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Abstract: We review the chiral variant and invariant components of nucleon masses and the con-
sequence of their existence on the chiral restoration in extreme conditions, particularly in neutron
star matter. We consider a model of linear realization of chiral symmetry with the nucleon parity
doublet structure that permits the chiral invariant mass, m0, for positive and negative parity nucleons.
The nuclear matter is constructed with the parity doublet nucleon model coupled to scalar fields
σ, vector fields (ω, ρ), and mesons with strangeness through the U(1)A anomaly. In models with
a large m0, the nucleon mass is insensitive to the medium, and the nuclear saturation properties
can be reproduced without demanding strong couplings of the nucleons to the scalar fields σ and
vector fields ω. We confront the resulting nuclear equations of state with nuclear constraints and
neutron star observations and delineate the chiral invariant mass and effective interactions. To further
examine the nuclear equations of state beyond the saturation density, we supplement quark models
to set the boundary conditions from the high-density side. The quark models are constrained by
the two-solar-mass conditions, and such constraints are transferred to nuclear models through the
causality and thermodynamic stability conditions. We also calculate various condensates and the
matter composition from nuclear to quark matter in a unified matter by constructing a generating
functional that interpolates the nuclear and quark matter with external fields. Two types of chiral
restoration are discussed: one due to the positive scalar charges of nucleons and the other triggered
by the evolution of the Dirac sea. We found that the U(1)A anomaly softens equations of state from
low to high density.

Keywords: chiral invariant mass; neutron star matter; U(1)A anomaly; quark–hadron crossover

1. Introduction

The quest for the origin of hadron masses is one of the most interesting problems in
low-energy hadron physics. Spontaneous chiral symmetry breaking (SχSB) is known to
generate a part of hadron masses. A typical model in this context is the linear σ model [1,2]
where the Lagrangian contains nucleons, N, and the meson fields σ, ~π, which are grouped
into a chiral invariant form. The fields in such models are the linear realization of the
chiral symmetry which transforms linearly under chiral transformations, e.g., Ni → N′i =
Uij(~θ)Nj, πi → π′i = Vi0(~θ)σ + Vij(~θ)πj (~θ: some constant vector). The model is arranged
to yield the nonzero expectation value of the σ fields, 〈σ〉, which breaks the chiral symmetry
and generates the nucleon mass term that couples nucleon fields of the left- and right-
chirality. The nucleon mass (∝ 〈σ〉) is not chiral invariant and is entirely generated by
the SχSB.

The more general and systematic construction of models is based on the non-linear
realization of chiral symmetry for which chiral transformations act on fields non-linearly,
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e.g., πi → Uij(~π,~θ)πj [3]. Such pions accompany space–time derivatives, which enable us
to power count in pion momenta and greatly systematize the construction of an effective
Lagrangian [4]. The σ field does not manifestly appear as a dynamical degree of freedom
and is not necessary to make the Lagrangian chiral invariant. In fact, we can allow the
chiral invariant mass term of the form, ∼ N̄MinvU5(~π)N = MinvN̄N where N ≡ U1/2

5 N
expresses the nucleons (with a “pion cloud”) in the non-linear realization. If we start
with a linear σ model, the chiral invariant mass Minv appears as ∼ (〈σ2 + ~π2〉)1/2, but
models of non-linear realization do not necessarily require such identification; this draws
our attention to dynamical mechanisms, not necessarily related to the SχSB, for the origin
of Minv.

While the non-linear realization allows for a more general construction of nucleonic
models than the linear realization, the descriptions without σ fields, in practice, have
difficulties in the extension to the domain of the chiral symmetry restoration; there, ~π and σ
should together form a chiral multiplet, since the physical states in a symmetrical unbroken
vacuum must belong to irreducible representations of the chiral symmetry. We note here
that it is not trivial that such mesonic excitations exist in the chiral symmetric phase, but it
would be useful to include σ in an effective model to approach the restoration point from
the broken phase. Furthermore, if the chiral restoration is not a first-order phase transition,
one may observe the consequence of the symmetry restoration even before reaching the
complete restoration. For this purpose, the linear realization with σ has a greater advantage
over the non-linear realization (where σ must be generated dynamically from the pion
dynamics). Such chiral restoration may happen at a high temperature and high density
and has phenomenological impacts on descriptions of the physics of relativistic heavy-ion
collision and neutron stars (NSs) [5].

A model of linear realization may be improved by supplementing the concept of Wein-
berg’s mended symmetry [6,7]. His mended symmetry states that, even in a spontaneously
broken vacuum, superposing the linear representations of the original symmetry may be
used to describe the physical spectra. Based on this picture, Weinberg described low-lying
mesons (σ, π, ρ, a1) as the superposition of chiral multiplets and then obtained reasonable
mass relations and decay widths for these states. This success encourages us to consider
models of linear realization for nucleons, including several chiral multiplets.

In this review, we consider a parity doublet model (PDM) of nucleons as a model
of linear realization and examine its feature through the phenomenology of dense QCD,
especially neutron star matter. The PDM includes two nucleon fields, N1 and N2, whose
left- and right-handed components (defined through the (1± γ5)/2 projections) transform
differently as N1R/L → gR/LN1R/L and N2R/L → gL/RN2R/L under the U(Nf)L⊗ U(Nf)R
chiral transformations (mirror assignment). The mass term of ∼ m0

(
N̄1RN2L + N̄1LN2R

)
is

now possible without breaking the U(Nf)L⊗ U(Nf)R symmetry, and the mass m0 is chiral
invariant. This chiral invariant mass term and the conventional Yukawa coupling term
are diagonalized together, yielding spectra of positive and negative parity nucleons. For
a sufficiently large m0, the overall magnitude of the physical nucleon masses is primarily
set by the m0, while the chiral variant mass ∝ 〈σ〉 is mainly responsible for mass splitting
between the positive and negative parity nucleons. Such a model was first constructed by
DeTar and Kunihiro [8], where N(939) and N∗(1535) are regarded as partners.

The size of m0 is of great concern when predicting the properties of nucleons near
the chiral restoration. In a minimal PDM, the decay width of N∗(1535) is used to set the
constraint m0 . 500 MeV [9]. However, as in the standard σ model, such estimates can
be easily affected by ∼30% if we permit non-renormalizable terms of dimension five, and
a larger value of m0 is possible (see, e.g., Ref. [10]). Further evidence of a large m0 comes
from a lattice QCD study at a finite temperature for a nucleon and its parity partner [11].
The mass gap between N(939) and N∗(1535) is reduced together with a reduction of the
chiral condensates, while the substantial mass of N(939) can remain; this suggests that m0
may be as large as the mass of N(939) itself.
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The nucleon mass, which is relatively insensitive to the chiral restoration, has impor-
tant consequences on the dense nuclear matter at a density relevant to neutron star (NS)
phenomenology. In the past ∼20 years, there has been dramatic progress in the measure-
ments of NS mass–radius (M-R) relations, which have a one-to-one correspondence with
the QCD equation of state (EOS). The key question is whether the EOS is stiff or soft; a stiffer
EOS has a larger pressure at a given energy density and prevents a star from gravitational
collapse into a blackhole. The relevant NS constraints are the existence of 2M� NS [12–17],
and the radii of 1.4M� [18–20] and ' 2.1M� NS [21,22]. In short, the NS EOS is relatively
soft at the baryon density nB around 1-2n0 (n0 ' 0.16 fm−3: nuclear saturation density)
but evolves into a very stiff EOS at ∼5n0. The density '1-2n0 is usually regarded as the
domain of nuclear theories, while the domain at &5n0, where nucleons of the radii∼0.5–0.8
fm begin to overlap, likely demands quark matter descriptions. The EOS constraints at
1-2n0 obviously give important information about the chiral invariant mass, but the EOS
constraints on &5n0 also impose indirect but powerful constraints on the nuclear territory
through the causality condition that the sound velocity, cs = (∂P/∂ε)1/2 (P: pressure, ε:
energy density), is less than the light velocity (c = 1 in our unit); see, e.g., Ref. [23]. In
order to describe the domain between nuclear and quark matter in a way that is consistent
with the observed soft-to-stiff evolution of EOS, the simplest scenario is the quark–hadron
crossover (QHC) [24–28]. Unlike models with first-order phase transitions, gradual quark
matter formation does not accompany a strong softening of the EOS and even leads to
stiffening [29–33]. Based on this picture, we build unified equations of state that utilize
nuclear models at nB . 2n0 and quark models at nB & 5n0 and interpolate them for the
EOS at 2n0 . nB . 5n0. We confront the unified EOS with M-R relations constrained
by observations and also calculate the chiral condensates and matter composition. All of
these quantities are examined from the nuclear to quark matter domains, and the corre-
lation between low and high densities gives us global insights into the chiral properties
of nucleons.

For the construction of the nuclear EOS, we implement a PDM into the Walecka-type
mean field model with σ, ω, and ρ [34–36]. The strangeness is included at the level of the
U(1)A anomaly where the scalar mesons with strangeness, σs, couple to a σ made of up-
and down-quarks. For a neutron star EOS based on the PDM, see, e.g., Refs. [37–62]. The
most notable feature of the PDM is the density dependence of the nucleon mass. The chiral
invariant mass allows nucleons to stay massive during the reduction in 〈σ〉. In the dilute
regime, the 〈σ〉 decreases linearly as a function of nB, as does the nucleon mass ∝ 〈σ〉 if m0
is absent; the nucleon mass at n0 is '30–50% smaller than the vacuum mass. With a larger
m0, the mass reduction becomes more modest. In addition, nucleon fields need not couple
to σ very strongly to reproduce the nucleon mass mN ' 939 MeV; in the Walecka-type
model, this results in a weaker coupling between the nucleons and ω fields because such
models have been arranged to balance the attractive σ and repulsive ω contributions to
reproduce the nuclear matter properties at n0. Beyond n0, the attractive σ contributions
decrease while the repulsive ω contributions keep growing. Thus, a greater m0 makes the
overall magnitude of the σ and ω contributions smaller, and the resulting softer ω repulsion
improves the consistency with the radius constraints on 1.4M� NS, for which the EOS at
nB = 1-2n0 is most important.

The PDM as a hadronic model does not describe the chiral restoration at the quark
level, such as the modification in the quark Dirac sea. In order to supply such a qualitative
trend, the quark matter EOS plays a role as a high-density boundary condition. For
the quark matter, a three-flavor Nambu–Jona-Lasinio (NJL)-type model, which leads to
the color-flavor locked (CFL) color-superconducting matter (for a review, see Ref. [63]),
is adopted. The effective interactions are examined to fulfill the two-solar-mass (2M�)
constraint [27,28,64,65]. In Refs. [58,61], they construct an effective model combining a
PDM and an NJL-type model with two flavors assuming no color-superconductivity.

This article is mostly a review of our works, Refs. [66–68], and it also presents improve-
ments to the analyses of Refs. [66,68] with the up-to-date version of our PDM. In Ref. [66],
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we used the PDM without the U(1)A anomaly to construct a unified EOS and obtained the
constraint 600 MeV . m0 . 900 MeV. The lower bound is primarily determined by the
tidal deformability constraint from the GW170817, which is a detection of gravitational
waves from an NS merger event. Later, in Ref. [67], we updated the PDM by adding the
U(1)A anomaly effects, or the Kobayashi–Maskawa–’t Hooft (KMT) interactions [69], to the
meson sector. Even though we stop using the PDM at .2n0 before hyperons appear, the
strangeness does affect the chiral condensates in the up- and down-sectors through the
KMT interactions. The U(1)A effects enhance the energy difference between the chiral
symmetric and broken vacua, leading to a stronger softening in the EOS when the chiral
symmetry is restored. This is found to be true for both hadronic and quark matter. In
particular, the chiral restoration with the U(1)A anomaly makes the EOS at 1-2n0 softer
and leads to small radii for 1.4M� NS. In effect, the lower bound m0 & 600 MeV, given in
Ref. [66], is relaxed to m0 & 400 MeV.

While the seminal works [24,25,27,64,66,70–72] utilize the interpolation to construct
a unified EOS, the microscopic quantities have not been calculated in a unified way. To
utilize the full potential of the interpolation framework, in Ref. [68], three of the present
authors (T.M., T.K., and M.H.) extend the interpolation to unified generating functionals
with external fields coupled to the quantities of interest and differentiated the functionals
to extract the chiral and diquark condensates as well as the matter composition. The
condensates in the interpolated domain are affected by the physics of both the hadronic
and quark matter through the boundary conditions for the interpolation; for m0 & 500 MeV,
the significant chiral condensate remains at nB ∼ 2-3n0 and smoothly approaches the
condensate in the quark matter at nB & 5n0. In this review, we update these analyses,
including the effects of the U(1)A anomaly.

This review is structured as follows. In Section 2, we first review the PDM with
mesonic potentials in Ref. [67] and show how to constrain the model parameters to satisfy
the hadron properties in a vacuum and the saturation properties in nuclear matter. Section 3
is the review of quark matter construction. With these hadronic and quark matter models,
in Section 4, we construct unified generating functionals as introduced in Ref. [68] and
calculate various condensates. Section 6 is devoted to a summary.

2. Hadronic Matter from a Parity Doublet Model

In this section, we review the construction of the PDM in Ref. [67]. The fields appearing
in the Lagrangian are the linear realization of chiral symmetry, classified by the chiral
representation as (SU(3)L, SU(3)R)U(1)A

. We determine the model parameters to reproduce
the hadronic properties in a vacuum and the saturation properties of nuclear matter.

2.1. Scalar and Pseudoscalar Mesons

We introduce a 3× 3 matrix field Φ for the scalar and pseudoscalar mesons, which
belong to (3, 3̄)−2 under (SU(3)L, SU(3)R)U(1)A

symmetry. The Lagrangian is given by

Lscalar
M =

1
4

tr
[
∂µΦ∂µΦ†

]
−VM −VSB −VAnom, (1)

where
VM =− 1

4
µ̄2 tr

[
ΦΦ†

]
+

1
8

λ4 tr
[(

ΦΦ†
)2
]
− 1

12
λ6 tr

[(
ΦΦ†

)3
]

+ λ8 tr
[(

ΦΦ†
)4
]
+ λ10 tr

[(
ΦΦ†

)5
]

, (2)

VSB =− 1
2

c tr
[
m̂†

qΦ + m̂qΦ†
]
, (3)

VAnom =− B
[
det(Φ) + det

(
Φ†
)]

, (4)
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with B and c being the coefficients for the axial anomaly term and the explicit chiral sym-
metry breaking term, respectively, and m̂q = diag{mu, md, ms}. In the above, we include
only the terms with one trace in VM since they are of leading order in the 1/Nc expansion.

The present hadronic model is used up to 2n0 assuming no appearance of hyperons.
In the mean field approximation, the Φ field can be reduced to

Φ→
(

M 0
0 σs

)
3×3

, (5)

where M is a 2× 2 matrix field transforming as M→ gL Mg†
R with gL,R ∈ SU(2)L,R. While

we apply the mean field, here, we keep a matrix representation for the two-flavor part
to clarify the symmetry of the two-flavor part. The field σs corresponds to the scalar
condensate made of a strange and an anti-strange quark, 〈s̄s〉. The reduced Lagrangian is
now given by

Lscalar
M =

1
4

(
tr
[
∂µ M∂µ M†

]
+ (∂µσs∂µσs)

)
−VM −VSB −VAnom , (6)

where

VM =− 1
4

µ̄2
(

tr
[

MM†
]
+ σ2

s

)
+

1
8

λ4

(
tr
[
(MM†)2

]
+ σ4

s

)
− 1

12
λ6

(
tr
[
(MM†)3

]
+ σ6

s

)
+ λ8

(
tr
[
(MM†)4

]
+ σ8

s

)
+ λ10

(
tr
[
(MM†)5

]
+ σ10

s

)
, (7)

VSB =− c
2

[
tr
[
m̂2×2(M + M†)

]
+ 2msσs

]
, (8)

VAnom =− Bσs

[
det(M) + det(M†)

]
, (9)

with m̂2×2 = diag{mu, md}. In the mean field treatment, the two-flavor matrix field M is
reduced to diag(σ, σ).

Here, one might wonder why the (ΦΦ†) terms are included up to the fifth powers.
In fact, the potential of the two-flavor model in the analyses [49,59,66] is not bounded
from below at a very large value of (ΦΦ†) and has only a local minimum. There, very
large values of (ΦΦ†) are simply discarded because they are not supposed to be within
the domain applicability of the model. For three-flavor models with the KMT interactions,
however, it turns out that reasonable local minima do not exist, as depicted by the black
curve in Figure 1. We add higher-order terms to stabilize the potential and fine tune the
models to reproduce the nuclear saturation properties. Note that these higher-order terms
do not modify the potentials at a small σs.

Figure 1. Potential for σs in the vacuum with m0 = 800 MeV. Here, λ′8 and λ′10 are dimensionless
quantities defined by λ′8 = λ8 f 4

π and λ′10 = λ10 f 6
π .
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2.2. Nucleon Parity Doublet and Vector Mesons

In the analysis performed in Refs. [66–68], hadronic models are used only up to
2n0 with the assumption that the hyperons are not populated. Therefore, although the
mesonic sector includes three-flavors, we include only nucleons in the baryon sector. The
nucleons and the chiral partners belong to the (2, 1)+1 and (1, 2)−1 representations under
(SU(2)L , SU(2)R)U(1)A

:

ψL
1 : (2, 1)−1, ψR

1 : (1, 2)+1, ψL
2 : (1, 2)+1, ψR

2 : (2, 1)−1 . (10)

We note that ψ1 and ψ2 carry the positive and negative parities, respectively:

ψ1 →
P

γ0ψ1 , ψ2 →
P
−γ0ψ2 . (11)

Relevant Lagrangian for nucleons and their Yukawa interactions in the field M are given by

Lscalar
N = ∑

i=1,2
ψ̄iiγµDµψi −m0

(
ψ̄L

1 ψR
2 − ψ̄R

1 ψL
2 − ψ̄L

2 ψR
1 + ψ̄R

2 ψL
1

)
− g1

(
ψ̄L

1 τ2(M†)Tτ2ψR
1 + ψ̄R

1 τ2MTτ2ψL
1

)
− g2

(
ψ̄L

2 τ2MTτ2ψR
2 + ψ̄R

2 τ2(M†)Tτ2ψL
2

)
, (12)

where the covariant derivatives on the nucleon fields are defined as

Dµψ1,2 = (∂µ − iVµ)ψ1,2 , (13)

with

Vµ =

(
µB + µQ 0

0 µB

)
δ0

µ . (14)

Following Ref. [49], the vector mesons ω and ρ are included based on the framework for
hidden local symmetry (HLS) [73,74]. Here, instead of showing the forms as manifestly
invariant under the HLS, we only show the relevant interaction terms among the baryons
and vector mesons:

Lvector
N =− ∑

i=1,2
ψ̄i γµ

(
gωNNωµ + gρNN

~τ

2
~ρµ

)
ψi , (15)

where ~τ is the Pauli matrix for isospin symmetry. The relevant potential terms for the
vector mesons are expressed as

LV =
1
2

m2
ω ωµωµ +

1
2

m2
ρ~ρµ ·~ρµ + λωρg2

ωg2
ρ ωµωµ~ρν ·~ρν . (16)

In the presence of ω, the attractive ω2-ρ2 coupling with λωρ > 0 assists the appearance
of the ρ fields, reducing the symmetry energy associated with the isospin asymmetry,
as discussed below. (Note that λωρ > 0 is needed for the VEVs of the ω and ρ fields not to
have a non-zero value in a vacuum.)

In the mean field approximation, the meson fields take

〈σ〉 = σ , 〈ωµ〉 = ωδ
µ
0 , 〈ρµ〉 = ρ

τ3

2
δ

µ
0 , (17)

where each mean field is assumed to be independent of the spatial coordinates. The ther-
modynamic potential in the hadronic matter is calculated as [49]
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ΩPDM =V(σ, σs)−V(σ0, σs0)−
1
2

m2
ωω2 − 1

2
m2

ρρ2

− λωρ(gωω)2(gρρ
)2 − 2 ∑

i=±
∑

α=p,n

∫ kα,i
F

p
(µ∗α − Ei

p) , (18)

where i = + and − label the ordinary nucleon N(939) and the excited nucleon N∗(1535),

respectively. The energies of these nucleons are Ei
p =

√
p2 + m2

i with the momenta p and
masses obtained by diagonalizing the Lagrangian (12),

m± =

√
m2

0 +

(
g1 + g2

2
σ

)2
∓ g2 − g1

2
σ , (19)

where g2 > g1 is assumed so that m+ < m−. The effective chemical potentials µ∗p and µ∗n
are defined as

µ∗p = µB + µQ − gωNN ω− 1
2

gρNN ρ , µ∗n = µB − gωNN ω +
1
2

gρNN ρ . (20)

In the integration above, the integral region is restricted as |p| < kα,i
F where

kα,i
F =

√
(µ∗α)2 −m2

i is the Fermi momentum for a nucleon i. In the above expression,
we implicitly used the so-called "no-sea approximation", assuming that the structure of
the Dirac sea remains the same for the vacuum and medium for nB . 2n0. V(σ, σs) is the
potential of the scalar mean fields given by

V(σ, σs) =−
1
2

µ̄2
(

σ2 +
1
2

σ2
s

)
+

1
4

λ4

(
σ4 +

1
2

σ4
s

)
− 1

6
λ6

(
σ6 +

1
2

σ6
s

)
+ λ8

(
2σ8 + σ8

s

)
+ λ10

(
2σ10 + σ10

s

)
− 2Bσ2σs − (2cmuσ + cmsσs) . (21)

In Equation (18), we subtracted the potential in the vacuum V(σ0, σs0), for which the total
potential in the vacuum is zero. Here, σ0 and σs0 are related with the decay constants fπ and
fK as

σ0 = fπ , σs0 = 2 fK − fπ . (22)

Finally, we include leptons for the charge neutrality realized in NSs. The total thermo-
dynamic potential of the hadronic matter for NSs takes the form

ΩH = ΩPDM + ∑
l=e,µ

Ωl , (23)

where Ωl (l = e, µ) are the thermodynamic potentials for leptons given by

Ωl = −2
∫ kl

F

p
(µl − El

p) , kl
F =

√
µ2

l −m2
l . (24)

Here, the mean fields are determined by the following stationary conditions:

0 =
∂ΩH

∂σ
=

∂ΩH

∂ω
=

∂ΩH

∂ρ
. (25)

In neutron stars, we impose the beta equilibrium and the charge neutrality condition
represented as
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µe = µµ = −µQ , (26)
∂ΩH

∂µQ
= np − nl = 0 . (27)

The mean fields and charge chemical potential are determined as functions of µB. After
substituting these values into ΩH, we obtain the pressure in the hadronic matter as a
function of µB,

PH(µB) = −ΩH(µB) . (28)

2.3. Determination of Model Parameters

In this subsection, we determine the parameters in the PDM to reproduce the masses
and decay constants in a vacuum and the saturation properties in nuclear matter. In nuclear
matter, the energy per nucleon (energy density) ε is given as a function of the baryon
number density nB and the isospin asymmetry δ =

np−nn
np+nn

. The energy density is expanded

around the normal nuclear density n0 = 0.16 fm−3 and the symmetric matter δ = 0 as

ε = −B0 +
K0

2

(
nB − n0

3n0

)2
+ δ2

(
S0 + L0

nB − n0

3n0

)
+ higher order, (29)

where B0, K0, S0, L0 denote the binding energy, incompressibility, symmetry energy, and
slope parameter, respectively, as shown in Figure 2. The parameter K0 measures the
curvature of the energy density at the normal nuclear density:

K0 = 9n2
0

∂2ε

∂n2
B

∣∣∣∣
nB=n0, δ=0

. (30)

The symmetry energy S0 is calculated as

S0 =
1
2

∂2ε

∂δ2

∣∣∣∣
nB=n0, δ=0

. (31)

The parameter L0 characterizes the slope of the symmetry energy at a normal nuclear
density:

L =
3n0

2
∂3ε

∂nB ∂δ2

∣∣∣∣
nB=n0, δ=0

. (32)

Figure 2. Density dependence of energy per nucleon for the symmetric matter (indicated by δ = 0)
and the pure neutron matter (δ = 1).

We summarize the input values that we used in this review in Tables 1 and 2.
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Table 1. Physical inputs in a vacuum in units of MeV.

mπ mK fπ fK mω mρ m+ m−

140 494 92.4 109 783 776 939 1535

We first use the masses of the ω and ρ mesons to fix mω and mρ in Equation (16). The
parameters cmu = cmd and cms are fixed from mπ fπ and mK fK as

2cmu = m2
π f 2

π , c(mu + ms) = m2
K f 2

K . (33)

The values of g1 and g2 are determined from the masses of the nucleons in a vacuum through
Equation (19) with σ replaced by fπ . There are still nine parameters to be determined:

µ̄2, λ4, λ6, λ8, λ10, B, λωρ , gωNN , gρNN . (34)

These parameters are tuned to reproduce the saturation properties listed in Table 2. It turns
out that there are some degeneracies related to the choice of parameters λ8, λ10, and B.

Table 2. Saturation properties used to determine the model parameters: the saturation density n0,
the binding energy B0, the incompressibility K0, symmetry energy S0, and the slope parameter L0.

n0 [fm−3] EBind [MeV] K0 [MeV] S0 [MeV] L0 [MeV]

0.16 16 240 31 57.7

In Figure 3, we show the range between λ8 and λ10 needed to satisfy the saturation
properties. Finally, we fit parameter B to reproduce the masses of the η and η′ mesons.
Here, we omit the details and show the determined values of the model parameters only
for m0 = 700 MeV as a typical example in Table 3. We refer to Ref. [67] for the details of the
determination and the values of the model parameters for other choices of m0.

Table 3. Model parameters determined from the saturation properties. When B = 600 MeV, solutions
satisfying the saturation properties can be found only in the range: 0 ≤ λ

′
8 ≤ 2.677. Here, we list

the boundary values as typical examples; λ′8 = 0 is the minimum boundary, and λ′8 = 2.677 is the
maximum boundary.

m0 = 700 [MeV] λ′8 = 0 λ′8 = 2.677

g1 7.81 7.81
g2 14.26 14.26

µ̄2/ f 2
π 23.21 41.35

λ4 133.4 194.7
B = 600 [MeV] λ6 f 2

π 82.71 160.1
λωρ 0.3047 0.3636

λ10 f 6
π 0.5221 0.09091

gωNN 5.437 5.142
gρNN 9.577 9.541

g1 7.81 7.81
g2 14.26 14.26

µ̄2/ f 2
π 39.98 55.24

λ4 94.02 149.3
B = 0 [MeV] λ6 f 2

π 62.23 136.4
λωρ 0.2442 0.2988

λ10 f 6
π 0.5221 0.09091

gωNN 6.287 5.957
gρNN 10.19 10.21
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Figure 3. Restricted combination of λ8 and λ10 after fixing the value of σs with m0 = 700 MeV. We
normalize the couplings as λ′8 = λ8 f 4

π and λ′10 = λ10 f 6
π .

2.4. Softening of the EOS by the Effect of Anomaly

Here, we briefly explain the mechanism for the effect of anomaly to soften the EOS in
the PDM. We refer to Ref. [67] for the details.

One of the key features is that both the condensate σ and σs are enhanced when the
effect of anomaly is included. Their values in a vacuum are actually increased with an
increasing B. Since the mass of the σ meson, mσ, is proportional to σ, the mass is increased,
as shown in Figure 4. In the potential picture for nucleons, the σ meson mediates the
attractive force among nucleons in the matter so that the larger mσ leads to a shorter
effective range of the attraction with a weaker overall strength. The repulsive ω interaction
should be weaker to balance the weaker attraction. As a result, the weaker repulsion for a
larger B makes the softer EOS in the density region higher than the normal nuclear density.

Figure 4. B dependence of mσ (left panel), mη , and mη′ (right panel) for m0 = 700 MeV.

3. Quark Matter from an NJL-Type Model

Following Ref. [27], we construct quark matter from an NJL-type effective model of
quarks with the four-Fermi interactions that cause color-superconductivity as well as the
spontaneous chiral symmetry breaking. The Lagrangian is given by

LCSC = L0 + Lσ + Ld + LKMT + Lvec , (35)

where

L0 = q̄(iγµ∂µ − m̂q + γµ Âµ)q , (36)

Lσ = G
8

∑
A=0

[
(q̄τAq)2 + (q̄iγ5τAq)2

]
, (37)

Ld = H ∑
A,B=2,5,7

[
(q̄τAλBCq̄t)(qtCτAλBq) + (q̄iγ5τAλBCq̄t)(qtCiγ5τAλBq)

]
, (38)

LKMT = −K
[

det
f

q̄(1− γ5)q + det
f

q̄(1 + γ5)q
]

, (39)

Lvec = −gV(q̄γµq)(q̄γµq) , (40)
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with Âµ being the collection of chemical potentials

Âµ = (µq + µ3λ3 + µ8λ8 + µQQ)δ
µ
0 . (41)

Here, λa are Gell-Mann matrices in color space, where τ0 = 13×3
√

2/3 and τA(A = 1 · · · 8)
are the Gell-Mann matrices, and Q = 1

2 τ3 +
1

2
√

3
τ8 = diag(2/3,−1/3,−1/3) is a charge

matrix in flavor space. Meanwhile, τ0 = 13×3
√

2/3 and τA(A = 1 · · · 8) are the Gell-Mann
matrices for the flavor. For the coupling constants G and K, as well as the cutoff Λ, we use
GΛ2 = 1.835, KΛ5 = 9.29, and Λ = 631.4 MeV, which successfully reproduce the hadron
phenomenology at a low energy [26,75]. The mean fields are introduced as

σf =
〈

q̄ f q f

〉
, ( f = u, d, s) , (42)

dj =
〈
qtCγ5Rjq

〉
, (j = 1, 2, 3) , (43)

nq = ∑
f=u,d,s

〈
q†

f q f

〉
, (44)

where (R1, R2, R3) = (τ7λ7, τ5λ5, τ2λ2). The resultant thermodynamic potential is calcu-
lated as

ΩCSC = Ωs −Ωs[σf = σ0
f , dj = 0, µq = 0] + Ωc −Ωc[σf = σ0

f , dj = 0] , (45)

where

Ωs = −2
18

∑
α=1

∫ Λ

p

εα

2
, (46)

Ωc = ∑
f=u,d,s

2Gσ2
i + ∑

j=1,2,3
Hd2

j − 4Kσuσdσs − gVn2
q . (47)

In Equation (46), εα are energy eigenvalues of the inverse propagator in the Nambu–Gor’kov
basis given by

S−1(k) =
(

γµkµ − M̂ + γ0µ̂ γ5 ∑i ∆iRi
−γ5 ∑i ∆∗i Ri γµkµ − M̂− γ0µ̂

)
, (48)

where

Mi = mi − 4Gσi + K ∑
j,k=u,d,s

|εijk|σjσk , (i = u, d, s) , (49)

∆j = −2Hdj , (j = 1, 2, 3) , (50)

µ̂ = µq − 2gVnq + µ3λ3 + µ8λ8 + µQQ . (51)

The inverse propagator S−1(k) in Equation (48) is a 72× 72 matrix in terms of the color,
flavor, spin, and Nambu–Gorkov basis and has 72 eigenvalues. Mu,d,s are the constituent
masses of the u−, d−, s-quarks, and ∆1,2,3 are the color-superconducting gap energies. In
the high-density region, nB & 5n0, and their ranges are Mu,d ≈ 50–100 MeV, Ms ≈ 250–300
MeV, and ∆1,2,3 ≈ 200–250 MeV [26]. We note that the inverse propagator matrix does not
depend on the spin and that the charge conjugation invariance relates two eigenvalues.
Then, there are 18 independent eigenvalues at most.

The entire thermodynamic potential is constructed by adding the lepton contribution
in Equation (24) as

ΩQ = ΩCSC + ∑
l=e,µ

Ωl . (52)
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The chiral condensates σi (i = u, d, s) and the diquark condensates dj (j = 1, 2, 3) are
determined from the gap equations:

∂ΩQ

∂σi
= 0 ,

∂ΩQ

∂dj
= 0 . (53)

The relevant chemical potentials, other than the baryon number density, are determined
from the beta equilibrium condition in Equation (26) combined with the conditions for
electromagnetic charge neutrality and color charge neutrality expressed as

nj = −
∂ΩQ

∂µj
= 0 , (j = 3, 8, Q) . (54)

The baryon number density nB is equal to three times the quark number density given by

nq = −
∂ΩQ

∂µq
, (55)

where µq is the quark number chemical potential, which is 1/3 of the baryon number
chemical potential. Substituting the above conditions, we obtain the pressure of the
system as

PQ = −ΩQ . (56)

Softening of the EOS by the Effect of Anomaly in NJL-Type Model

Here, we briefly explain how the anomaly softens the EOS in the NJL-type quark
model. For simplicity, we set H = 0 and omit the effects of diquarks. In the KMT interaction
in Equation (39), the coefficient K represents the strength of the U(1)A anomaly. The anomaly
assists the chiral symmetry breaking and lowers the ground-state energy in a vacuum; a
larger K leads to chiral condensates that are greater in magnitude, as shown in the left
panel of Figure 5.

With the chiral restoration, the system loses the energetic benefit of having the chiral
condensates. Such release of the energy is more radical with the anomaly than without it.
As one can see from the thermodynamic relation P = −ε + µqnq, a larger energy ε with
a stronger anomaly leads to a smaller pressure, i.e., softening. In other words, with the
anomaly, we have to add a larger “bag constant” to the energy density, but we must subtract
it from the pressure. We show the resulting EOSs for H/G = 0 and gV/G = 0.1 in the right
panel of Figure 5.

Figure 5. K dependence of chiral condensates (left panel) and the energy dependence of pressure for
H/G = 0 and gV/G = 0.1 (right panel).
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4. Interpolated EOSs and M-R Relations of NSs
4.1. Interpolation of EOSs

In this subsection, we briefly explain how to interpolate the EOS for the hadronic
matter to that for the quark matter constructed in previous sections. Following Ref. [26],
we assume that the hadronic matter is realized in the low-density region nB < 2n0 and
use the pressure constructed in Equation (28). In the high-density region nB > 5n0, the
pressure given in Equation (56) for the quark matter is used. In the intermediate region
2n0 < nB < 5n0, we assume that the pressure is expressed by a fifth-order polynomial
of µB as (It is important to create interpolation for the correct set of variables, either
P(µB) or ε(nB), from which one can deduce all the thermodynamic quantities by taking
derivatives [26]. Other combinations, e.g., P(ε), can not be used to derive nB and hence
would miss some constraints.)

PI(µB) =
5

∑
i=0

Ciµ
i
B . (57)

Following the quark–hadron continuity scenario, we demand that the interpolating EOS
matches the quark and hadronic EOSs up to the second derivatives (otherwise, we would
have the first- or second-order phase transitions at the boundaries). The six parameters Ci
(i = 1, . . . , 6) are determined from the boundary conditions given by

dnPI

(dµB)n

∣∣∣∣
µBL

=
dnPH

(dµB)n

∣∣∣∣
µBL

,
dnPI

(dµB)n

∣∣∣∣
µBU

=
dnPQ

(dµB)n

∣∣∣∣
µBU

, (n = 0, 1, 2) , (58)

where µBL is the chemical potential corresponding to nB = 2n0 and µBU to nB = 5n0.
In addition to these boundary conditions, the interpolated pressure must obey the

causality constraint, i.e., the sound velocity,

c2
s =

dP
dε

=
nB

µBχB
, (59)

where nB = dP
dµB

and χB = d2P
dµ2

B
to be less than the light velocity. This condition is more

difficult to satisfy for the combination of a softer nuclear EOS and a stiffer quark matter
EOS, since such a soft-to-stiff combination requires a larger slope in P(ε).

We show an example of the interpolated pressure in Figure 6 with the parameter
set λ′8 = 2.677, λ′10 = 0.09091 for m0 = 700 MeV, and B = 600 MeV for the PDM and
the two parameter sets (H/G, gV/G) = (1.45, 0.4) and (1.45, 0.5) for the quark matter.
Both plots (a) and (b) in Figure 6 are smoothly connected by the construction, but the
set (H/G, gV/G) = (1.45, 0.4) violates causality, as seen in Figure 7, and, therefore, must
be excluded.

The c2
s exceeding the conformal value, c2

s = 1/3 and the subsequent reduction within
the interval 2-5n0 are the characteristic features of the crossover models [24–28]. In the
nuclear domain, the sound velocity is small, c2

s ∼ 0.1, while the natural size is c2
s ∼ 1/3

in the quark matter. In the intermediate region, c2
s makes a peak. How to approach the

conformal limit is a subject under intensive discussions (see Refs. [76–80]).
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(a) (H/G, gV/G) = (1.45, 0.4) (b) (H/G, gV/G) = (1.45, 0.5)

Figure 6. Pressure P(µB) of the PDM and the unified equations of state. For the PDM, we chose
λ′8 = 2.677, λ′10 = 0.09091 for m0 = 700 MeV, and B = 600 MeV as a typical parameter set and, for the
quark models, we used (H/G, gV/G) = (1.45, 0.4) and (1.45, 0.5). The thick curves in the unified
equations of state are used to mark the pure hadronic and quark parts.

Figure 8 shows the allowed combinations of (H, gV) for several choices of m0.

(a) (H/G, gV/G) = (1.45, 0.4) (b) (H/G, gV/G) = (1.45, 0.5)

Figure 7. Squared speed of sound c2
s for (H/G, gV/G) = (1.45, 0.4) and (1.45, 0.5). Curves are same

as in Figure 6.

(a) (b)

Figure 8. Cont.
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(c) (d)

(e)

Figure 8. Allowed combinations of (H, gV) for m0 = 400–800 MeV. The color of the circle shows
the maximum mass of neutron stars obtained from the corresponding parameters, as indicated by a
vertical bar on the right side of each figure.

Here, we fix the parameters in the PDM to B = 600 MeV and λ′8 = 0, which determines
the value of λ′10 as summarized in Section 2.3 (e.g., λ′10 = 0.5221 for m0 = 700 MeV). The
parameter λωρ is set to reproduce the slope parameter as L0 = 57.7 MeV. In all cases,
the allowed values of H and gV have a positive correlation; for a larger gV , we need
to increase the value of H [27]. For m0 = 800 MeV, the maximum masses for all the
combinations are below 2M�, leading to the conclusion that m0 = 800 MeV should be
excluded from the current setup of the PDM parameters. The details of the positive
correlation between H and gV depend on the low-density constraint and the choice of
m0. As we mentioned in Introduction, the EOS in hadronic matter is softer for a larger m0.
Correspondingly, the parameter gV , which makes the quark matter EOS stiff, should not
be too large for causal interpolations; for a larger m0, the acceptable gV tends to appear
at lower values. The typical values of (H, gV) are greater than expected from the Fierz
transformation for which (H, gV) = (0.5, 0.5)G (see, e.g., Ref. [81]). Such choices were used
in the hybrid quark–hadron matter EOS with first-order phase transitions, but they tend to
lead to predictions that are incompatible with the 2M� constraints.

4.2. M-R Relations of NSs

With the unified EOS explained so far, we now calculate the M-R relations of NSs by
solving the Tolman–Oppenheimer–Volkoff (TOV) equation [82,83],

dP
dr

= −G
(ε + P)(m + 4πr3P)

r2 − 2Gmr
,

dm
dr

= 4πr2ε ,
(60)
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where G is the Newton constant; r is the distance from the center of a neutron star; and P,
m, and ε are the pressure, mass, and energy density as functions of r:

P = P(r) , m = m(r) , ε = ε(r) . (61)

The radius R is determined by the condition P(R) = 0 and the mass M by M = m(R). To
estimate the radii of NSs with an accuracy of better than ∼0.5 km, we need to include the
crust EOS. We use the BPS EOS [84] for the outer and inner crust parts. (The BPS EOS
is usually referred to as the EOS for the outer crust, but it also contains the BPP EOS [84]
for the inner crust. At nB ≤ 0.1 fm−3 and at nB ≥ 0.1 fm−3, we use our unified EOS from
nuclear liquid to quark matter. For a given central density, we obtain the corresponding
M-R point, and the sequence of such points forms the M-R curves.)

In order to study the relation between microscopic parameters and M-R relations,
below, we examine the impacts of the PDM EOS, the dependence on the ω2ρ2 coupling
(λωρ), the chiral invariant mass m0, and the anomaly strength B for a given set of quark
matter parameters (H, gV).

We first study the effect of the ω2ρ2 interaction. We fix m0 = 500 MeV and B = 600 MeV
and vary λωρ, which leads to changes in the slope parameter L0 in the symmetry energy.
We examine the cases with L0 = 40, 57.7 and 80 MeV since the value of L0 still has un-
certainty, which is being intensively studied [85]. The resultant M-R relation is shown in
Figure 9. The M-R relations with a core density smaller than 2n0 (and larger than 5n0)
are emphasized by thick curves in the low (high) mass region. The λωρ > 0 corresponds
to attractive correlations that reduce L0 and soften the EOS in the nuclear domain. For
L0 = 40, 57.7 and 80 MeV, the radii of 1.4M� NS are ' 11.05 km, ' 11.2 km, and '12.1 km,
respectively A precise determination of the slope parameter in the future will help us to
further constrain the NS properties, especially the radii.

Figure 9. Dependence of M-R relations for m0 = 500 MeV on the slope parameter. Red curves
are connected to the NJL parameters (H, gV)/G = (1.55, 1.0), (1.50, 0.9); blue curves to (1.55, 0.9),
(1.50, 0.8); black curves to (1.55, 0.8), (1.50, 0.7).

In the following analysis, we fix the value L0 = 57.7 MeV and the parameter λ′8 = 0.
The value of λ′10 is determined as explained in Section 2.3. For example, λ′10 = 0.5221 is
obtained for the m0 = 700 MeV below. Then, we examine the effects of the U(1)A anomaly
on the M-R relation. In Figure 10a, we show the M-R curves for several values of the
anomaly strength B, with the NJL parameters (H, gV) leading to the largest and second
largest maximum masses for a given set of the PDM parameters. This shows that, due to the
softening effect of the anomaly, as explained in Section 2.4, even the stiffest connection for
m0 = 800 MeV with B = 600 MeV is unable to satisfy the maximum mass constraints. The
effect of the anomaly in general softens the EOS from low to high densities and increasing B
from 0 to 600 MeV (while retuning the other parameters to reproduce the nuclear saturation
properties) reduces both the M and R by a few percents. In Figure 10b, we set B = 600 MeV
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to fit the η′ mass and examine several values of m0. These results should be regarded as the
representatives of the present review.

(a) (b)
Figure 10. Mass–radius relations for different m0 in different parameter setting. (a) B = 0, 600 MeV
for m0 = 500, 800 MeV; (b) B = 600 MeV for different m0. NJL parameters (H, gV)/G are chosen to
be (1.45, 1.3)m0=400MeV, (1.6, 1.3)m0=500MeV, (1.6, 1.3)m0=600MeV, and (1.6, 1.2)m0=700MeV.

In this review, the mass of the millisecond pulsar PSR J0740+6620 [16]

Mlowest
TOV = 2.08+0.07

−0.07 M� , (62)

is regarded as the lower bound for the maximum mass, which is shown by upper red-
shaded area in Figures 9 and 10. Actually, the lower bound may be even significantly higher;
the recent analyses for the black-widow binary pulsar PSR J0952-0607 suggest a maximum
mass of 2.35 ± 0.17M� [86]. Meanwhile, there are constraints, Mmax . 2.16+0.17

−0.15M�,
from the gamma-ray burst GRB170817A associated with the GW170817 event (under the
assumption that the post-merger of GW170817 is a hypermassive NS). If the maximum
mass is indeed ∼ 2.3M� or higher, we will need to allow for a much stiffer low-density
EOS with which a much stiffer quark EOS becomes possible. The analyses based on another
criterion will be presented elsewhere.

Another important constraint comes from NS radii. We show that the constraints on
the radii obtained from the LIGO-Virgo [87,88] as green-shaded areas on the middle left
(More precisely, the LIGO-Virgo constrains the tidal deformability Λ̃, which is the function
of the tidal deformability of each neutron star (Λ1 and Λ2) and the mass ratio q = M2/M1.
However, for EOSs which do not lead to a large variation in radii for M & 1M�, Λ̃ is
insensitive to q. In fact, the radii of neutron stars and Λ̃ can be strongly correlated (for
more details, see Refs. [89,90]), and, for our purposes, it is sufficient to directly use the
estimates on the radii given in Ref. [88], rather than Λ̃.) and from the NICER in Ref. [19] as
red-shaded areas on the middle right. The inner contour of each area contains 68% of the
posterior probability (1σ), and the outer one contains 95% (2σ). These values (plus another
NICER result in Ref. [20]) are summarized in Table 4.

Table 4. Radius constraints for neutron stars for ' 1.4M� and ' 2.1M� NSs.

Radius [km] Mass [M�]

GW170817 (primary) 11.9+1.4
−1.4 1.46+0.12

−0.10
GW170817 (second) 11.9+1.4

−1.4 1.27+0.09
−0.09

J0030+0451 (NICER [19]) 13.02+1.24
−1.06 1.44+0.15

−0.14
J0030+0451 (NICER [20]) 12.71+1.14

−1.19 1.34+0.15
−0.16

PSR J0740+6620 (NICER [21]) 12.35+0.75
−0.75 2.08+0.07

−0.07
PSR J0740+6620 (NICER [22]) 12.39+1.30

−0.98 2.08+0.07
−0.07
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From all the constraints, we restrict the chiral invariant mass as

400 MeV . m0 . 700 MeV . (63)

which is updated from those in the the original work of Ref. [66], 600 MeV . m0 . 900 MeV,
which corresponds to the set λ′8 = λ′10 = 0 and B = 0 in the present model.

5. Chiral Condensates in Crossover

The method of interpolation can be used not only to construct a unified EOS but
also to calculate microscopic quantities, such as condensates and matter composition.
In the hadronic and quark matter domains, we consider the generating functional with
external fields coupled to the quantities of interest and then interpolate two functionals.
The microscopic quantities are then extracted by differentiating the unified generating
functional. We first review the computations in the hadronic and quark matter domains
and then turn to computations in the crossover region.

5.1. Chiral Condensates in the PDM

The chiral condensate in the PDM can be calculated by differentiating a thermody-
namic potential with respect to the current quark mass. In the present model, the explicit
chiral symmetry breaking enters only through the VSB term in Equation (8), which leads
to −(2cmuσ + cmsσs) as in Equation (21). There may be mass dependence in the other
coupling constants in front of the higher powers in the meson fields, but such couplings
exist already at mq = 0, and the finite mq is supposed to give only minor corrections. Hence,
we neglect the mq dependence, except for the terms in VSB. Using the Gell-Mann–Oakes–
Renner relation, the explicit symmetry breaking term can be written as

ΩESB = −(2cmuσ + cmsσs) = mq〈(ūu + d̄d)〉0
σ

fπ
+ ms〈s̄s〉0

σs

σs0
, (64)

where 〈(ūu + d̄d)〉0 and 〈s̄s〉0 are the chiral condensates in a vacuum. The in-medium chiral
condensates are obtained as

〈(ūu + d̄d)〉 ≡ ∂ΩESB

∂mq
= 〈(ūu + d̄d)〉0

σ

fπ
, (65)

〈s̄s〉 ≡ ∂ΩESB

∂ms
= 〈s̄s〉0

σs

σs0
, (66)

where we neglected the mq and ms dependences of 〈(ūu + d̄d)〉0 and 〈s̄s〉0, which are of
higher orders in mq/Mq and ms/Ms.

In the following Section 5.1.1, we examine how σ varies as the baryon density increases,
and we study the in-medium 〈(ūu + d̄d)〉 condensate in Section 5.1.2. We postpone discus-
sions on the strange quark condensate 〈s̄s〉 to Section 5.3 since changes in 〈s̄s〉 at nB ≤ 2n0,
which are induced only through the anomaly, are very small in the hadronic region.

5.1.1. Chiral Scalar Density in A Nucleon

To set up the baseline for the estimate of in-medium chiral condensates, we consider
the scalar charge, Nσ, for a nucleon in a vacuum. It is defined as

Nσ =
∫

x
〈N|(ūu + d̄d)(x)|N〉 = 〈N|

∂HQCD

∂mq
|N〉 =

∂mvac
N

∂mq
, (67)

where HQCD is the QCD Hamiltonian. In the last step, we used the Hellmann–Feynman
theorem [91].

In the PDM, the current quark masses affect nucleon masses only through the modifi-
cation of σ. The nucleon’s chiral scalar charge in a vacuum is given as
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Nσ ≡
∂mvac

N
∂mq

=
∂σ0

∂mq

(
∂mN
∂σ

)
σ=σ0

. (68)

The mass derivative of σ0 is related to the chiral susceptibility, which is given by the
(connected) scalar correlator at zero momentum,

∂〈q̄q(x)〉
∂mq

∼
∫
DqDq̄ [q̄q(x)]

∂

∂mq

(
e−
∫

x′ mq q̄q(x′)+.../Z
)

∼
∫

x′

〈
[q̄q(x)][q̄q(x′)]

〉
conn. ∼ lim

q→0

1
q2 + m2

σ
. (69)

Then, a smaller scalar meson mass enhances Nσ.
Multiplication of mq by the scalar charge leads to the so-called nucleon sigma term:

ΣN ≡ mqNσ =
∫

x
〈N|mq(ūu + d̄d)|N〉 , (70)

which is renormalization group invariant and has direct access to experimental quantities.
The traditional estimate [92] gives ΣN ' 45 MeV. However, precise determination is
difficult, and the possible range is 40–70 MeV, according to the lattice QCD analyses or the
combined analyses of the lattice QCD and the chiral perturbation theory. (See Ref. [91] for
a review and the references therein.) Here, we take mq ' 5 MeV, which leads to obtaining
Nσ ' 8–14, and the scalar density is given by

Nσ
4
3 πR3

N
=

(
0.24–0.30 GeV× 1 fm

RN

)3

, (71)

where RN ∼ 1 fm is the size of a nucleon. (Note that the scalar isoscalar radius is estimated
as 〈r2

s 〉 ' (0.7–1.2 fm)2 [93].) Note that the magnitude is roughly the same order as that of
the vacuum, but the sign is opposite. Therefore, the nucleon scalar charges tend to cancel
that of the vacuum and reduce the net value of σ. Therefore, the appearance of nucleons
inevitably reduces the magnitude of the chiral condensates.

In Table 5, for several choices of m0, we summarize the values of the Yukawa coupling:

∂mN
∂σ

=
(g1 + g2)

2σ

2
√

4m2
0 + (g1 + g2)2σ2

− g2 − g1

2
, (72)

together with the scalar meson mass (mσ) obtained as the smallest eigenvalue of the
following matrix (

∂2V
∂σ2

∂2V
∂σ∂σs

∂2V
∂σ∂σs

∂2V
∂σ2

s

)
. (73)

We also show the values of the nucleon sigma term (ΣN) calculated from the PDM using
Equation (70).

Table 5. Yukawa coupling, the scalar meson mass, and the nucleon sigma term predicted by the PDM
in a vacuum.

m0 [MeV] 400 500 600 700

(∂mN/∂σ)vac. 8.79 7.97 7.01 5.87
mσ [MeV] 607 664 688 599
ΣN [MeV] 51.12 48.71 51.39 62.01
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The estimates of mσ and ΣN are reasonably consistent with the hadron phenomenology;
mσ are consistent with the mass of the scalar meson f0(500) (with the width ∼500 MeV)
(it is not a trivial issue whether one can identify σ in mean field models with the physical
scalar meson), and the estimates for the nucleon sigma term, ΣN ' 40–70 MeV, are within
the ball park of several theoretical estimates.

5.1.2. Dilute Regime

In the dilute regime (Figure 11), the nucleons are widely separated. In a good approxi-
mation, the in-medium scalar density is simply the sum of the negative scalar charges from
the chiral condensates and the positive scalar charges from the nucleons (linear density
approximation (LDA)),

〈(ūu + d̄d)〉 ' 〈(ūu + d̄d)〉0 + nBNσ , (74)

which can be rewritten as

σ ' fπ

(
1 + nB

Nσ

〈(ūu + d̄d)〉0

)
. (75)

In this LDA, the σ decreases linearly as a function of nB.
The linear density approximation is violated when the density increases and nonlinear

effects set in. Shown in Figure 12 is the ratio of the quark condensate, 〈ūu〉/〈ūu〉0 = σ/ fπ ,
as a function of the neutron number density nn in pure neutron matter. The result of the
linear density approximation is also shown for comparison. Our mean field results are
consistent with the linear density approximation with ΣN = 45 MeV in the low-density
region. Our predictions start to deviate from the LDA around nB = 0.5n0, signaling the
importance of higher powers of nB.

We stress that, in the PDM, while the chiral restoration or reduction in σ occurs rather
quickly with the increasing density, such changes do not immediately mean structural
changes in the nucleons or in the nucleon or quark Dirac sea. The nucleon mass in the
PDM is relatively modest (Figure 13), and this feature is welcomed for the commonly
used no-sea approximation for the thermodynamic potential (see Equation (18)) which
is justified only when modifications in the Dirac sea are small. Another hint regarding
the chiral condensates and hadron structures comes from a high temperature transition in
which a hadron resonance gas (HRG) transforms to a quark–gluon plasma (QGP). There,
the chiral condensates begin to drop before the temperature reaches the critical temperature,
but the HRG model with the vacuum hadron masses remains valid in reproducing the lattice
data even after the chiral condensates are substantially reduced [94,95]. Chiral restoration,
beyond cancellations of the negative and positive scalar charges, will be discussed in the
next section on quark matter models.

Figure 11. Schematic picture of the chiral condensates in the dilute regime. The chiral scalar charge is
negative where the vacuum chiral condensate dominates, while nucleons contribute to the positive
scalar charges to cancel the vacuum’s contributions.
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Figure 12. Dependence of the quark condensate in the PDM 〈ūu〉/〈ūu〉0 = σ/ fπ on the baryon
number density nB for m0 = 400, 500, 600, and 700 MeV. Here, the condensate is normalized by the
vacuum’s counterpart.

Figure 13. Dependence of the nucleon masses in the PDM on the baryon number density nB, for
m0 = 400, 500, 600, and 700 MeV.

5.2. Chiral Condensates in the CFL Quark Matter

In terms of quarks, the chiral condensates are triggered by the attractive quark–
antiquark pairing. At a high density, such a pairing is disfavored by the presence of
the quark Fermi sea; as shown in Figure 14, creating an antiquark costs approximately the
quark Fermi energy since it is necessary to bring a particle in the Dirac sea to the domain
beyond the Fermi sea. Therefore, the chiral condensates made of quarks and antiquarks
naturally dissociate as the density increases. Instead, the particle–particle [63] or particle–
hole pairings [96–98] near the Fermi surface do not have such energetic disadvantages. The
method of these computations is given in Section 3.

We note that, unlike the chiral restoration in the dilute nuclear matter as a mere
consequence of cancellations between the positive and negative charges, in quark matter,
the magnitude of each contribution is reduced together with the chiral restoration in the
quark Dirac sea. This extra energy from the Dirac sea modification is important in the
quark matter EOS and must be taken into account. The softening of the quark EOS due
to the U(1)A anomaly is related to the Dirac sea modifications associated with the chiral
restoration. If we consider the anomaly term for couplings between diquark and chiral
condensates [99], then the EOS can be stiffer; see Figure 7 in Ref. [64].
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Figure 14. Chiral symmetry breaking by condensation of quark–antiquark pairs; (upper) in a vacuum;
(lower) in the medium. In the latter, the pairing is blocked by the quark Fermi sea.

5.3. Condensates in a Unified EOS

In this subsection, we review the interpolating method of generating functionals,
which is introduced in Ref. [68]. We use it to calculate the chiral and diquark condensates
from the nuclear to quark matter and also to examine the composition of matter with
(u−, d−, s)-quarks and charged leptons (electrons and muons, e, µ).

5.3.1. Unified Generating Functional

For computations of condensate φ, we first construct a generating functional P(µB; J)
with the external field J coupled to the φ. A condensate φ at a given µB is obtained by
differentiating P(µB; J) with respect to J and then set J = 0,

φ = − ∂P
∂J

∣∣∣∣
J=0

. (76)

The generating functional for the nuclear domain, nB ≤ 2n0, is given by the PDM, and for
the quark matter domain, nB ≥ 5n0, by the NJL-type model. We interpolate these function-
als with the constraints that the interpolating curves match up to the second derivatives
at each boundary, 2n0 and 5n0. For the interpolating function, we adopt a polynomial
function of µB with six coefficients an(J),

PI(µB; J) =
5

∑
n=0

an(J)µn
B . (77)

We determine the chemical potentials at the boundaries, µL
B and µU

B , as

nB(µ
L
B; J) = 2n0 , nB(µ

U
B ; J) = 5n0 . (78)

The resulting µL
B and µU

B depend on J. The six boundary conditions

∂kPI

(∂µB)k

∣∣∣∣
µL

B(µ
U
B )

=
∂kPPDM(NJL)

(∂µB)k

∣∣∣∣
µL

B(µ
U
B )

, (79)

with k = 0, 1, 2 uniquely fix an’s. As in the EOS construction, the generating functional
must satisfy the causality condition. Such constraints are transferred to the evaluation
of the condensates; condensates in the crossover domain are correlated with those in the
nuclear and quark matter.

5.3.2. An Efficient Method for Computations of Many Condensates

While the generating functional in the previous section is general, the calculations
become cumbersome when we need to compute many condensates. Each condensate
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requires the corresponding external field and generating functional. Fortunately, for the
interpolating function Equation (77), we can use a more efficient method in Ref. [68], which
does not demand the construction of P(µB, J) and utilizes only the µB-dependence of the
condensate at J = 0 for each interpolating boundary.

In the interpolated domain, the condensate φ can be expressed as

φI = −
∂PI

∂J

∣∣∣∣
J=0

= −
5

∑
n=0

∂an

∂J

∣∣∣∣
J=0

µn
B . (80)

This implies the equivalence between the determination of φI and that of the six constants
∂an/∂J

∣∣
J=0. Taking the µB-derivatives in Equation (79), we obtain

∂

∂J

(
∂kPI

(∂µB)k

∣∣∣∣
µL

B(µ
U
B )

)
=

∂

∂J

(
∂kPPDM(NJL)

(∂µB)k

∣∣∣∣
µL

B(µ
U
B )

)
, (81)

where k = 0, 1, 2. Only the quantities at a given µB and J = 0 are necessary to construct all
of these derivatives at J = 0. Hence, this method speeds up our analyses considerably.

5.3.3. Numerical Results

Using the method explained above, we calculate the light quark chiral condensate〈
(ūu + d̄d)

〉
, the strange quark condensate 〈s̄s〉, the diquark gaps ∆j (j = 1, 2, 3), and the

quark number densities n f ( f = u, d, s) from the nuclear to quark matter domain. Below,
we adopt three values of the chiral invariant mass (m0 = 500, 600, 700 MeV) as samples
and fix the anomaly coefficient B to 600 MeV and the NJL parameters (H/G, gV/G) to
(1.45, 0.5). The presence of the anomaly term in the PDM is the difference between the
results in this review and in Ref. [68] whose impacts are just few percents in magnitude.
The EOS for these parameter sets satisfies 0 ≤ c2

s ≤ 1. For comparisons, the extrapolation
of the PDM results are shown by black dotted curves.

Light Quark Chiral Condensates

Figure 15 shows the density dependences of the in-medium chiral condensate nor-
malized by the vacuum value,

〈
(ūu + d̄d)

〉
/
〈
(ūu + d̄d)

〉
0. Clearly, the condensate at the

boundaries affects the condensate in the crossover region. We note that, when the EOS from
the PDM is extrapolated to the high-density region (nB ≥ 2n0) as indicated by black dotted
curves, the chiral condensate rapidly decreases in the range nB ' 3.8–4.5 for m0 = 500 MeV
as well as n & 5.5n0 for m0 = 600 MeV, which corresponds to the phase transition brought
by the entering of N∗(1535).

Figure 15. Density dependence of the chiral condensates normalized by the vacuum counterpart.
The parameters are chosen as B = 600 MeV and (H/G, gV/G) = (1.45, 0.5).
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The condensates in the hadronic matter strongly depend on the choice of m0: for
m0 = 500 MeV, the nucleon mass mN = 939 MeV gains a large contribution from the chiral
condensate, and the Yukawa coupling of nucleons to σ is large; accordingly, the chiral
condensate drops quickly as the baryon density increases. For a larger m0, the nucleons have
fewer impacts on the chiral condensates, and the chiral restoration takes place more slowly.

As mentioned in Section 5.1, the PDM may underestimate the chiral restoration
effects as they do not describe the chiral restoration at the quark level. By putting the
quark matter constraints from the high density and using the causality constraints for
the interpolated domain, we can gain qualitative insights into how the chiral restoration
should occur toward a high density. Taking into account the nuclear and quark matter
effects, interpolation offers reasonable descriptions for the crossover domain.

Strange Chiral Condensates

The density dependence of the strange quark condensate is shown in Figure 16. In the
present PDM model, the σs field corresponding to the strange quark condensate does not
directly couple to the nucleons, but it does couple, only through the anomaly term in the
meson potential, to Equation (9). As a result, the density dependence is mild in the hadronic
matter (nB ≤ 2n0). In the interpolated region, the condensate starts to decrease rapidly
toward that of the quark matter, which is about 40% of the vacuum value at nB = 5n0.
There are at least two effects responsible for this chiral restoration. The first is the reduction
in the anomaly contribution, ∼ 〈ūu〉〈d̄d〉(s̄s), which is due to the chiral restoration for the
light quark sectors. The other is due to the evolution of the strange quark Fermi sea. In our
unified model, the strangeness sector significantly deviates from the prediction of the PDM
at nB ' 3n0 due to the constraints from the quark matter boundary conditions.

Figure 16. Density dependence of the strange quark condensate normalized by the vacuum counter-
part. The parameters B and (H/G, gV/G) are as in Figure 15.

Diquark Gaps and Number Density

Shown in Figure 17 are the diquark gaps in the ud-pairing channel (left panel) and
ds-pairing channel (right panel) at various densities. We set the diquark condensates to
zero at nB ≤ 2n0. Meanwhile, the isospin symmetry holds in the CFL quark matter, so, in
the whole region, ∆ds ' ∆us holds in good accuracy.

Next, we study the density dependence of the diquark condensates on the quark
number density (Figure 18). The quark densities in the nuclear domain are calculated as
nu = 2np + nn, nd = np + 2nn, and ns = 0. As seen from Figures 17 and 18, there are clear
correlations between the growth of the diquark condensates and the quark number densities.
These two quantities assist each other: more diquark pairs are possible for a larger quark
Fermi sea, while the resulting energy reduction, in turn, enhances the quark density. The
flavor composition is also affected by these correlations: the substantial u, d-quark Fermi sea
and the pairing to strange quarks favor the formation of the strange quark Fermi sea, even
before the quark chemical potential reaches the threshold of the vacuum strange quark mass.
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Figure 17. Diquark condensates as functions of density; (left) ∆3 = ∆ud and (right) ∆1 = ∆ds. The
parameters B and (H/G, gV/G) are as in Figure 15.

Figure 18. Number density for (left) up-quarks and (right) strange quarks. The parameters B and
(H/G, gV/G) are as in Figure 15.

Quark and Lepton Compositions

The present framework can be extended for computations of the matter composition
in NS matter with leptons. We simply impose the charge neutrality and β-equilibrium
conditions on the generating functionals. Shown in Figure 19 are the quark flavor n f /nB
with f = u, d, s and the lepton fraction nl/nB with l referring to the electrons or muons.

The quick evolution of the strangeness fraction, taking off around nB ' 2.5n0 and
becoming as abundant as up- and down-quarks at nB & 4.5n0, and the associated reduction
in lepton fractions, are one of distinct features of our unified model. Beyond 5n0, in the
CFL quark matter, the charge neutrality is satisfied by quarks, and no charged leptons
are necessary.

Figure 19. Matter composition n f /nB ( f = u, d, s) and nl/nB as functions of the baryon density.
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6. A Summary

In this review article, we summarized the main points of Refs. [66–68] and updated
some of the analyses, including the U(1)A anomaly effects. In Section 2, we explained how
to construct the EOS in hadronic matter for nB ≤ 2n0 using an effective hadron model
based on the parity doublet structure. In the analysis, we focused on the effect of the U(1)A
axial anomaly included as the KMT-like interaction among scalar and pseudoscalar mesons
and showed that the effect makes the EOS softer. In Section 3, following Ref. [27], we briefly
reviewed how to construct a quark matter EOS for nB ≥ 5n0 using an NJL-type model. Then,
in Section 4, we built a unified EOS in the density region of 2n0 ≤ nB ≤ 5n0 by interpolating
the hadronic and quark EOS. For the given microscopic parameters, we calculated the M-R
relations of NSs, confronted them with the observational constraints, and then obtained
constraints on the chiral invariant mass and quark model parameters. In Section 5 we
determined the density dependence of the chiral condensate in the interpolated region using
a method proposed in Ref. [68]. The boundary conditions from the hadronic and quark
matter affect the condensates in the intermediate region and give a balanced description.

We want to stress that our method provides some connection from microscopic physi-
cal quantities, such as the chiral invariant mass, the chiral condensates, and diquark gaps,
to macroscopic observables, such as the masses and radii of NSs. Actually, our analysis
implies that a rapid decrease in the nucleon mass, even near the normal nuclear density,
which can occur when the chiral invariant mass m0 is very small, provides a too-soft EOS to
satisfy the radius constraint of NSs with a mass of about 1.4M�. In other words, the radius
constraint of the NSs obtained from recent observations indicates that the nucleon mass
should include a certain amount of chiral invariant mass, from which the nucleon keeps
a large portion of its mass even in the high-density region in which the chiral symmetry
restoration is expected to occur.

Our density dependence of the chiral condensate in the low-density region is consistent
with the linear density approximation. We should note that the reduction of the chiral
condensate there is achieved by the contribution of the positive scalar charge of the nucleon
without changing the nucleon properties drastically. This is due to our construction of
hadronic matter in the PDM: We adopted the so-called "no-sea approximation" where we
neglect the effect of the nucleon Dirac sea and use fixed nucleon–meson couplings for
nB . 2n0. In the present treatment, the intrinsic properties of nucleons start to change at
nB & 2n0, drastically, where the quark exchanges among the baryons become frequent;
since baryons are made of quarks, the quark exchanges are supposed to change the baryon
structure. Such intrinsic dependence would be able to be included through the introduction
of the density- (and/or temperature-) dependent coupling constants in effective hadronic
models as completed in, e.g., Refs. [100,101]. This is a reflection of the partially released
quarks, which are affected by the medium. The inclusion of such effects into coupling
constants is very difficult. Our interpolation scheme provides a practical way to implement
some restrictions through the quark matter constraints at a high density.

In the present model for hadronic matter, we did not explicitly include the hyperons,
assuming that they are not populated in the low-density region nB . 2n0. The hyperons
may enter into matter around nB ∼ 2-3n0, which is not far from present choice for the
hadronic boundary. It would be interesting to conduct an analysis explicitly including the
hyperons based on the parity doublet structure (see, e.g., Ref. [102]).

In the present analysis, we assume that the anomaly has a stronger impact in the
mesonic sectors than in the baryonic sectors and included the anomaly B term only in the
mesonic sector. It would be interesting to include some Yukawa interactions, which also
break the U(1)A symmetry.
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