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Abstract: The assumed rheological behavior of blood influences the hemodynamic characteristics of
numerical blood flow simulations. Until now, alternative rheological specifications have been utilized,
with uncertain implications for the results obtained. This work aims to group sixteen blood rheological
models in homogeneous clusters, by exploiting data generated from numerical simulations on an
idealized symmetrical arterial bifurcation. Blood flow is assumed to be pulsatile and is simulated
using a commercial finite volume solver. An appropriate mesh convergence study is performed,
and all results are collected at three different time instants throughout the cardiac cycle: at peak
systole, early diastole, and late diastole. Six hemodynamic variables are computed: the time average
wall shear stress, oscillatory shear index, relative residence time, global and local non-Newtonian
importance factor, and non-Newtonian effect factor. The resulting data are analyzed using hierarchical
agglomerative clustering algorithms, which constitute typical unsupervised classification methods.
Interestingly, the rheological models can be partitioned into three homogeneous groups, whereas
three specifications appear as outliers which do not belong in any partition. Our findings suggest
that models which are defined in a similar manner from a mathematical perspective may behave
substantially differently in terms of the data they produce. On the other hand, models characterized
by different mathematical formulations may belong to the same statistical group (cluster) and can
thus be considered interchangeably.

Keywords: non-Newtonian blood models; finite volume method; idealized symmetrical bifurcation;
hierarchical clustering; unsupervised classification

1. Introduction

Computational fluid dynamics (CFD) have recently been employed as a powerful tool
for the spatiotemporal resolution of various hemodynamics parameters, gaining consider-
able popularity in vascular surgery [1,2]. Especially for arterial aneurysms (either on the
carotid and cerebral arteries or the aorta), rupture risk estimation and hemodynamic per-
formance have been established as a field of continuous interest [3]. Numerical simulation
of blood flow has been widely studied in the literature for various geometric configurations
such as aortic arch [4-6], bifurcation models [7-11], abdominal aortic aneurysms [2,12-14],
stenosis [15,16], and cerebral models [13,17-20].

Besides geometry, the rheological behavior of blood can significantly influence the
hemodynamic output, in not only idealized but also medical-image-reconstructed com-
putational domains. A common issue that is usually investigated is the influence of
rheological models on an appropriately chosen set of hemodynamic parameters, since it
is well documented that blood behaves as a non-Newtonian fluid at low shear rates. This
is more prominent for values less than 100 s~! [21] and can potentially yield significant
non-Newtonian effects in small vessels, or near stenoses and aneurysms [22-24]. The
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non-Newtonian nature of blood is also supported by the fact that the instantaneous shear
rate throughout the cardiac cycle varies from 0 to approximately 1000 s~! [25], yielding
regions of shear thinning behavior. Additionally, blood can exhibit more complex behaviors
such as thixotropy or viscoelasticity. As a result, its viscosity can be altered by various
parameters such as red blood cell (RBC) concentration and aggregation, hematocrit, sex,
and arterial hypertension amongst others [26].

A large number of previous research studies have focused on non-Newtonian de-
viations in blood. The main concern is the construction of an accurate viscosity model
in terms of the shear rate, yielding various candidates that have been proposed in the
literature. A specific class of models that have been widely used for blood flow simula-
tions are characterized by two asymptotic viscosity values for low and high shear rates.
This class includes the Carreau (C) [5,25,27,28], Carreau—Yasuda (CY) [13,25,29,30], Cross
(Cr) [15,25,31,32], Cross-modified (Cr-m) [25,31,33,34], and Cross-simplified (Cr-s) mod-
els [25,31]. This model-class is usually applied in coronary arteries [35] and has shown good
agreement with experimental data [25]. Another group of blood models can be constructed
in terms of shear rate and hematocrit variation. The Casson (Cs) [25,36], Casson-modified
(Cs-m) [37,38], Kuang—Luo (KL) [6,31,39], Quemada (Q) [31,40,41], and Walburn-Schneck
(WS) [31,42,43] models incorporate RBC volume in blood, which is expected to lie between
37% and 45%.

It has been shown that the value of hematocrit affects blood viscosity more at low
shear rates than at high shear rates, enhancing non-Newtonian deviations for small shear
values [44]. For the needs of this study, the hematocrit value is set equal to 40% following
Cho and Kensey [25]. Another widely used blood model was introduced by Bird et al. in
1987 [45] in the form of power-law (P) [38,39,43,46]. Even though the model accurately
mimics blood for high shear rates, it fails in both low and high shear rate regions as pointed
out in [6]. An extended version of the power-law model that is capable of achieving
this, is the so-called generalized power-law (P-g) [5,6], mainly due to the large number of
parameters involved. Additional models such as the Herschel-Bulkley (HB) [2,47], Powell-
Eyring (PE) [25,48], and Powell-Eyring modified (PE-m) [25] form an almost complete set
of candidates for the description of blood under a wide range of physiological conditions.

An investigation of the literature suggests that different rheological models are used
interchangeably during computational modeling, with uncertain implications for the results
obtained. Therefore, this work aims to group alternative specifications into homogeneous
clusters; data generated from models in different clusters should be viewed as significantly
different. A priori, the aforementioned non-Newtonian specifications can be divided into
four main partitions, based on their underlying mathematical formulation. Specifically, the
first initial partition, dubbed IP1, contains C, CY, Cr, Cr-m, and Cr-s; IP2 consists of Cs, Cs-m,
KL, Q, and WS; the power-law-based (P and P-g) and Powell-Eyring-based (PE and PE-m)
variants constitute IP3 and IP4, respectively. Alternatively, each rheological specification can
be viewed as a data-generating process; hence, model grouping can be based on a statistical
unsupervised classification procedure, applied to the simulated explanatory variables that
characterize each model. To our knowledge, this is the first study that classifies alternative
rheologies using statistical clustering techniques. It is of interest to evaluate the derived
groups that coincide with the a priori partitions. Furthermore, statistical analysis is expected
to reveal (a) homogeneous groups, or clusters of specifications, which are close in terms
of their distances in the multi-dimensional space spanned by the simulated explanatory
variables; (b) models that can be viewed as representatives of each cluster; (c) outlying
specifications which do not belong in any cluster; and (d) hemodynamic variables that
characterize each cluster.

The manuscript is organized as follows: Section 2 describes the mathematical frame-
work that is adopted for the numerical simulation of non-Newtonian fluid flow; further-
more, it formulates the assumed rheological models and discusses the statistical method-
ology. Section 3 presents the results of the clustering procedure. Section 4 elucidates the
statistical and hemodynamic outcomes of this work, and Section 5 contains the concluding
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remarks. Finally, all relevant data analyzed herein are provided to the interested reader as
supplementary information.

2. Materials and Methods
2.1. Governing Equations and Simulation Setup
Blood is modelled as a homogeneous, incompressible, and non-Newtonian fluid. All
simulations are performed by solving the three-dimensional Navier—Stokes and continu-
ity equations
o[ +(UV)U|=-Vp+ VT,
V-U=0,

where U, p, p represent the fluid velocity, pressure, and density respectively. For the
non-Newtonian fluids considered here, the stress tensor depends linearly on the rate-of-

deformation tensor D = [VU + (VU)T] /2; that is

T= Zu(j/) D.

Furthermore, the shear rate dependent viscosity of blood is determined by the second
invariant of the rate-of-deformation tensor, since

. /1
=41/=D®D.
Y 7 b2y

Vascular flows can then be analyzed in terms of the near wall hemodynamic param-
eters over the entire cardiac cycle, T, such as the wall shear stress (WSS) and its most
commonly used metrics, the time average wall shear stress (TAWSS, Pa), oscillatory shear
index (OSI), and relative residence time (RRT, Pa—!). Let WSS represent the WSS vector,
defined as the dot product of the outward unit normal vector on a surface with the stress
tensor; then, TAWSS is expressed as follows

T
TAWSS — / ‘WSS‘dt.
T Jo

Even though TAWSS quantifies the tangential force on the vessel wall due to blood
flow as the average magnitude of the shear stress, it does not provide any information on
the varying frequency of the WSS direction. To describe the oscillatory nature of flows, the
work in [49] introduced the non-dimensional OSI, which is formulated as

T
WSS dt
OSI = ;<1 %')
S| wss | dt

with 0 < OSI < 0.5. Flows characterized by no cyclic variation in WSS, such as uniaxial
flows, correspond to OSI = 0, while flows with no preferred direction, where the time
average of the instantaneous WSS vanishes, yield OSI = 0.5. Finally, Himburg et al. [50]
introduced RRT in terms of the two previous hemodynamic markers as

1
(1 —2-0SI) TAWSS'

RRT =

RRT identifies regions of high particle residence time inside the fluid domain. It is
worth noting that the abovementioned metrics have been associated with various dis-
eased states, such as thrombogenic stimulating environments for TAWSS < 0.4 Pa [51],
OSI > 0.3 [50], and RRT > 10 Pa~1 [52].

An additional set of variables that characterize the non-Newtonian deviation of
fluid flows are (a) the local non-Newtonian importance factor I, [53]; (b) the global non-
Newtonian importance factor Ig [53]; and (c) the non-Newtonian effect factor NNEF [54].
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These variables compare the physical quantities of non-Newtonian rheological models with
respect to their Newtonian counterparts and are defined as

B
L= "
. [Z(ufum)z]
— (WSS)r\on—New onian (WSS)New onian
NNEF - (W§S>Newtonian t ’

In the above definitions, i, is the viscosity of the Newtonian model (equal to
0.00345 Pas in this study), and the summation is performed over all N grid nodes
that constitute the wall or fluid of the computational domain. The trivial case of
(I, Ig, NNEF) = (1, 0, 0) corresponds to the Newtonian case.

A commercial finite volume solver is utilized (Fluent 17.2, ANSYS Inc.) for all nu-
merical simulations herein. The SIMPLEC algorithm is adopted for pressure—velocity
coupling and the default criterion for solution convergence is set to 10~%. In addition, the
time step is kept constant (equal to 0.005 s), and four flow cycles are simulated before
results are collected in order to ensure that all transient effects are washed out. This is
achieved by ensuring that the velocity magnitude at the outlets does not vary more than
0.5% between successive cardiac cycles. In all cases, a rigid wall is assumed with a no-slip
boundary condition at the wall boundary. Transient velocity and pressure waveforms are
prescribed at the inlet and outlets respectively for a cycle of one second. Both waveforms
(Figure 1) closely follow Olufsen et al. [55]. The corresponding profiles are prescribed using
appropriate user-defined functions (UDFs), and the Womersley method is applied for the
inlet velocity, with a constant Womersley parameter equal to 17.97. The analyzed data are
collected at peak systole (t = 0.23 s), early (t = 0.46 s), and late diastole (t = 0.8 s).
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Figure 1. Mean inlet velocity and outlet pressure waveforms.

2.2. Non-Newtonian Blood Rheological Models

Table 1 presents (in alphabetical order) the 16 rheological models for blood that
are analyzed herein; the table also presents typical parameter values and representative
references. A graphical illustration is shown on Figure 2; one clearly observes that for shear
rate values greater than 100 s—!, all specifications converge to the Newtonian case.

Table 1. Rheological models examined in this study. All quantities are expressed in SI units unless

otherwise stated.

# Name (Abbreviation) Equation Parameter Values References
Carreau — —
1 /) = e + (Ho—Meo) Heo = 0.00345, py = 0.056 [5,25,27,28]
© k(Y) =1 o))" A = 3313, n = 0.3568
2 Carreau-Yasuda H(Y) = e + (Mo~ o) Moo = 0.00345, py = 0.056 [13,25,29,30]
N ENCONEEE A=1902, n=022, a=125

(€Y)
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Table 1. Cont.

# Name (Abbreviation) Equation Parameter Values References
Casson _ —\ 2
3 Cs) u(y) = (\/E + V\; ) k = 0.00345, 9 = 0.005 [25,36]
Casson modified o va )\’ k = 0.00345,
! (Cs-m) k(Y) = (\/IJ“ \fy+ﬁ) T =0021, A =115 [57,38]
Cross _ — —
5 A + (Ho ”‘oorz Heo = 0.00345, py = 0.056 [15,25,31,32]
(Cr) H(Y) = b + 305 A =1.007, m = 1.028
Cross modified — —
6 D\ (Mo He) _ Heo = 0.0035, py = 0.16 [25,31,33,34]
(Cr-m) m(Y) = oo + [1+(A7)™] A =82 m=064 =123
Cross simplified . (Lo 1teo) . . .
7 (Cr-s) p,(y) = U + ﬁ Heo = 0.005, ng =0.13, A =8 [25,31]
Herschel-Bulkley emm¥ — —
8 0\ pan—l To(l e ) T9 = 0.00345, k = 0.008 [2,47]
(HB) m(y) =kv v n = 0.8375, m = 1000
Kuang-Luo ) - . - -
9 — l T — 0.005, He = 0.0035, 6,31,39
(KL) mv) =5 [TO + ”C(“2ﬁ+ * y)} o = 1.0, ap = 1.19523 [ ]
Newtonian .
10 N 1Y) = oo oo = 0.00345 [42,56]
Powell-Eyring inh~1 (A = =
11 N B s (M) Heo = 0.00345, py = 0.056 25,48
(PE) H(Y) = oo + (o — o) =5 A =5.383 2]
Powell-Eyring ( ) 0.00345 0.056
12 modified V) = — In(Ay+1 Hoo =1 + Mo =P [25]
(PE-m) (V) = Heo + (Ho — Hoo) )" A = 2415, m = 1.089
13 POW(‘Ief)'laW u(y) =ky" ! k = 0.01467, n = 0.7755 [38,39,43,45,46]
W) = k() 7" He = 0.0035, Ap = 0.025,
Power-law generalized 0\ _ v b a=>50,b=23,
14 (P-g) KOV = oo+ Btexp = (T Joxp (=) 1 o An — 05, [5,61
n(y) =ne +Anexp|—(1+ X )exp —% c=50,d=4
-2
Quemada i 1 kotkeey/|V] /e po = 0.0012, y, = 1.88
15 Q m(y) =mo({1-2-- T ¢ ko =433, ko =207, ¢ =04  [314041]
Walburn-Schneck C; = 0.000797, C, = 0.0608,
16 (WS) () = CyeC2H eCaTPMA/H? 3~ GH C; =0.00499, C;, = 14585L/g,  [31,42,43]

TPMA =259 g/L, H=40
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Figure 2. Viscosity of the 16 models in terms of the shear rate. All models are characterized by similar
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2.3. Grid Generation and Mesh Convergence

The geometry of the model is built using SolidWorks (Dassault Systemes). Specifically,
the inlet and outlet diameters are set equal to D = 26 mm and d = 12 mm, respectively.
The angle between limbs is set to ¢ = 40°, and a mild fillet of 1 mm is considered at
the bifurcation area to avoid sharp edges. Finally, the length of the parent and daughter
vessels are set to y = 80 mm and x = 140 mm, respectively. The selected geometry aims to
approximate realistic anatomic configurations of the infrarenal abdominal aorta and the
aortic bifurcation, so that our conclusions are clinically relevant. In this regard, not only
does the selected geometry fall well within the normal range of infrarenal aortic anatomy,
but it is also representative of the typical dimensions of standard endoluminal grafts
that are used during standard endovascular treatment of aortic occlusive or aneurysmal
disease [57]. The solid model is meshed with ANSA (BETA CAE Systems S.A.) using a
pure hexahedral mesh; such meshes are preferred to tetrahedral or prismatic ones as they
require fewer elements for a fixed level of accuracy [58]. Figure 3 presents the key features
of the adopted configuration.

X
S
R
e

%

%
2
5
%
T
%
s
S5

A nesne
—

S

o

Figure 3. (A): Idealized bifurcation of inlet diameter, D, outlet diameter, d, and limb angle, ¢;
(B): surface mesh with varying density close to the bifurcation area to capture non-trivial flow dy-
namics; (C): inlet mesh with the corresponding O-grid in order to construct the boundary layer mesh.

A mesh convergence analysis is performed next; to this end, four different meshes
are adopted (Table 2). In all cases, the boundary layer (BL) occupies approximately 10% of
the inlet radius, and each level is constructed with a geometric factor of 1.2 with respect to
the previous one. Four different physical quantities are considered for mesh convergence:
TAWSS, OS], average outlet velocity, and volume pressure integral. The specific choice of
quantities is made in order to account for a wide range of model components such as wall,
outlet, and fluid. A 1% error threshold is assumed for mesh convergence; the corresponding
results are presented in Table 3. Thus, all simulations are performed with the so-called
fine mesh.

Table 2. Details of the four meshes assumed for mesh convergence. The table presents the total
number of elements and nodes, as well as the number of boundary layer (BL) element levels and
minimum element size on the boundary layer.

Mesh # of Elements # of Nodes BL Levels BL Min (mm)
Coarse 282450 299194 5 0.2688
Medium 660000 683789 10 0.0770
Fine 1229952 1263617 14 0.0338

Extra fine 2464640 2515452 19 0.0129
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Table 3. Results and percentage errors for TAWSS, OSI, average outlet velocity, and volume pressure
integral. All errors are calculated with respect to the extra fine mesh.

Mesh OsI Outlet Velocity Volume Pressure Integral
Result (Pa)/Error (%) Result/Error (%) Result (m/s)/Error (%) Result (Pa-m3)/Error (%)
Coarse 0.7905 6.65% 0.2117 5.96% 0.0548 2.81% 1.4225 —6.44%
Medium 0.7623 2.85% 0.2043 2.25% 0.0541 1.50% 1.4578 —4.12%
Fine 0.7433 0.28% 0.2010 0.60% 0.0535 0.38% 1.5312 —0.70%
Extra fine 0.7412 - 0.1998 - 0.0533 - 1.5205 -

2.4. Statistical Analysis

Dimensionality reduction via correlation-based filtering of explanatory variables con-
stitutes the first stage of the statistical analysis. The necessity of this procedure stems
from the high-dimensional data generated by simulation: the total number of explanatory
variables that characterize each rheological model is much larger than the number of ex-
amined models. The analysis of unfiltered, multi-collinear, high-dimensional data is not
straightforward for standard multivariate statistical procedures and may lead to inefficient
estimators that are not accurate in small samples [59]. Hence, redundant information is
eliminated via variance-inflation filtering; a stepwise procedure dubbed VIFstep eliminates
a predictor if it can be derived as a linear combination of other predictors [60].

Specifically, for the ith predictor, the variance inflation criterion is expressed as

VIF; = %,
1—R;f

with R? denoting the coefficient of determination of a linear regression model that uses the
ith predictor as the response, and the remaining available columns of data as explanatory
variables. R12 ranges from zero to one, with values close to one suggesting an almost perfect
linear association; in this case the ith predictor is redundant as it can be derived from other
columns. In the analyses that follow, filtering is performed in R, using package Rnalytica,
if VIFy > 20. Thus, the predictor with the largest VIF is eliminated if the aforementioned
inequality is satisfied; the procedure is implemented again with a reduced number of
columns, until the maximum value of the variance inflation criterion across the remaining
predictors is below the chosen threshold, which essentially requires all R? to be smaller
than 0.95.

VIFstep utilizes conventional, low-dimensional regressions; hence, it is performed
in stages, eliminating first redundancies per TAWSS, OSI, RRT, etc., separately. Then, a
new dataset named Dy is created by merging the columns that survived and VIFstep is
applied again to result in a final, low-dimensional dataset, which contains columns that are
not strongly correlated (D;). Principal components analysis (PCA) [61] is applied to the
columns in Dy, to exploit further dimensionality reduction that may enhance interpretability
of the clustering outcomes. PCA can be viewed as a de-noising step, which may lead to
a more stable clustering procedure method [62]. Specifically, PCA computes synthetic,
orthogonal variables that are expressed as linear combinations of the columns of D, and
represent different percentages of the variability of the original dataset; the ones that
correspond to negligible amounts of variability can be eliminated.

Depending on the PCA outcomes, a distance matrix is calculated using D, with stan-
dardized columns, or its reduced PCA-based variant. The resulting matrix is utilized to
partition rheological models into homogeneous groups and to identify outlying specifi-
cations. Variants of agglomerative hierarchical clustering methods [62] are implemented
with the R package FactoMineR. Namely, outputs from Ward’s method (the default method
in the HCPC function which performs well based on our prior experience) are emphasized
and evaluated against the ones derived by single, average, and complete linkage. The
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single linkage and the complete linkage methods compute the distance between clusters
by considering, respectively, the minimum and maximum distances between the units
assigned to the two clusters. The average linkage method considers the average value
of the distances between the units assigned to the two clusters, whereas Ward’s method
focuses on the distance between the cluster means of the two clusters. [63]. The quality of
alternative partitions (e.g., 4 versus 5 clusters) is examined by the total inertia [62] which
accounts for both (a) deviations between each rheological model and the center of gravity
of the cluster to which it belongs, and (b) deviations between each cluster-specific center
and the overall center of gravity.

3. Results

All simulated data are provided in the supplementary information. Table S1 depicts
the values of the global non-Newtonian importance factor Ig: excluding the HB model,
I attains its minimum value at peak systole, an intermediate value at early diastole, and
its maximum value at late diastole. It is thus evident that non-Newtonian effects are not
constant throughout the cardiac cycle and are more prominent at small velocities than at
high velocities. This in turn can be attributed to the significant viscosity variations that take
place during deceleration phases with respect to the corresponding acceleration phases.
Table S2a—c present the local non-Newtonian importance factor I, for all time instances
under consideration. Since I, corresponds to distributions of viscosity in terms of their
Newtonian counterparts on the wall, various distributional characteristics (deciles, average)
are depicted, starting from minimum (0Oth column) to maximum (10th column) values.
Additionally, Table S3a—c present the same values and ranges for the non-Newtonian effect
factor NNEF. Finally, Table S4a—c contain analogous information for TAWSS, OSI, and RRT,
respectively. Synthesis of the columns in Tables S1-54 results in a high-dimensional dataset
with 111 strongly correlated predictors and 16 cases (rheological models).

VIFstep-based predictor filtering resulted in substantial dimensionality reduction:
specifically, D, encompasses eight columns (Figure 4): global non-Newtonian importance
factor at peak systole and late diastole (Table S1, columns IGPS and IGLD, respectively),
maximum local non-Newtonian importance factor at peak systole (Table S2a, column ILPS-
max), the fifth decile and the maximum of the local non-Newtonian importance factor at
early diastole (Table S2b, columns ILED5dec, ILEDmax), the maximum of the local non-
Newtonian importance factor at late diastole (Table S2¢, column ILLDmax), the minimum
of the non-Newtonian effect factor at peak systole (Table S3a, column NNEFPSmin), and
finally the minimum of the non-Newtonian effect factor at late diastole (Table S3c, column
NNEFLDmin). Figure 4 confirms the presence of only a few significant bivariate associa-
tions among the eight predictors that remain after the filtering step has been completed.

Correlation-based filtering transformed a high-dimensional dataset to a low-dimensional
one. Interestingly, no information from hematological characteristics (Table S4) is kept in
D;; to put it otherwise, given Tables S1-S3, the variables in Table 54 provide redundant
information for the rheological models. The gains in terms of further dimensionality
reduction by PCA (Figure 5) are not substantial. Ideally, three principal components
(PCs) would account for the vast majority of the variability in D5; this would facilitate the
graphical representation of clusters in the three-dimensional space spanned by the PCs.
Based on this finding, it was decided to apply variants of hierarchical clustering to the
matrix of Euclidean distances, which is derived from D», with standardized columns.

Figure 6 shows the Euclidean distance matrix of the 16 rheological models shown in
Table 1. One immediately observes that models P and WS are close, based on the simulated
data; hence, they are expected to belong in the same cluster. The same holds for the pair
Q, Cs-m and the group of five models comprised by PE, PE-m, C, Cr, and CY. The above
findings are confirmed by hierarchical agglomerative clustering based on Ward'’s linkage.
Figure 7 depicts a rheological model classification using six clusters, which is the solution
suggested by the inter-cluster inertia gains index (Figure 8). Interestingly, two models,
namely N and Cr-s, appear as outliers, far from the fourteen remaining specifications. In
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accordance with prior expectations based on the expressions shown in Table 1, PE is in
the same cluster as PE-m; the same is true for the pair C and CY. Specifically, the larger
cluster (CL1) contains Cr, Cr-m, Cs, PE, PE-m, CY, and C; PE can be viewed as the most
appropriate representative for CL1, in the sense that it is closer to the cluster’s centroid.
P-g, the specification located closer to the Newtonian model in the space spanned by the
first two principal components (Figure 7), appears isolated in the six-cluster solution and
forms a cluster by itself. The remaining two clusters contain (a) the pair HB with KL (CL2),
and (b) WS, P, Q, and Cs-m (CL3; with P being the representative model).

IGPS IGLD ILPSmax  ILEDSdec  ILEDmax  ILLDmax  NNEFmin NNEFLDmin
10~ Corr Corr. Corr. Corr Corr. Corr. Corr. @
] -0.268 0.065 0.629% -0.027 0.233 0.163 -0.330 =
0-
3_ -
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1" egee ° 0.079 -0.058 0.860™ 0.380 0.237 0248 ¥
0-=
25-° o g
20- Corr Corr Corr. Corr. Comr: @
15- LYo 0.251 0.010 -0.224 0.052 0.440. 3
:]]_Q"". ..’ ‘..o =1
];éi :' .* = ," Corr Corr. Corr Corr. @
1538 et f . 0112 0135 0288 034 §
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Figure 4. Scatterplots, distributions, and correlation matrix for the columns in D,, which are derived
after an initial correlation-based filtering step. Statistically significant correlations are highlighted
with stars.
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approximately 55% of the variability in the analyzed dataset.
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Figure 8. Inter-cluster inertia gains for selecting the number of representative clusters.

The global non-Newtonian importance factor I at late diastole is the variable most sig-
nificantly associated with (a) CL1 where high levels are observed (Table 4) and
(b) CL3 for which low IGLD levels are observed. Similarly, specifications in CL2 are
mostly characterized by increased levels of the distribution maxima for the local non-
Newtonian importance factor I, at late diastole. P-g is mostly differentiated by high levels
of ILPSmax and Cr-s and by substantially elevated levels of IGPS. How sensitive is the
derived partition to the choice of clustering algorithm? Apparently, the results are robust
to the selection of hierarchical clustering procedure as the six-cluster partition is identical
for all three additional examined methods, namely single, complete, and average linkage.
Furthermore, the same results are observed if clustering algorithms are implemented on a
principal component representation that uses seven orthogonal synthetic variables; such a
representation captures practically all the variability in D, (Figure 5).

Table 4. Explanatory variables most significantly associated with each cluster. Reported p-values
provide evidence against the null hypothesis which states that cluster means are equal to the overall
mean; the latter is zero in all cases as the analysis is based on a standardized dataset.

Cluster Variable Cluster Mean p-Value
CL1 IGLD 0.914 0.001
CL2 ILLDmax 1.424 0.031
CL3 IGLD —0.864 0.024

N NNEFLDmin 2.640 0.006
P-g ILPSmax 3.473 <0.001
Cr-s IGPS 3.085 0.001

Regarding hemodynamic observables, Figure 9 presents TAWSS, OSI, and RRT for
the Newtonian, Powell-Eyring, and power-law models; the first acts as the reference case,
while the other two constitute the best representatives of the CL3 and CLS5 clusters. It is
clear that even though the highest values depend on the assumed model, their distribution
on the wall shares similar features for all of them. This is not limited to the above 3 models
and is a common characteristic of all 16 models examined here. It is thus expected that the
choice of the rheological model will not alter the underlying biological process of the flow
but rather the value contours on the computational domain.
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Figure 9. TAWSS, OSI, and RRT for the N, PE, and P models.

4. Discussion

The statistical outcomes presented above possess a notable characteristic: robustness
of the derived partitions, which are insensitive to the chosen clustering variant. This is
rarely observed in practice and adds credibility to the model-groups depicted in Figure 7.
Is there an agreement between the initial partitions of rheological specifications and the
statistical estimates, which are based on simulated data from each model? Interestingly,
CL1, which is the largest cluster, contains mainly specifications from IP1 with the addition of
Powell-Eyring-based variants and the Casson model. Cr-m appears substantially different
relative not only to the remaining four members of IP1 but to all remaining non-Newtonian
specifications as well. On the other hand, although CL3 consists mostly of models from IP2
(variants of the Casson model), it is best characterized by the power-law model. Although
the Herschel-Bulkley model does not appear in an initial partition—and is thus expected
to appear a priori as an outlying model—the results presented above classify it together
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with the Kuang-Luo model. Finally, in contrast with a priori expectations, the generalized
power-law model is not classified together with P; specifically, P-g appears the closest to
the Newtonian (Figure 7) relative to all non-Newtonian specifications.

The present results may have several implications for methodologies developed to
answer clinical questions and aid clinical practice. Computational modeling should provide
insights into the physiology of the circulatory system, the pathophysiology of cardiovas-
cular diseases, and the performance of vascular therapies/interventions. In this regard,
computational simulations should produce meaningful, reliable, and repeatable results.
An investigation of the literature suggests that different rheological models are used inter-
changeably during computational modeling, with uncertain implications for the results
obtained. In our opinion, the lack of reporting standards may result in a significant uncer-
tainty of outcomes, since the effect of model assumptions cannot be predicted.

According to the analysis presented here, deviations between different models may
result in a significant variability in the results, which may obscure clinical interpretation
and implementation. For example, in Figure 9, it can be noted that although the spatial
distribution of hemodynamic parameters is similar for the models presented, the range
of values can vary significantly and in an unpredictable manner (i.e., the differences in
RRT are greater than those in TAWSS and OSI, which is more pronounced between the
Newtonian and the other two rheological models). Indeed, not all models present the same
magnitude of variability, but rather the models can be grouped into clusters presenting a
comparable performance.

The a priori grouping of rheological models based on the rationale of their develop-
ment is very different from that obtained after statistical analysis, which is based on their
numerical outputs. Remarkably, the most (theoretically) refined models have been found
to present the closest approximation to the Newtonian one, therefore not confirming the
hypothesis that they provide the most realistic values. On the contrary, models assigned to
the second cluster seem to provide more accurate measurements of relevant hemodynamic
parameters. It is worth stressing that these are the models most widely used in the literature,
which present a similar performance to each other and can be used without expecting sig-
nificant variations in the results. The abovementioned findings provide important insights
into these effects and may provide guidance on the variations that should be expected, and
on the methods that should be used in order for results of different studies to be comparable.
This is an important issue if computational modeling is to gain clinical relevance.

A similar issue was raised in [64], where the effect of wall stress on abdominal aortic
aneurysm rupture risk was studied. The authors indicated that the results of stress analysis
are highly dependent on the complexity of the underlying finite element models; further-
more, differences in model assumptions are more important for results than baseline vessel
geometries. Similar to this work, their study also highlighted the fact that the interpretation
of results in different publications may be problematic because the results are often not
comparable. While totally agreeing with this approach, the present analysis attempts to
group rheological models into clusters presenting a similar performance. Specifications
that belong in the same statistical partition are expected to lead to very similar conclusions
if used interchangeably.

5. Conclusions

The current study examines the statistical differences of various blood flow models
through an idealized bifurcation. Sixteen rheological models are simulated with computa-
tional fluid dynamics techniques, covering the vast majority of time-independent viscosity
models available in the literature. Distributions of hemodynamic variables are computed
and stored in a high-dimensional dataset; the latter is “distilled” via variance-inflation-
factor filtering in a low-dimensional approximation which facilitates statistical procedures.
Our findings suggest that models which are defined in a similar manner may behave
substantially differently in terms of the data they produce. On the other hand, models that
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do not share any similarities may belong to the same statistical group (cluster in this study)
and can thus be considered interchangeably.

As with all studies, this work is subject to limitations. The rigid wall assumption
neglects the compliance of vessels. Additionally, the assumption of equal flow rate through
the outlets may not be necessary in blood flow simulations, but nevertheless remains
a reasonable choice. A final limitation is the assumed idealized geometry: differences
among alternative rheological specifications may be hard to detect, yielding models that
are substantially indistinguishable. It should be noted though that the aim of this work is
to lay the foundation of statistical clustering. It is anticipated that these deviations will be
magnified for realistic configurations: statistical analysis of such geometries constitutes the
aim of our future work.
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https:/ /www.mdpi.com/article/10.3390/sym15030630/s1. Table S1: Global non-Newtonian im-
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Local non-Newtonian importance factor for all 16 rheological models at late diastole; Table S3a:
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Nomenclature

U fluid velocity

p fluid pressure

P fluid density

T stress tensor

D rate-of-deformation tensor

Y shear rate

n dynamic viscosity

WSS wall shear stress

TAWSS time evarage wall shear stress

OSI oscillatory shear index

RRT relative residence time

Iy local non-Newtonian importance factor
Ig global non-Newtonian importance factor
NNEF non-Newtonian effect factor

C Carreau

CY Carreau—Yasuda

Cs Casson

Cs-m Casson modified

Cr Cross
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Cr-m Cross modified

Cr-s Cross simplified

HB Herschel-Bulkley

KL Kuang-Luo

N Newtonian

PE Powell-Eyring

PE-m Powell-Eyring modified

P power-law

P-g power-law generalized

Q Quemada

WS Walburn-Schneck

VIF variance-inflation filtering

PCA principal components analysis

IGPS global non-Newtonian importance factor at peak systole

IGLD global non-Newtonian importance factor at late diastole

ILPSmax maximum of local non-Newtonian importance factor at peak systole
ILEDdec decile of local non-Newtonian importance factor at early diastole
ILEDmax maximum of local non-Newtonian importance factor at early diastole
ILLDmax maximum of local non-Newtonian importance factor at late diastole

NNEFPSmin  minimum of non-Newtonian effect factor at peak systole
NNEFLDmin minimum of non-Newtonian effect factor at late diastole
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