x2

]
,

I1(c, x) =
(

1− |x|2
)(

4− c2
)[(

80cx− 200cx2
)(

4− c2
)
+ 160c3x

]
,

I2(c, x) =
(

1− |x|2
)(

4− c2
)[(
−200|x|2 − 200

)(
4− c2

)
+ 160c2x

]
,

$(c, x, ς) =
(

1− |x|2
)(

4− c2
)(

1− |ς|2
)[
−160c2 + 400x

(
4− c2

)]
.

By replacing |x| with x, and |ς| with y,, if we apply the statement |ρ| ≤ 1, it follows that

|D3,1(g)| ≤ 1
80000

(
|I0(c, x)|+ |I1(c, x)|y + |I2(c, x)|y2 + |$(c, x, ς)|

)
.

≤ 1
80000

(T(c, x, y)), (28)

where
T(c, x, y) = v0(c, x) + v1(c, x)y + v2(c, x)y2 + v3(c, x)

(
1− y2

)
,

with

v0(c, x) = 10c6 +
(

4− c2
)[(

160x3 + 50c2x4 + 48c2x2
)(

4− c2
)

+25c4x + 160c2x2 + 40c4x3 + 40c4x2
]
,

v1(c, x) =
(

1− x2
)(

4− c2
)[(

80cx + 200cx2
)(

4− c2
)
+ 160c3x

]
,

v2(c, x) =
(

1− x2
)(

4− c2
)[(

200x2 + 200
)(

4− c2
)
+ 160c2x

]
,

v3(c, x) =
(

1− x2
)(

4− c2
)[

160c2 + 400
(

4− c2
)

x
]
.

Now, our aim is to find the maximum of T(c, x, y) in a very particular domain, i.e., a closed
cuboid Ξ : [0, 2]× [0, 1]× [0, 1].

To achieve the required result, we have to enact this proof for T(c, x, y) in three regions,
i.e., in the interior of the domain Ξ, as well as in its faces and then on the edges.

1. Interior points of the cuboid Ξ :



Symmetry 2023, 15, 1837 14 of 26

Suppose (c, x, y) ∈ (0, 2)× (0, 1)× (0, 1). Then, on differentiating T(c, x, y) partially
about the parameter y, we obtain

∂T
∂y

=
(

4− c2
)
(1− x2)

[
400y(x− 1)

((
4− c2

)
(x− 1) +

4
5

c2
)

+40c
(

x
(

4− c2
)
(2 + 5x) + 4c2x

)]
.

Taking ∂T
∂y = 0, gives

y =
40c
(
x
(
4− c2)(2 + 5x) + 4c2x

)
400(x− 1)

(
(4− c2)(1− x)− 4

5 c2
) = y∗.

If y∗ should belong to (0, 1), then it is possible only if

160c3x + 40cx
(

4− c2
)
(2 + 5x) + 400(1− x)2

(
4− c2

)
< 320(1− x)c2 (29)

and

c2 >
20(1− x)

9− 5x
. (30)

Now, only a solution that can meet both the inequalities (29) and (30) will be accepted as a
critical point.

Suppose g(x) = 20(1−x)
9−5x . Thus, g(x) decreases over (0, 1). Thus, c2 > 0, and a straight-

forward task illustrates that (29) will not hold for all values of x ∈ (0, 1). This implies that
we have not found a critical point for T in (0, 2)× (0, 1)× (0, 1).

2. Interior of all the six faces of the cuboid Ξ :
(i) In choosing c = 0, we achieve

q1(x, y) = 640
(

4x3 + (10x + (x− 1)(5x− 5)y2)(1− x2)
)
= T(0, x, y).

When partially differentiating q1(x, y) about the parameter y, we obtain

∂q1

∂y
= 1280y(1− x2)(5x− 5)(x− 1).

But ∂q1
∂y 6= 0 for x, y ∈ (0, 1). Hence, the final result is that there is no maximum value for

T(0, x, y) in (0, 1)× (0, 1).
(ii) In setting c = 2, we have

T(2, x, y) ≤ 640.

(iii) By taking x = 0, we obtain

T(c, 0, y) = q2(c, y) = 10c6 + (4− c2)
(
−360c2y2 + 800y2 + 160c2

)
.

When partially differentiating q2(c, y) about the parameter y and the parameter c, we obtain

∂q2

∂y
= (4− c2)

(
−720c2y + 1600y

)
and

∂q2

∂c
= 60c5 − 320c3 +

(
4− c2

)(
−720cy2 + 320c

)
+ 720c3y2 − 1600cy2.

Another outcome followed by a simple calculation is that no optimal solution is attained
for T(c, 0, y) in (0, 2)× (0, 1).
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(iv) Considering x = 1, we have

q3(c, y) = 10c6 + (4− c2)
(
(4− c2)(160 + 98c2) + 160c2 + 105c4

)
= T(c, 1, y).

Then
∂q3

∂c
= 18c5 − 1456c3 + 1856c.

By taking ∂q3
∂c = 0, we achieve c ≈ 1.138, at which q3(c, y) attains its maxima, which is

q3(c, y) ≤ 3157.83.

(v) If we choose y = 0, we find that

q4(c, x) = 50c6x4 − 40c6x3 + 8c6x2 − 400c4x4 − 25c6x− 80c4x3

+ 10c6 − 224c4x2 + 800c2x4 + 500c4x + 1920c2x3 − 160c4

+ 768c2x2 − 3200c2x− 3840x3 + 640c2 + 6400x = T(c, x, 0).

Now, by partially differentiating about the parameter c, and parameter x, as well as
simplifying, we have

∂q4

∂c
= 300c5x4 − 240c5x3 + 48c5x2 − 1600c3x4 − 150c5x− 320c3x3

+ 60c5 − 896c3x2 + 1600cx4 + 2000c3x + 3840cx3 − 640c3

+ 1536cx2 − 6400cx + 1280c

and

∂q4

∂x
= 200c6x3 − 120c6x2 + 16c6x− 1600c4x3 − 25c6 − 240c4x2

− 448c4x + 3200c2x3 + 500c4 + 5760c2x2 + 1536c2x

− 3200c2 − 11520x2 + 6400.

From computation, we can conclude that no solution exists for the abovementioned system
of equations:

∂q4

∂c
= 0 and

∂q4

∂x
= 0,

and in (0, 2)× (0, 1).
(vi) By taking y = 1, the following result is obtained:

q5(c, x) = 50c6x4 − 40c6x3 − 200c5x4 + 8c6x2 + 80c5x3

− 600c4x4 − 25c6x + 200c5x2 + 480c4x3 + 1600c3x4

+ 10c6 − 80c5x− 384c4x2 + 2400c2x4 − 60c4x− 1600c3x2

− 1920c2x3 − 3200cx4 + 200c4 + 1408c2x2 − 1280cx3

− 3200x4 + 640c2x + 3200cx2 + 2560x3 − 1600c2

+ 1280cx + 3200 = T(c, x, 1).
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With the partial derivative of q5(c, x) about the parameter c and parameter x, we have

∂q5

∂c
= 300c5x4 − 240c5x3 − 1000c4x4 + 48c5x2 + 400c4x3 − 2400c3x4

−150c5x + 1000c4x2 + 1920c3x3 + 4800c2x4 + 60c5 − 400c4x

−1536c3x2 + 4800cx4 − 240c3x− 4800c2x2 − 3840cx3 + 800c3

− 3200x4 + 2816cx2 − 1280x3 + 1280cx + 3200x2 − 3200c

+ 1280x

and

∂q5

∂x
= 200c6x3 − 120c6x2 − 800c5x3 + 16c6x + 240c5x2 − 2400c4x3

− 25c6 + 400c5x + 1440c4x2 + 6400c3x3 − 80c5 − 768c4x

+ 9600c2x3 − 60c4 − 3200c3x− 5760c2x2 − 12800cx3

+ 2816c2x− 3840cx2 − 12800x3 + 640c2 + 6400cx

+ 7680x2 + 1280c.

The result that a unique solution (c, x) ≈ (0.689, 0.720) exists is followed by simple calcula-
tions for the abovementioned system of equations. As such,

∂q5

∂c
= 0 and

∂q5

∂x
= 0,

and in (0, 2)× (0, 1). Hence,

T(c, x, 1) = q5(c, x) ≤ 3790.225.

3. On the Edges of the Cuboid Ξ :
(i) By selecting x = 0 and y = 0, we find that

T(c, 0, 0) = 10c6 − 160c4 + 640c2 = q6(c).

When differentiating q6(c) about the parameter c, we have

q′6(c) = 60c5 − 640c3 + 1280c.

We note that q′6(c) = 0 for the critical point c ≈ 1.632, at which q6(c) obtains its maxima.
Thus,

q6(c) ≤ 758.51.

(ii) By substituting x = 0 and y = 1, we obtain

T(c, 0, 1) = 10c6 + 200c4 − 1600c2 + 3200 = q7(c).

When differentiating q7(c) about the parameter c, we have

q′7(c) = 60c5 + 800c3 − 3200c.

We can see that q′7(c) < 0 for [0, 2] indicates that q7(c) is a decreasing function and obtains
its maxima at 0. Therefore,

T(c, 0, 1) = q7(c) ≤ 3200.

(iii) By choosing c = 0 and x = 0, we obtain

q8(y) = 3200y2 = T(0, 0, y).
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It follows that q′8(y) > 0 for [0, 1] shows that q8(y) is an increasing function and that the
maxima is attained at 1. Therefore,

q8(y) ≤ 3200.

(iv) We note that T(c, 1, y) is free of y. Thus, it follows that

q9(c) = T(c, 1, 1) = T(c, 1, 0).

q9(c) = 3c6 − 364c4 + 928c2 + 2560.

When partially differentiating q9(c) about the parameter c, we obtain

q′9(c) = 18c5 − 1456c3 + 1856c.

By taking q′9(c) = 0, we achieve c ≈ 1.138, at which q9(c) achieves its maxima. Thus,

q9(c) ≤ 3157.83.

(v) By selecting c = 0 and x = 1, we achieve

T(0, 1, y) ≤ 2560.

(vi) By taking c = 2, we obtain
T(2, x, y) ≤ 640.

We see that T(2, x, y) is free of y, x, c. Thus, it follows that

T(2, 1, y) = T(2, x, 1) = T(2, x, 0) = T(2, 0, y) ≤ 640.

(vii) By substituting c = 0 and y = 1, we find that

q10(x) = −3200x4 + 2560x3 + 3200 = T(0, x, 1).

Thus, it follows that
q′10(x) = −12800x3 − 7680x2.

For the critical point ∂q10
∂x = 0, we achieve x ≈ 0.60, at which q10(x) achieves its maxima.

Hence,
q10(x) ≤ 3338.24.

(viii) By taking c = 0 and y = 0, we have

T(0, x, 0) = −3840x3 + 6400x = q11(x).

Clearly,
q′11(x) = −11520x2 + 6400.

Thus, we know that q′11(x) = 0 gives x ≈ 0.745, at which q11(x) obtain its maximum value,
which is given by

T(0, x, 0) = q11(x) ≤ 12800
9

√
5.

Hence, from the above situations, we achieve

T(c, x, y) ≤ 3790.225 on [0, 2]× [0, 1]× [0, 1].

By using Equation (28), it follows that

|D3,1(g)| ≤ 1
80000

(T(c, x, y)) ≤ 0.047.
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Thus, we have completed the proof.

Remark 1. The sharp bound on the third Hankel determinant for the class of symmetric points
with respect to three-leaf type domain is 1

25 . Equality, for the class S∗3l,s, holds in the case of the
function g which is defined by

2zg′(z)
g(z)− g(−z)

= 1 +
4
5

z3 +
1
5

z12 + · · · .

Theorem 10. If g ∈ S∗3l,s and has the form (1), then

|D2,3(g)| =
∣∣∣d3d5 − d2

4

∣∣∣ ≤ 0.044.

Proof. By plugging (20)–(22) with c1 = c, we obtain

D2,3(g) =
1

80000

(
17c6 − 318c4c2 + 560c3c3 + 608c2c2

2 − 800c2c4 − 320cc2c3

−480c3
2 + 1600c2c4 − 800c2

3

)
. (31)

Let s = 4− c2 in (8)–(10). Now, through using these lemmas, we obtain

318c4c2 = 159
(

c6 + c4sx
)

,

560c3c3 = −140c4sx2 + 280c3s
(

1− |x|2
)

ς + 280c4sx + 140c6,

608c2c2
2 = 152c6 + 304c4sx + 152c2s2x2,

800c2c4 = 100c6 + 100c4sx3 − 300c4sx2 + 300c4sx + 400c2sx2 − 400c3sx(
1− |x|2

)
ς− 400c2sx

(
1− |x|2

)
ς2 + 400c2s

(
1− |x|2

)(
1− |ς|2

)
ρ

+ 400c3s
(

1− |x|2
)

ς,

320cc2c3 = −40c2s2x3 − 40c4sx2 + 80cs2x
(

1− |x|2
)

ς + 80c2s2x2

+80c3s
(

1− |x|2
)

ς + 120c4sx + 40c6,

480c3
2 = 60c6 + 180c4sx + 180c2s2x2 + 60s3x3,

1600c2c4 = 100c6 + 100c4sx3 − 300c4sx2 + 400c4sx + 400c2sx2 − 400c3sx(
1− |x|2

)
ς− 400c2sx

(
1− |x|2

)
ς2 + 400c2s

(
1− |x|2

)(
1− |ς|2

)
ρ

+ 400c3s
(

1− |x|2
)

ς + 100c2s2x4 − 300c2s2x3 + 300c2s2x2

+ 400s2x3 − 400cs2x2
(

1− |x|2
)

ς− 400s2xx
(

1− |x|2
)

ς2

+ 400s2x
(

1− |x|2
)(

1− |ς|2
)

ρ + 400cs2x
(

1− |x|2
)

ς,

800c2
3 = 50c2s2x4 − 200cs2x2

(
1− |x|2

)
ς− 200c2s2x3 − 100c4sx2

+200s2
(

1− |x|2
)2

ς2 + 400cs2x
(

1− |x|2
)

ς + 200c2s2x2

+ 200c3s
(

1− |x|2
)

ς + 200c4sx + 50c6.
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By plugging the above expressions in (31), we obtain

D2,3(g) =
1

80000

{
−60x3s3 + 400x3s2 − 80cxs2

(
1− |x|2

)
ς− 200cx2s2

(
1− |x|2

)
ς

−400xs2
(

1− |x|2
)

xς2 + 400xs2
(

1− |x|2
)(

1− |ς|2
)

ρ + 25c4xs

−8c2x2s2 − 60c2x3s2 + 50c2s2x4 − 200s2
(

1− |x|2
)2

ς2
}

.

Since s = 4− c2, we have

D2,3(g) =
1

80000

(
J0(c, x) + J1(c, x)ς + J2(c, x)ς2 + J3(c, x, ς)ρ

)
,

where

J0(c, x) =
(

4− c2
)[(

4− c2
)(

160x3 − 8c2x2 + 50c2x4
)
+ 25c4x

]
,

J1(c, x) =
(

1− |x|2
)(

4− c2
)2(
−80cx− 200cx2

)
,

J2(c, x) =
(

1− |x|2
)(

4− c2
)2(
−200|x|2 − 200

)
,

J3(c, x, ς) = 400x
(

1− |x|2
)(

4− c2
)2(

1− |ς|2
)

.

By replacing |x| with x, and |ς| with y, if we apply the statement |ρ| ≤ 1, it follows that

|D2,3(g)| ≤ 1
80000

(
|J0(c, x)|+ |J1(c, x)|y + |J2(c, x)|y2 + |J3(c, x, ς)|

)
.

≤ 1
80000

(K(c, x, y)), (32)

where
K(c, x, y) = O0(c, x) + O1(c, x)y + O2(c, x)y2 + O3(c, x)

(
1− y2

)
,

with

O0(c, x) =
(

4− c2
)[(

4− c2
)(

160x3 + 8c2x2 + 50c2x4
)
+ 25c4x

]
,

O1(c, x) =
(

1− |x|2
)(

4− c2
)2(

80cx + 200cx2
)

,

O2(c, x) =
(

1− |x|2
)(

4− c2
)2(

200x2 + 200
)

,

O3(c, x) = 400x
(

1− |x|2
)(

4− c2
)2

.

Again, our aim is to find the maximum value of K(c, x, y) in a particular domain; in this
case, the closed cuboid is as follows Ξ : [0, 2]× [0, 1]× [0, 1].

To achieve the above stated goal, we need to first calculate the maximum value of
K(c, x, y) in the interior of the domain Ξ, as well as in its faces and then on the edges.

1. Interior points of cuboid Ξ
Suppose (c, x, y) ∈ (0, 2)× (0, 1)× (0, 1). Then, when partially differentiating K(c, x, y)

about the parameter y, we obtain

∂K
∂y

=
1

40

(
1− x2

)(
4− c2

)[
y(x− 1)(10x− 10)

(
4− c2

)
+ cx

(
4− c2

)
(5x + 2)

]
.
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In taking ∂K
∂y = 0, we obtain

y =
cx
(
4− c2)(5x + 2)

(4− c2)(x− 1)(10− 10x)
= y1.

If y1 should belong to (0, 1), then it is possible only if

cx
(

4− c2
)
(5x + 2) <

(
4− c2

)
(x− 1)(10− 10x) (33)

and
c2 > 4. (34)

Now, only a solution that meets both the inequalities (33) and (34) will be accepted as a
critical point.

Thus, c2 > 4 and a straightforward task illustrates that (33) does not hold for all values
of x ∈ (0, 1). This implies that we have found no critical point for K in (0, 2)× (0, 1)× (0, 1).

2. Interior of all the six faces of cuboid Ξ
(i) In taking c = 0, we find that

t1(x, y) = 640
[
4x3 + 5

(
1− x2

)(
y2(x− 1)2 + 2x

)]
= K(0, x, y).

When differentiating t1(x, y) about the parameter y, we have

∂t1

∂y
= 6400y(1− x2)(x− 1)2.

But ∂t1
∂y 6= 0 for x, y ∈ (0, 1). Hence, we have found no critical point for K(0, x, y) in

(0, 1)× (0, 1).
(ii) When choosing c = 2, we achieve

K(2, x, y) ≤ 0.

(iii) When substituting x = 0, we obtain

t2(c, y) = 200y2(4− c2)2 = K(c, 0, y).

When differentiating t2(c, y) about the parameter y and parameter c, we have

∂t2

∂y
= 400y(4− c2)2

and
∂t2

∂c
= −800cy2(4− c2).

A calculation shows that t2(c, y) has no optimal solution in (0, 2)× (0, 1).
(iv) When selecting x = 1, we have

t3(c, y) = (4− c2)((4− c2)
(

58c2 + 160
)
+ 25c4) = K(c, 1, y).

Thus, it is clear that
∂t3

∂c
= 198c5 − 816c3 − 704c.

We see that t′3(c) < 0 for [0, 2] illustrates that t3(c) is a decreasing function and achieves its
maxima at 0. Thus,

t3(c) ≤ 2560.
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(v) If we choose y = 0, we find that

t4(c, x) = 50c6x4 + 8c6x2 − 400c4x4 − 25c6x− 240c4x3 − 64c4x2 + 800c2x4

+500c4x + 1920c2x3 + 128c2x2 − 3200c2x− 3840x3 + 6400x = K(c, x, 0).

Now, when partially differentiating about the parameter c, and parameter x, as well as
simplifying, we have

∂t4

∂c
= 300c5x4 + 48c5x2 − 1600c3x4 − 150c5x− 960c3x3 − 256c3x2

+ 1600cx4 + 2000c3x + 3840cx3 + 256cx2 − 6400cx

and

∂t4

∂x
= 200c6x3 + 16c6x− 1600c4x3 − 25c6 − 720c4x2 − 128c4x + 3200c2x3

+ 500c4 + 5760c2x2 + 256c2x− 3200c2 − 11520x2 + 6400.

A numerical calculation shows that a solution does not exist for the system of equations

∂t4

∂c
= 0 and

∂t4

∂x
= 0,

and in (0, 2)× (0, 1).
(vi) When choosing y = 1, we obtain

t5(c, x) = 50c6x4 − 200c5x4 + 8c6x2 − 80c5x3 − 600c4x4 + 80c5x− 64c4x2

−25c6x + 200c5x2 + 160c4x3 + 1600c3x4 − 1600c3x2 − 1280c2x3

+ 640c3x3 + 2400c2x4 + 100c4x− 640c3x + 128c2x2 − 1280cx3

− 3200cx4 + 200c4 − 3200x4 + 3200cx2 + 2560x3 − 1600c2

+ 1280cx + 3200 = K(c, x, 1).

When partially deriving t5(c, x) about the parameter c and parameter x, we have

∂t5

∂c
= 300c5x4 − 1000c4x4 + 48c5x2 − 400c4x3 − 2400c3x4 − 150c5x

+ 1000c4x2 + 640c3x3 + 4800c2x4 + 400c4x− 256c3x2

+ 1920c2x3 + 4800cx4 + 400c3x− 4800c2x2 − 2560cx3

− 3200x4 + 800c3 − 1920c2x + 256cx2 − 1280x3 + 3200x2

− 3200c + 1280x.

and

∂t5

∂x
= 200c6x3 − 800c5x3 + 16c6x− 240c5x2 − 2400c4x3 − 25c6 + 400c5x

+480c4x2 + 6400c3x3 + 80c5 − 128c4x + 1920c3x2 + 9600c2x3

+100c4 − 3200c3x− 3840c2x2 − 12800cx3 − 640c3 + 256c2x

−3840cx2 − 12800x3 + 6400cx + 7680x2 + 1280c.

A simple computation illustrates that there exists a unique solution (c, x) ≈ (0.358, 0.647)
for the system of equations

∂t5

∂c
= 0 and

∂t5

∂x
= 0,
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and in (0, 2)× (0, 1). Thus, we have

K(c, x, 1) ≤ 3569.49.

3. On the Edges of the Cuboid Ξ
(i) By setting x = 0 and y = 0, we obtain

K(c, 0, 0) ≤ 0.

(ii) By choosing x = 0 and y = 1, we find that

t6(c) = 200c4 − 1600c2 + 3200 = K(c, 0, 1).

When differentiating t6(c) about the parameter c, we have

t′6(c) = 800c3 − 3200c.

Via a simple computation, it is indicated that t6(c) achieves its maxima at 0. Thus,

t6(c) ≤ 3200.

(iii) By selecting c = 0 and x = 0, we obtain

t7(y) = 3200y2 = K(0, 0, y).

It follows that t′7(y) > 0 for [0, 1] shows that t7(y) is an increasing function and that its
maxima is attained at 1. Therefore,

K(0, 0, y) = t7(y) ≤ 3200.

(iv) We note that K(c, 1, y) is free of y; as such, we obtain

t8(c) = K(c, 1, 1) = K(c, 1, 0).

t8(c) = 33c6 − 204c4 − 352c2 + 2560.

It follows that
t′8(c) = 198c5 − 816c3 − 704c.

Via a simple computation, it is indicated that t8(c) achieves its maxima at 0. Thus,

t8(c) ≤ 2560.

(v) By taking c = 0 and x = 1, we obtain

K(0, 1, y) ≤ 2560.

(vi) By choosing c = 2, it becomes

K(2, x, y) ≤ 0.

We can see that K(2, x, y) is free of y, x, c. Thus, it follows that

K(2, 1, y) = K(2, x, 1) = K(2, x, 0) = K(2, 0, y) ≤ 0.

(vii) By setting c = 0 and y = 1, we achieve

K(0, x, 1) = −3200x4 + 2560x3 + 3200 = t9(x).
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It is clear that
t′9(x) = −12800x3 + 7680x2.

For the critical point, ∂t9
∂x = 0, we obtain x ≈ 0.60, at which the maximum value is attained

for t9(x). Therefore,

K(0, x, 1) ≤ 83456
25

.

(viii) By substituting c = 0 and y = 0, we find that

K(0, x, 0) = −3840x3 + 6400x = t10(x).

When differentiating t10(x) about the parameter x, we have

t′10(x) = −11520x2 + 6400.

For the critical point, ∂t10
∂x = 0, we obtain x ≈ 0.745, at which maximum value is attained

for t10(x). Therefore,

K(0, x, 0) ≤ 12800
9

√
5.

Hence, from the above situations, we achieve

K(c, x, y) ≤ 3569.497 on [0, 2]× [0, 1]× [0, 1].

By using Equation (32), it follows that

|D2,3(g)| ≤ 1
80000

(K(c, x, y)) ≤ 0.044.

The required proof is thus completed.

Remark 2. The sharp bound on the Hankel determinant H2,3(g) for the class of symmetric points
with respect to a three-leaf type domain is 1

25 . Equality, for the class S∗3l,s, holds in the case of the
function g which is defined by

2zg′(z)
g(z)− g(−z)

= 1 +
4
5

z3 +
1
5

z12 + · · · .

6. Conclusions

In this study, we investigated starlike functions that are associated with three-leaf-
shaped geometrical regions with respect to symmetric points. We have estimated the
sharp coefficient inequalities for the said functions. The discussed coefficient inequalities
include the first five sharp coefficient bounds, the sharp bound for the third-order Hankel
determinant, as well as the Zalcman and Krushkal inequalities. Based on our estimated
results, we have also proposed certain conjectures that are strongly supported by our
results. These conjectures and the sharpness of all the results distinguish this work from
the already known results. The newly defined class S∗3l,s can be studied further in more
investigations, such as in the analysis of coefficient problems for their inverse functions
and logarithmic coefficients.
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32. Altınkaya, Ş.; Yalçın, S. Upper bound of second Hankel determinant for bi-Bazilevic functions. Mediterr. J. Math. 2016, 13,
4081–4090. [CrossRef]

33. Bansal, D. Upper bound of second Hankel determinant for a new class of analytic functions. Appl. Math. Lett. 2013, 26, 103–107.
[CrossRef]

34. Çaglar, M.; Deniz, E.; Srivastava, H.M. Second Hankel determinant for certain subclasses of bi-univalent functions. Turk. Math.
2017, 41, 694–706. [CrossRef]

35. Kanas, S.; Adegani, E.A.; Zireh, A. An unified approach to second Hankel determinant of bi-subordinate functions. Mediterr. J.
Math. 2017, 14, 233. [CrossRef]

36. Liu, M.S.; Xu, F.; Yang, M. Upper bound of second Hankel determinant for certain subclasses of analytic functions. Abstr. Appl.
Anal. 2014, 2014. [CrossRef]
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