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Abstract: Understanding the equation of state of dense neutron-rich matter remains a major challenge
in modern physics and astrophysics. Neutron star observations from electromagnetic and gravita-
tional wave spectra provide critical insights into the behavior of dense neutron-rich matter. The next
generation of telescopes and gravitational wave detectors will offer even more detailed neutron-star
observations. Employing deep learning techniques to map neutron star mass and radius observations
to the equation of state allows for its accurate and reliable determination. This work demonstrates
the feasibility of using deep learning to extract the equation of state directly from observations of
neutron stars, and to also obtain related nuclear matter properties such as the slope, curvature, and
skewness of nuclear symmetry energy at saturation density. Most importantly, it shows that this
deep learning approach is able to reconstruct realistic equations of state and deduce realistic nuclear
matter properties. This highlights the potential of artificial neural networks in providing a reliable
and efficient means to extract crucial information about the equation of state and related properties
of dense neutron-rich matter in the era of multi-messenger astrophysics.
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1. Introduction

The determination of the equation of state (EOS) of dense neutron-rich matter is one
of the most significant and pressing challenges in modern physics and astrophysics [1–3].
Understanding the EOS has far-reaching implications for a broad range of phenomena,
such as heavy-ion collisions, binary neutron star mergers, supernovae, and gravitational
waves. Nuclear physics has been a primary field of research for studying the EOS, with
numerous experiments and theoretical investigations carried out to probe the properties
of dense nuclear matter [4–13]. Astrophysics also plays a crucial role in examining the
EOS, with research efforts focusing on studying neutron stars and compact binary mergers
involving at least one neutron star [14–35]. In recent years, numerous research facilities,
such as telescopes and gravitational-wave detectors, have been established to enhance our
knowledge and understanding of the EOS [1,2].

In cold neutron stars, the nucleonic part of the EOS can be written in terms of the
energy per nucleon E(ρ, δ), where ρ is the total density, δ = (ρn − ρp)/ρ is the isospin
asymmetry, and ρn and ρp represent the neutron and proton densities, respectively. In the
parabolic approximation the EOS takes the form [36]

E(ρ, δ) = ESNM(ρ) + Esym(ρ)δ2, (1)

where ESNM(ρ) is the energy per nucleon of symmetric nuclear matter (SNM) and Esym(ρ)
is the nuclear symmetry energy. However, the EOS of cold nuclear matter under extreme
conditions is still a subject of intense debate and uncertainty, especially at supra-saturation
densities. This uncertainty mainly arises due to the unknown high-density behavior of the
nuclear symmetry energy Esym(ρ) (see, e.g., Refs. [4,5] and references therein).
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To extract the equation of state (EOS) of nuclear matter from first principles, one needs
to solve quantum chromodynamics (QCD), the theory of strong interactions. However,
model-independent results currently only span a narrow density regime. Specifically, for
low densities near 1− 2ρ0 (where ρ0 = 0.16 fm−1 denotes the saturation density of symmet-
ric nuclear matter), one can blend ab initio approaches with nuclear forces that stem from
Chiral Effective Theory (χEFT), which yield well-defined error bounds [37–46]. For higher
densities at ρ & 50ρ0, perturbative QCD calculations give reliable results [47–53]. How-
ever, at intermediate densities in the range of 2− 10ρ0, reliable QCD predictions remain
elusive [54]. Therefore, determining the EOS in this domain still relies on non-perturbative
methods such as Monte Carlo simulation of QCD on a lattice (lattice QCD), which face
formidable challenges in view of the sign problem in finite-density systems [55]. Accord-
ingly, establishing the EOS at intermediate densities still hinges on phenomenological
approaches that employ many-body techniques and effective interactions, such as density
functionals based on Skyrme, Gogny, the relativistic mean field (RMF) theory, or Similarity
Renormalization Group (SRG)-based methods.

Recent years have seen remarkable strides in determining the EOS at high densities,
driven by both nuclear laboratory experiments and multi-messenger astrophysical (MMA)
observations of neutron stars (NSs). Specifically, experimental data from heavy-ion re-
actions conducted at intermediate to relativistic energies, in particular various forms of
nucleon collective flow and kaon production, have already imposed significant constraints
on the EOS of symmetric nuclear matter up to approximately 4.5 ρ0 [6]. Moreover, the
nuclear and astrophysical communities have joined forces and have made impressive
headway in constraining the symmetry energy around and below the saturation density of
nuclear matter, leveraging a combination of terrestrial nuclear experiments and astrophysi-
cal observations [5,9–11,56–59]. Nevertheless, the characteristics of the nuclear symmetry
energy Esym(ρ) at densities above saturation and the potential occurrence of a transition
from hadronic matter to quark matter remain the aspects of the high-density equation of
state that harbor the most significant uncertainties [4,5,21,22,24]. The high-density behavior
of Esym(ρ) is also importnat for the occurrence of novel particles, such as hyperons and
resonances [60–75].

The recent MMA observations of NSs have offered a unique opportunity to explore
the high-density EOS. This represents an alternative way to independently extract the EOS
by means of statistical approaches (as highlighted in Refs. [35,76–81]). The diverse set
of methods employed in these investigations encompasses Shapiro delay measurements
of massive ∼2M� pulsars [82–84], radius measurements of quiescent low-mass X-ray
binaries and thermonuclear bursters [76–78,85,86], X-ray timing measurements from the
Neutron Star Interior Composition Explorer (NICER) mission [87–89], and detection and
inference of gravitational waves from compact binary mergers involving NSs [90–92] by the
LIGO/VIRGO/KAGRA collaboration [93–95]. Neutron stars are characterized by common
observables including mass M, radius R, moment of inertia I, quadrupole moment Q,
dimensionless tidal deformability Λ (and its derivatives such as Love number k2 and tidal
deformability λ), and compactness M/R. The NICER mission, for instance, is directed
towards determining the compactness M/R of neutron stars by observing the gravitational
lensing effect of thermal emission from the star’s surface. On the other hand, the tidal
disruption of the star in the presence of its companion is quantified through the tidal
deformability parameter λ, which is inferred from gravitational-wave (GW) observations
of binary neutron star (BNS) and neutron star-black hole (NSBH) mergers.

There exist various statistical approaches to determine the most likely EOS from neu-
tron star observational data. Of these, the use of Bayesian inference is widespread [35,76–80].
Gaussian processes also provide a non-parametric representation of the EOS [81]. However,
the uncertainty in Bayesian analyses raises questions regarding the true nature of the dense
matter EOS [54]. The major sources of uncertainties in Bayesian inference methods are due
to the choice of prior probabilities, which represent subjective beliefs or assumptions about
the parameters before incorporating data. Different choices of priors can lead to different
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results and interpretations [54]. In light of this, alternative model-independent methods are
being sought. Deep neural networks (DNNs) [96,97] have garnered attention in the research
community, where deep learning (DL) algorithms have displayed exceptional proficiency
in tasks such as image recognition [98] and natural language processing [99]. Further-
more, these techniques have been applied in various physics and astrophysics domains,
including the analysis of GW data for detection [100–107], parameter estimation [108,109],
and denoising [110]. In previous works, we employed Convolutional Neural Network
(CNN) [111] algorithms to detect and infer GW signals from BNS [112,113] and, very re-
cently, from NSBH [114] mergers. Additionally, the use of DNNs as a tool to extract the
dense matter EOS from neutron star observations has also been explored in a growing
number of studies [54,115–120].

DL methods offer important advantages over Bayesian approaches in several impor-
tant aspects. One key advantage is the ability of DL algorithms to automatically learn
complex patterns and features from large datasets without requiring explicit assumptions
or prior knowledge. This allows DL algorithms to capture and extract complex nonlin-
earities and correlations that may not be easily discernible using conventional Bayesian
techniques. It is precisely this unique intrinsic feature of the DL approaches that opens an
alternative way for a model-independent determination of the dense matter EOS directly
from neutron-star astronomical data.

In a recent investigation [121], we presented an innovative approach to determine
the nuclear symmetry energy, Esym(ρ), by utilizing DL techniques in conjunction with
astronomical observations of neutron stars. Our results demonstrate that deep neural
networks have the capacity to accurately extract Esym(ρ) from a set of M− R or M− Λ
NS observations. This approach offers a promising avenue for exploring the high-density
behavior of Esym(ρ), which remains a challenging task in nuclear physics.

Motivated by the results of our previous work [121], in this paper, we further develop
our DL approach and apply it to the problem of determining the EOS of dense neutron-rich
matter and related nuclear matter properties from mass-radius M(R) measurements of
neutron stars. In particular, we pay special attention to deducing the slope, curvature, and
skewness of the nuclear symmetry energy, in addition to the EOS. Our results demonstrate
that DL algorithms can accurately and reliably extract the NS EOS and nuclear matter
properties from observational data. Most importantly, we show that our DL framework is
able to successfully reconstruct realistic EOSs and nuclear matter properties, which brings
us one step closer to revealing the true nature of the EOS of dense neutron-rich matter.

In the present work, we have structured our discussion as follows. In the Section 1,
we have provided a brief introduction. In Section 2, we have presented the main aspects
of our formalism. This includes a comprehensive overview of the essential features of the
EOS employed in our analysis, along with the details of our DL algorithms, such as data
generation, neural network architectures, and training methodologies. Subsequently, in
Section 3, we have presented our results and their implications. Finally, in Section 4, we
have summarized our findings and provided future research directions.

Conventions: We use units in which G = c = 1.

2. Formalism

In this section, we introduce the methods employed in our study. First, we give
a comprehensive overview of the main characteristics of the EOS used in the present
investigation. Afterwards, we briefly recall the procedure for solving the structure equations
of static neutron stars. In Section 2.3, we discuss the DL methodology employed in mapping
the mass-radius M(R) observations of neutron stars to the EOS, and also the procedure of
mapping the reconstructed EOS to selected nuclear matter properties.

2.1. Equation of State

The determination of NS properties such as mass M and radius R heavily relies on
the equation of state. In general, two theoretical approaches are used to determine the
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nuclear matter EOS—phenomenological and microscopic. Phenomenological approaches
employ effective interactions that describe the ground state of finite nuclei. Approaches
based on Skyrme interactions [122,123] and relativistic mean-field (RMF) models [124] are
examples of such methods that have been extensively used in the study of low-density
nuclear systems. However, their suitability for describing high isospin asymmetry systems
and high-density regimes is limited, and without experimental data to constrain these
models under such circumstances, their predictions may not be reliable [125]. On the
other hand, microscopic approaches use realistic two-body and three-body interactions to
describe the behavior of nucleons. Such realistic nuclear interactions are based on meson-
exchange theory [126,127] or more recent χEFT [42,128–130]. Examples of microscopic
many-body methods include the Brueckner–Hartree–Fock (BHF) approach [131], the Dirac–
Brueckner–Hartree–Fock (DBHF) approach [132,133], the variational method [134], the
Quantum Monte Carlo technique and its derivatives [135,136], the self-consistent Green’s
function technique [137], χEFT [45], and the Vlow;k approach [138]. The primary difficulty
encountered by these methods is how to handle the repulsive core of the nucleon–nucleon
interaction at short ranges, and the way they approach this differentiate them from each
other.

The nucleonic component of the EOS can be described by two quantities: the binding
energy of symmetric nuclear matter, ESNM(ρ), and the symmetry energy, Esym(ρ) (see
Equation (1)). These two quantities can be expanded as Taylor series around ρ0 as:

ESNM(ρ) = E0 +
K0

2
x2 +

J0

6
x3, (2)

Esym(ρ) = S0 + Lx +
Ksym

2
x2 +

Jsym

6
x3, (3)

where x ≡ (ρ − ρ0)/3ρ0. The coefficients of these expansions can be related to vari-
ous physical properties of nuclear matter and can be experimentally constrained. They
have the following meanings [139]: E0 ≡ ESNM(ρ0), K0 ≡ [9ρ2d2ESNM/dρ2]ρ0 , and J0 ≡
[27ρ3d3ESNM/dρ3]ρ0 are the binding energy, incompressibility, and skewness of SNM; S0 ≡
Esym(ρ0), L ≡ [3ρdEsym/dρ]ρ0 , Ksym ≡ [9ρ2d2Esym/dρ2]ρ0 , and Jsym ≡ [27ρ3d3Esym/dρ3]ρ0

are the magnitude, slope, curvature, and skewness of the nuclear symmetry energy at
saturation density. Currently, the most likely values of these coefficients are known
within certain ranges: E0 = −15.9 ± 0.4 MeV, K0 = 240 ± 20 MeV, −300 ≤ J0 ≤
400 MeV, S0 = 31.7 ± 3.2 MeV, L = 58.7 ± 28.1 MeV, −400 ≤ Ksym ≤ 100 MeV, and
−200 ≤ Jsym ≤ 800 MeV; as reported in Ref. [140]. As seen above, several of these parame-
ters have rather moderate uncertainty. For example, the binding energy E0 is estimated
to be −15.9± 0.4 MeV, while the magnitude of the symmetry energy S0 is 31.7± 3.2 MeV.
However, many of them still have significant uncertainty, such as the curvature of the
symmetry energy Ksym, which could range from −400 MeV to 100 MeV, and the higher
order coefficients, J0 and Jsym, with even wider uncertainty ranges.

Although the Taylor expansions described by Equations (2) and (3) are known to
diverge at higher densities [141], they can also be interpreted as parameterizations with free
parameters [140]. This dual nature implies that, for systems with low isospin asymmetries,
the Taylor expansions are valid near saturation density, while for highly neutron-rich
systems at supra-saturation densities, Equations (2) and (3) should be treated as param-
eterizations [140]. More details on the relationship between the Taylor expansions and
the parameterizations can be found in Ref. [140]. These expressions are frequently used
to model the EOS of neutron stars and have been used, for instance, to solve the inverse
structure problem of neutron stars, to constrain the high-density symmetry energy through
neutron star observational data [140,142], and to determine the most likely values of
high-density EOS parameters through Bayesian analyses using neutron star data [143].
Compared to the widely used piecewise polytropes, these parameterizations have the
advantage of including isospin dependence and composition information throughout the
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density range, while still allowing for modeling a wide range of EOSs as predicted by vari-
ous many-body approaches. This characteristic is particularly important for deducing the
high-density behavior of Esym(ρ), as the parameterizations clearly separate the contribution
of the symmetry energy to the EOS. These parameterizations were also instrumental in our
previous work [121], in which we demonstrated the feasibility of deep neural networks to
extract the nuclear symmetry energy directly from neutron-star observational data.

In this work, we employ the EOS metamodel described above to facilitate the proce-
dure of extracting the EOS and selected nuclear matter properties from NS observational
data. By varying the EOS parameters, we generated a multitude of EOSs and the associ-
ated M− R sequences through the solution of the NS structure equations. The matter in
the core of the neutron star is modeled as a mixture of neutrons, protons, electrons, and
muons in beta-equilibrium (referred to as the npeµ-model). We use Equations (2) and (3)
to calculate ESNM(ρ) and Esym(ρ), and then evaluate E(ρ, δ) through Equation (1). The
pressure of the neutron star matter in β-equilibrium is obtained from the energy density,
ε(ρ, δ) = ρ[En(ρ, δ) + MN ] + ε l(ρ, δ), where MN is the mean nucleon mass and ε l(ρ, δ) is
the lepton energy density, as

P(ρ, δ) = ρ2 dε(ρ, δ)/ρ

dρ
. (4)

The computation of ε l(ρ, δ) is explained in detail in Ref. [144]. When the density of the
neutron star matter falls below approximately 0.07 fm−3, the core EOS is complemented by
a crustal EOS that is more appropriate for lower density regions. Specifically, we adopt the
EOS by Pethick et al. [145] for the inner crust and the EOS by Haensel and Pichon [146] for
the outer crust.

In this analysis, we use Equations (2) and (3) as parameterizations together with the
parabolic approximation of the nucleonic EOS, given by Equation (1). We keep E0 and S0
constant and vary the rest of the parameters. The fixed values of E0 and S0 were obtained
through a combination of theoretical calculations and nuclear laboratory experiments,
which represent their most probable current values. By varying the remaining parameters,
K0, J0, L, Ksym, and Jsym, we were able to generate multiple samples of the EOS. Our
expanded parameter space compared to our previous work [121] allowed us to model
a wider range of EOSs predicted by various many-body approaches and models of the
nuclear interaction. The effect of varying these parameters is shown in Figure 1. Although
these parameters are, in principle, free, their ranges are constrained by the asymptotic
boundary conditions of the EOS near ρ0 and δ = 0, as well as the requirement that the
EOSs satisfy causality and the microscopic stability condition. Furthermore, the resulting
NS models must be capable of supporting a maximal mass of at least 2.14M�, which is the
heaviest observed pulsar so far [84]. Figure 2 displays the ranges of ESNM and Esym(ρ) that
satisfy all of the constraints.
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Figure 1. (Upper left) Energy per particle of symmetric nuclear matter (SNM) as a function of
the reduced density ρ/ρ0 for various values of K0, with E0 = 15.9 MeV and J0 = 0 MeV. (Upper
middle) Same as the upper left window but for various values of J0, with E0 = 15.9 MeV and
K0 = 240 MeV. (Upper right) Symmetry energy Esym as a function of ρ/ρ0 for various values of L,
with S0 = 31.7 MeV, Ksym = 0 MeV, and Jsym = 0 MeV. (Lower left) Same as the upper right window
but for various values of Ksym, with S0 = 31.7 MeV, L = 58.7 MeV, and Jsym = 0 MeV. (Lower right)
Same as the previous two windows but for various values of Jsym, with S0 = 31.7 MeV, L = 58.7 MeV
and Ksym = 0 MeV. See text for details.

Figure 2. The left window displays the energy range of symmetric nuclear matter (ESNM), while
the right window exhibits the nuclear symmetry energy (Esym) plotted as functions of the reduced
density ρ/ρ0.

2.2. Structure Equations of Static Neutron Stars

In this section, we briefly revisit the procedure for calculating the mass M and radius
R of static neutron stars. In the case of a spherically symmetric relativistic star, the Einstein
field equations can be simplified to the Tolman–Oppenheimer–Volkoff (TOV) equation [147],
as follows:

dP(r)
dr

= − ε(r)m(r)
r2

[
1 +

P(r)
ε(r)

][
1 +

4πr3P(r)
m(r)

][
1− 2m(r)

r

]−1

, (5)

where the mass within a sphere of radius r is determined by

dm(r)
dr

= 4πε(r)r2. (6)
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To solve the above equations, one needs to supplement them with the EOS in the
form P(ε). The integration of Equations (5) and (6) starts at the center of the star (r = 0)
with the initial conditions m(r = 0) = 0 and εc = ε(r = 0). Some care should be taken
at r = 0 since the above equations are singular at the center. The integration continues
until the pressure P reaches zero, indicating the boundary of the star at r = R. The radius
and gravitational mass of the neutron star are then given by R, where P vanishes, and
M = m(R) = 4π

∫ R
0 ε(r′)r′2dr′, respectively.

For a given EOS, there is a unique relationship between the stellar mass and the central
density εc. Thus, for a particular EOS, there is a unique sequence of NSs parameterized by
the central density (or equivalently the central pressure Pc = P(0)). In Figure 3 we show
the range of possible EOSs (P(ρ)) satisfying all constraints (left window), and the resultant
M− R NS sequences (right window).

Figure 3. (Left window) Range of the equation of state (EOS) incorporating all constraints: Total
pressure P as a function of the reduced density ρ/ρ0. (Right window) Range of mass–radius relation:
Corresponding M− R sequences of theneutron star (NS) models computed with the EOSs considered
in this study. The mass ranges of the three heaviest pulsars known at present [82–84] are indicated in
the right window.

2.3. Artificial Neural Networks

This section provides a brief overview of the setup, structure, and workflow involved
in implementing deep neural networks (DNNs) for our particular application. Readers
interested in a more in-depth discussion are encouraged to consult relevant machine
learning articles [96,148] and textbooks [97,149].

We used two DNNs that have similar architectures to accomplish two different tasks:
extracting the EOS of dense neutron-rich matter from a set of mass-radius neutron-star
measurements and inferring specific nuclear matter properties from the resulting NS EOS
in β-equilibrium. We refer to the first neural network EOS DNN (equation of state deep
neural network) and the second one NuPRO DNN (nuclear properties deep neural network).
Figure 4 provides a schematic representation of the procedure of using these DNNs to
extract the EOS and selected nuclear matter properties.
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Figure 4. Using deep neural networks to extract the equation of state (EOS) of dense neutron-
rich matter and nuclear matter properties from neutron star mass-radius measurements. EOS DNN
(equation of state deep neural network) takes as input a set of points from a genuine M− R curve,
and returns as output a set of points representing the EOS, P(ε). Subsequently, these are fed into
NuPRO DNN (nuclear matter properties deep neural network) which outputs selected nuclear matter
properties (K0, J0, L, Ksym, and Jsym). See text for details.

Before we discuss the details of the deep learning methods employed in this work, we
reiterate briefly the key benefits of using DL techniques for extracting the EOS of dense
matter and nuclear matter properties directly from neutron star observational data. The
major advantage of using DL is the ability of the trained models to extract more accurate and
unbiased information about the EOS from the NS measurements. In contrast to conventional
approaches that rely on pre-existing models and assumptions regarding the underlying
physics, deep learning techniques can directly learn the complex relationships between the
NS observables and the EOS. This data-driven paradigm allows for a model-independent
extraction of the EOS, where the DL algorithms are able to capture highly nonlinear and
intricate features in the data, leading to accurate and unbiased determinations of the EOS.
Furthermore, compared to conventional methods, such as Bayesian inference, deep learning
approaches can be significantly faster, making them a highly efficient tool for exploring
and extracting key insights from large data sets.

2.3.1. EOS Network (EOS DNN)

In this study, we employed a supervised DL method to obtain the EOS by formulating
a regression problem. The DNN takes as input M(R) sequences, which are sets of points
representing pairs of NS mass-radius measurements, and produces estimates of the EOS
(P(ε)) as output. Accordingly, the datasets used for the training, validation, and testing of
EOS DNN consist of M(R) sequences and P(ε) samples. We apply the EOS model introduced
in Section 2.1 and vary the parameters in Equations (2) and (3) to generate many samples
of the EOS, and subsequently by solving the NS structure equations, the corresponding
M− R sequences. Specifically, we set E0 = 15.9 MeV and S0 = 31.7 MeV, and vary the
rest of the parameters by randomly sampling their values from their respective ranges:
K0 = 240± 20 MeV, −300 ≤ J0 ≤ 400 MeV, L = 58.7± 28.1 MeV, −400 ≤ Ksym ≤ 100 MeV,
−200 ≤ Jsym ≤ 800 MeV. The latest results from the PREX collaboration have suggested
a high upper limit of 143 MeV for the value of L [150]. However, we have not examined
the effects of higher L values in this study and leave it to future work. We ensured that the
resulting EOSs P(ε) satisfy two constraints: (i) the microscopic stability condition, dP

dε ≥ 0,

and (ii) the causality condition, cs ≡
√

dP
dε ≥ c, where c is the speed of sound. In addition,

the resultant NS models must be able to sustain a maximal mass of at least 2.14 M� [84].
These constraints limit the possible values of K0, J0, L, Ksym, and Jsym and result in a final
set of EOS samples. To generate simulated observational data for NS, we randomly selected
50 points from a genuine M− R sequence, within the range of 1M� to Mmax allowed by the
given EOS. Then, each input sample is an array of dimension 2× 50 consisting of 50 pairs of
(M, R) values. The values of M and R are scaled by dividing them by 3 and 20 respectively
to ensure that the input data are in the (0, 1) range. Similarly, each output sample is an
array of dimension 2× 50 consisting of 50 pairs of estimated (P, ε) values, representing the
EOS in the density range from ∼0.4 ρ0 to 5 ρ0. The DNN in this context is responsible for
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mapping an input sequence, which represents pairs of NS mass-radius measurements, to
an output sequence that represents the EOS, P(ε).

Here we need to mention that as of now, the prospect of obtaining a significant
number of simultaneous mass and radius measurements of neutron stars might seem
overly optimistic. Nevertheless, the rapid advancements in the development of next-
generation telescopes and gravitational wave detectors hold the promise of a substantially
larger number of neutron star observations in the near future.

In supervised learning, the data are divided into training, validation, and testing
data sets. The training data set is used by the DNN to learn from, the validation data are
used to verify whether the network is learning correctly, and the testing data are used to
assess the performance of the trained model. Here, the training dataset consist of 120,000
independent M(R) sequences, representing the DNN inputs, and 120,00 matching EOS
samples, P(ε), representing the DNN outputs. From each M(R) sequence we further draw
50 ensembles, each containing 50 randomly selected (M, R) pairs. In this way, each EOS
sample in the training data set is represented by 50 different random ensembles drawn
from the same genuine M(R) curve. The final training data set therefore consist of 6× 106

samples. Similarly, the final validation data set consist 250,000 samples, where each of 5,000
independent output EOS samples is represented by 50 different random ensembles drawn
from the same M(R) sequence. Finally, the testing data set consist of 5000 unique input
and output samples, not used in the training and validation of the DNN.

EOS DNN is a feedforward neural network with 5 hidden, dense, fully connected layers
of dimension 500, and ReLU activation functions, followed by a dense linear layer of
dimension 100. The first layer corresponds to the input to the neural network, which, in this
case, is a 2× 50 array containing the NS M and R values drawn from a given M(R) curve.
At the end, there is a linear output layer of dimension 2× 50 returning the estimated EOS,
P(ε) (pairs of (P, ε) points). The design of the network was optimized by fine-tuning several
hyper-parameters such as the number and type of layers, the number of neurons in each
layer, and the type of activation function. The optimal architecture was determined after
multiple experiments and hyper-parameter tuning. A summary of the EOS DNN architecture
is given in Table 1.

Table 1. The EOS DNN (equation of state deep neural network) architecture comprises an input layer
followed by 6 dense fully connected layers. The output layer returns the estimated equation of state,
P(ε). The model has 1,102,600 trainable parameters. Further details can be found in the text.

Layer Activation Size

Input – 2 × 50
1 Flatten – 100
2 Dense ReLU 500
3 Dense ReLU 500
4 Dense ReLU 500
5 Dense ReLU 500
6 Dense ReLU 500
7 Dense Linear 100
8 Reshape – 2 × 50

Output – 2 × 50

We used the Keras Python toolkit (https://keras.io (accessed on 19 May 2023)) which
provides an easy-to-use API for the TensorFlow [151] (https://www.tensorflow.org (ac-
cessed on 19 May 2023)) deep learning library to build and train our neural network. The
training was performed using stochastic gradient descent with adaptive learning rate with
the ADAM method [152] and the AMSgrad modification [153]. For training, we used a
batch size of 1000 and an initial learning rate of 0.001. We set a maximum of 5000 epochs for
each training session, or until the validation error stopped decreasing. The best performing
model was chosen using checkpoint-callback by selecting the one with the lowest loss value

https://keras.io
https://www.tensorflow.org
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on the validation dataset. The training was executed on an NVIDIA Tesla V100 GPU, and
the mini-batch size was determined automatically based on the characteristics of the GPU
and data sets.

The cost or loss function used in our analysis was the mean absolute error (MAE),
which is calculated as the average of the absolute differences between the predicted output
values of the DNN model (ŷi) and the “true” output values (yi) for each sample. The
equation for the MAE is given by:

MAE =
1
n

n

∑
i=1
|ŷi − yi|, (7)

where n represents the number of samples.

2.3.2. Nuclear Matter Properties Network (NuPRO DNN)

Once the β-stable matter EOS becomes available, we can proceed with the extraction
of selected nuclear matter properties. In order to achieve this goal, we have trained
another DNN, which we refer to as the NuPRO DNN. The input to the DNN consists of
EOS samples represented as P(ρ), which are sets of 50 equally spaced points within the
interval ρ = [0.08− 0.8] f m−3, where the input data was converted to decimal logarithm
values. On the other hand, the output corresponds to estimated selected nuclear matter
properties, with respect to each input EOS sample. Our aim is to learn the mapping y(x)
with xi = [Pβ(ρ1), Pβ(ρ2), ..., Pβ(ρ50)] representing the EOS and yi = [K0, J0, L, Ksym, Jsym]
being the corresponding set of parameters.

In this work, we used a training dataset comprising 120,000 samples of the equation
of state P(ρ), each with an accompanying set of parameters (K0, J0, L, Ksym, and Jsym)
matching the specific EOS realization. Additionally, we constructed separate validation
and testing datasets, each consisting of 5,000 data samples. The architecture of the NuPRO
DNN model that we have implemented involves a feedforward structure with five dense
hidden layers with dimensions 200, 200, 200, 100, and 50, respectively. We have used the
ReLU activation functions for each of these layers. The neural network architecture of the
EOS DNN was optimized through an iterative process involving multiple experiments and
tuning of the hyper-parameters. The neural network’s input layer has a dimension of 50
and corresponds to the 50 uniformly distributed data points representing the equation
of state, P(ρ), while the output layer has a dimension of 5, which returns the estimated
nuclear matter parameters. A summary of the network architecture is provided in Table 2.

Table 2. The NuPRO DNN (nuclear matter properties deep neural network) architecture comprises an
input layer with 50 dimensions, corresponding to the 50 equally spaced points of the equation of state
P(ρ). This is followed by five dense fully connected layers of varying dimensions, culminating in an
output layer that returns the estimated nuclear matter parameters K0, J0, L, Ksym, and Jsym. The total
number of trainable parameters in this deep neural network model is 118,555. Further information
about this architecture can be found in the text.

Layer Activation Size

Input – 50
1 Dense ReLU 200
2 Dense ReLU 200
3 Dense ReLU 200
4 Dense ReLU 100
5 Dense ReLU 50

Output – 5

We used Keras and TensorFlow to develop and train our neural network. As before,
we applied the ADAM method [152] with the AMSgrad modification [153] to implement
stochastic gradient descent with an adaptive learning rate. In training the DNN, we chose
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a batch size of 1000 and set the initial learning rate to 0.001. We also restricted the number
of epochs per training session to a maximum of 5000 or until the validation error stopped
decreasing. We employed a checkpoint-callback to identify the model that achieved the
lowest loss value on the validation dataset. The objective function chosen for this task was
the mean-squared error (MSE), which measures the average of the squared differences
between the predicted values of the DNN model, denoted by ŷi, and the actual or "true”
values, represented by yi, over all the available samples, n. More specifically, the MSE is
calculated as the sum of the squared differences divided by the number of samples, n, as
shown in the below equation:

MSE =
1
n

n

∑
i=1

(ŷi − yi)
2. (8)

As with any numerical approach, DL techniques are not immune to uncertainties
that can impact the reliability of their results. One significant source of uncertainty is
the quality and quantity of data used to train the DNN. Insufficient or biased data may
lead to erroneous or biased predictions. In addition, uncertainties could result from the
different DNN architectures and hyperparameters used, such as the type and number
of layers, activation functions, and learning rates. Different choices of neural network
architecture and hyperparameters could cause different model outcomes. Moreover, model
uncertainties could arise from the generalization ability of deep learning algorithms, as
they may be affected by overfitting or underfitting, especially when presented with small
datasets. Furthermore, DL methods can be sensitive to variations in input data, further
contributing to uncertainties in their predictions. Therefore, it is critical to carefully consider
and address these uncertainties to ensure the reliability and accuracy of DL predictions. We
investigated the effect of “noise” in the DNN input data and the corresponding uncertainties
in the DNN predictions in the next section.

3. Results
3.1. Extracting the EOS

We start by evaluating the ability of the DNN to reconstruct the EOS, P(ε), using a set
of M− R measurements that could result from electromagnetic observations of neutron
stars, such as those from the NICER mission, for example. To accomplish this, we employ
the previously described EOS DNN to a test dataset, which comprises∼5000 simulated M(R)
sequences, and compare the resulting estimated output EOS with the exact EOS for each
sample. Figure 5 displays the results for five representative examples from the test dataset,
showing that the EOS (broken colored lines) for each input M− R sequence agrees almost
precisely with the "true” EOS (solid black lines) over the entire density range considered in
this study. For visualization purposes, the EOS is presented in the form P(ρ). The results for
the remaining test data samples are comparable to those shown in Figure 5. Quantitatively,
the mean absolute error across the entire test dataset is 0.5 MeV fm−3, with a standard
deviation of 1.3 MeV fm−3. Choosing different sets of randomly-selected points from the
authentic M(R) curves has little effect on the accuracy with which the EOS is estimated.
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Figure 5. Example input M(R) sequences (left window) and corresponding estimated P(ρ) (right
window). The input samples consist of 50 randomly selected points, denoted by the “o” characters,
from the genuine M(R) curves, denoted by the solid lines, in the range of 1–Mmax M�. The output
data samples consist of 50 P(ρ) points in the range of ∼0.4–5 ρ0. Broken colored lines in the right
window denote the estimated EOS and the solid lines represent the “true” EOS. Same curve colors in
both windows denote pairs of input M(R) sequences and corresponding output EOS samples.

A natural consequence of realistic observations of neutron stars is that they come
with inherent uncertainties, which propagate into uncertainties in the estimated equation
of state. To investigate the effect of the observational uncertainties on extracting the
EOS via our DL approach, we prepared a test dataset assuming that the NS mass and
radius measurements are subject to a measurement error. After randomly selecting N
points (Mi, Ri) from a genuine M(R) curve, with {i = 1, 2, ..., N; N = 50}, we draw the
actual M and R values from normal distributions, N (µM, σM) and N (µR, σR), respectively.
In particular, we investigated the impact of smaller and larger observational errors on
the estimated EOS. To simulate smaller uncertainties, we selected σM = 0.02 M� and
σR = 0.1 m, where µM = Mi and µR = Ri, while to model larger uncertainties, we used
σM = 0.1 M� and σR = 1 km. To quantify the effect of observational uncertainties for
each sample in the test dataset, for each case we drew 100 ensembles from the respective
normal distribution and calculated the mean absolute errors. In Figure 6, we illustrate the
effect of measurement errors for a representative example from the test dataset. It is seen
that for smaller observational uncertainties (σM = 0.02 M�, σR = 0.1 km) the estimated
EOS P(ρ) (broken green line) matches almost exactly the "true” EOS (solid black line).
The greenish shaded band represents the corresponding mean absolute errors. For larger
observational uncertainties (σM = 0.1 M�, σR = 1 km), we see that at higher densities, of
∼ ρ/ρ0 ≥ 4, the reconstructed EOS (broken red line) starts to moderately diverge from
the ground-truth EOS, but it is still within the reconstruction errors represented by the
reddish shaded band (corresponding to the mean absolute errors). The trend observed in
the presented results holds for the remaining test data samples as well, indicating that the
precision of the EOS estimation is predominantly influenced by the assumed size of the
observational uncertainties.
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Figure 6. Example equation of state (EOS) P(ρ) predictions of the trained deep neural network model
illustrating the effect of observational uncertainties included in the test dataset (simulated M(R)
measurements with errors). The broken green and red lines represent the mean of the extracted EOS
for smaller and larger measurement errors respectively, while the greenish and reddish shaded bands
denote the corresponding mean absolute errors. The magnitude of the errors introduced in the input
M(R) measurements is controlled by the values of σM and σR defining the normal distributions from
which M and R are drawn. Specifically, to model smaller uncertainties, we choose σM = 0.02 M�
and σR = 0.1 km. Similarly, to model larger uncertainties, we choose σM = 0.1 M� and σR = 1 km.
The solid black line denotes the ground-truth EOS. See text for details.

We emphasize that the observational uncertainties were introduced into the analysis
by directly subjecting only the test dataset to an assumed level of “noise”, and the trained
DNN model does not have prior knowledge of similar uncertainties in the training data.
Nevertheless, these findings demonstrate that the DNN is able to accurately reconstruct
the EOS from moderately noisy NS M(R) observational data. The performance of the
neural network can be further improved by introducing the measurement errors also in
the training dataset. Since the systematic study of the measurement uncertainty effects is
not the major focus of this work, detailed investigations, and also studying the effect of
introducing “noise” in the training data, are left for following articles.

3.2. Application to Realistic EOSs

To test further the performance of the trained EOS DNN model, we apply it to several
realistic EOSs from the CompOSE repository [154] (https://compose.obspm.fr (accessed
on 25 March 2023)). CompOSE is an online tool that provides data tables containing
state-of-the-art EOSs that can be readily used for various applications in astrophysics and
nuclear physics. For the purpose of our analysis, we chose several EOSs within the range of
the parameter space of the DNN training dataset: APR [134], BL [155], QMC-RMF2 [156],
QMC-RMF3, [156], SK255 [157], and SK272 [157]. We generated the required input data
following the procedure outlined in Section 2.3.1. For each EOS (Figure 7, left window),
we calculated the M − R relation (Figure 7, right window), and then drew 105 random
ensembles of 50 (Mi, Ri) points to determine the mean and MAE of the reconstructed EOSs.
The results of this test are shown in Figure 8 and demonstrate the ability of the EOS DNN
to reconstruct realistic EOSs from M(R) data. In all frames, the solid blue lines denote the
ground-truth EOS and the red dot characters represent the mean of the DNN predictions
respectively. The error bars represent the MAE with which the EOS is reconstructed in each
case due to the random drawing of the M(R) data, and in order to clearly separate the error
contribution of this effect alone, they do not include the effect of assumed observational
uncertainties. Among the realistic EOSs we considered, it is seen that the predicted P(ρ)
relation matches almost exactly the ground-truth values for the APR, BL, QMC-RMF2 and

https://compose.obspm.fr
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QMC-RMF3 models, while the the SK255 and SK272 EOSs are reconstructed less accurately,
but still within the reconstruction errors.

Figure 7. Pressure as a function of density, P(ρ) (left window), and mass-radius relation, M(R)
(right window), for the realistic equations of state considered in this study. The shaded regions
denote the range of the parameter space of the deep neural network (DNN) training dataset.

Figure 8. Reconstructed equations of sate (EOSs) from M(R) data for several realistic EOS models
from the CompOSE repository [154].

Here, we briefly recall the main features of the realistic EOSs used in our analysis. The
APR EOS was calculated using variational approaches with the A18 + delta v + UIX* inter-
action [134]. The BL equation of state (EOS) was derived from two-body and three-body
nuclear interactions using χEFT, which includes the ∆(1232) isobar intermediate state [155].
The EOS has been derived using the Brueckner–Bethe–Goldstone quantum many-body
theory in the Brueckner–Hartree–Fock (BHF) approximation with the continuous choice for
the auxiliary single particle potential. The QMC-RMF2 and QMC-RMF3 equations of state
(EOSs) were obtained using a relativistic mean-field (RMF) theory constrained by χEFT
calculations of pure neutron matter within the density range of 0.08 fm−3 to 0.32 fm−3, as
well as by the properties of isospin-symmetric nuclear matter around ρ0 [156]. The SK255
and SK272 EOSs are unified models by Gulminelli and Raduta [157], computed with the
SK255 and SK272 effective interactions [158]. The APR and BL EOSs are microscopic, while
the rest of the EOSs are based on phenomenological models.

These results clearly demonstrate that a DNN, trained on a relatively simple dataset
generated with the EOS metamodel discussed in Section 2.1, is able to generalize the task
of reconstructing the EOS and predict accurately realistic EOSs.

3.3. Deducing Nuclear Matter Properties
3.3.1. Performance on the Test Dataset

In the following analysis, we examined the effectiveness of the trained NuPRO DNN
model in extracting selected nuclear matter properties from the EOS of β-stable neutron-
star matter. After the model was trained and the optimal architecture was determined
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(as shown in Table 2), we assessed its final performance by evaluating it on a test dataset
composed of 5000 samples of P(ρ), and corresponding sets of selected nuclear matter
properties matching each EOS sample. To evaluate the model’s performance, we computed
the standard deviation, σεi , of the residuals, εi = QDNN

i −Qi, for each of the nuclear matter
parameters: K0, J0, L, Ksym, and Jsym. Here, Qi is one of the selected five nuclear matter
properties. By examining the standard deviation, we can determine the degree of accuracy
and precision of the model’s predictions for each of these parameters.

In Figure 9, we present the results of our evaluation of the performance of the trained
NuPRO DNN model in extracting selected nuclear matter properties from the EOS of β-
equilibrium NS matter. We provide scatter plots of the distribution of the residuals for each
of the nuclear matter parameters, along with the numerical values for the mean µε and the
standard deviation σε. These results clearly demonstrate that the trained NuPRO DNN model
achieved a high degree of accuracy in extracting the nuclear matter parameters. We noticed
that the lower-order terms were extracted more accurately than the higher-order terms, and
this is because the lower-order terms have a smaller range of possible values. The smaller
range of possible values allows for a better interpolation precision of the model, which
in turn leads to more accurate extraction of the lower-order terms. These results are also
summarized in Table 3.

Table 3. Mean, µεi , and standard deviation, σεi , of the residuals, εi = QDNN
i − Qi, of the trained

NuPRO DNN (nuclear matter properties deep neural network) model, determined on the test dataset.
All values are given in MeV. See text for details.

Qi ε̄i σεi

K0 −0.22 2.77
J0 0.79 4.09
L 0.23 0.49

Ksym 0.67 3.37
Jsym 0.57 5.34

Figure 9. Residuals of the model for each of the selected nuclear matter parameters along with
the numerical values for the mean, µ, and standard deviation, σ. As observed, for the lower-order
parameters (K0 and L), the mean values of the residuals are less than 0.5 MeV (with |µ| ≈ 0.2 MeV
for both cases). Additionally, it can be seen that the standard deviation is comparatively smaller for
the lower-order parameters. This can be attributed to the fact that the range of possible values for the
lower order parameters is smaller, resulting in better interpolation precision. On the other hand, the
higher-order parameters exhibit larger values of σ, owing to the larger range of possible values. For
further information, refer to the text.
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3.3.2. Reconstructing Esym(ρ)

Next, we focus on evaluating the ability of the trained NuPRO DNN model to accurately
extract the nuclear symmetry energy parameters, namely L, Ksym, and Jsym, which are
used to reconstruct Esym(ρ). The dense matter EOS is highly dependent upon the nuclear
symmetry energy, which is a vital but uncertain component, and therefore it is imperative to
explore whether DL techniques could offer a viable means of deducing it from astrophysical
observations of neutron stars.

In our previous work [121], we pioneered the use of DL methods for extracting the
nuclear symmetry energy from a set of neutron star observations in the M− R or M−Λ
planes. In our "proof-of-concept” study [121], our main focus was on the extraction of
Esym(ρ), and thus we generated our datasets by holding all parameters in Equation (2),
representing the energy of symmetric nuclear matter, constant, and varying only the nuclear
symmetry energy parameters L and Ksym in Equation (3). We demonstrated that, under
the given model assumptions, DNNs could extract Esym(ρ) effectively and accurately
directly from astronomical observations of neutron stars. In the present investigation,
we have advanced our deep learning methodology for extracting Esym(ρ) by significantly
enlarging the parameter space of our neural network training dataset. To achieve this, we
have kept only the parameters E0 and S0 fixed at their maximum likelihood values while
varying the other parameters, namely K0, J0, L, Ksym, and Jsym, in Equations (2) and (3), to
generate numerous samples of P(ρ). As depicted in Figure 7, the augmented parameter
space of the neural network training datasets also permits the modeling of predictions of
modern realistic equations of state, which satisfy the constraints from recent mass–radius
observations of neutron stars.

Figure 10 displays results for five instances selected from the test dataset. The recon-
structed nuclear symmetry energy (represented by broken colored lines) for each input
P(ρ) sample closely matches the true Esym(ρ) (indicated by solid black lines). Similar
outcomes were obtained for the remaining test data samples. We emphasize that the recon-
structed nuclear symmetry energy is deduced by substituting the estimated values of the
nuclear symmetry energy parameters, namely L, Ksym, and Jsym, predicted by the NuPRO
DNN, into Equation (3). Moreover, we assumed that the β-equilibrium NS EOS, P(ρ), is
already known with a certain level of precision, such as being extracted from mass–radius
observations of neutron stars by using the EOS DNN trained model.

Figure 10. Reconstructed Esym(ρ) from the β-equilibrium neutron-star equation of sate, P(ρ), for
several representative samples from our training dataset. The black solid curves represent the ground-
truth symmetry energy and the broken colored lines denote the deep neural network predictions
respectively. The predicted symmetry energy is obtained through Equation (3) with the parameters L,
Ksym and Jsym estimated by the trained NuPRO DNN (nuclear matter properties deep neural network)
model.

3.3.3. Model Uncertainty

Let us not forget that realistic observations of neutron stars unavoidably harbor
uncertainties, which in turn give rise to uncertainties in the inferred EOS of β-stable NS
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matter, and consequently in the extracted nuclear matter parameters and the symmetry
energy Esym(ρ). To investigate the impact of errors in the reconstruction of the EOS on the
inferred nuclear matter parameters and symmetry energy, we incorporated “noise” into
the P(ρ) data samples that portray the EOS and evaluated the nuclear matter parameters
and Esym(ρ). We conducted experiments by varying the level of noise and investigated the
resulting effect on the accuracy of the extracted nuclear matter parameters and symmetry
energy. As shown in Figure 11, we elucidate the effect of introducing a 20% uncertainty
to the input P(ρ) data samples on the reconstructed Esym(ρ). In the left window, we show
the exact EOS (represented by the solid blue line) and an EOS data sample containing
20% uncertainty (indicated by the red broken line). The reddish colored band denotes the
uncertainty of P(ρ). In order to assess the uncertainty in determining the nuclear matter
parameters and the symmetry energy, we generate 105 random sets of 50 equally spaced
points in ρ, P(ρi), where i = 1, 2, ..., 50, lying within the uncertainty band. We subsequently
compute the mean and standard deviation for each of the nuclear matter parameters for
each set. Thereafter, with every estimated set of nuclear matter parameters, we determined
Esym(ρ) through Equation (3). The reconstructed symmetry energy is illustrated in the right
window of Figure 11. The reddish colored band represents the mean absolute error (MAE)
in deducing Esym(ρ), the solid line depicts the exact symmetry energy, and the red broken
line indicates the mean symmetry energy. As anticipated, since the inferred symmetry
energy is reconstructed via Equation (3), it closely follows the exact Esym(ρ) in a qualitative
manner. Quantitatively, the estimated values begin to deviate moderately from the exact
ones at approximately ρ ≥ 2ρ0; however, they remain within the range specified by the
mean absolute errors of the model for the assumed uncertainty of the input EOS. The mean,
standard deviation, and MAE for each of the nuclear matter parameters for the specific
example shown in Figure 11 are presented in Table 4. The results are highly analogous for
the remainder of the data samples from our test dataset.

Figure 11. (Left window) Equation of sate (EOS) data sample, P(ρ), with added 20% uncertainty. The
ground-truth equation of state, P(ρ), is represented by the blue solid line, while the red dashed line
shows an instance of data with random noise added within the range of uncertainty. The uncertainty
of the input equation of state is illustrated by the reddish band. (Right window) Estimated nuclear
symmetry energy, Esym(ρ). The precise value of nuclear symmetry energy is indicated by the blue
solid line, while the red dashed line represents the average value of the derived Esym(ρ), and
the reddish colored band indicates the mean absolute error (MAE). The calculation of Esym(ρ) is
performed using Equation (3) with the nuclear matter parameters L, Ksym, and Jsym extracted through
NuPRO DNN (nuclear matter properties deep neural network) . Further information can be found in
the text.
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Table 4. Values for the exact, predicted, mean µi, standard deviation σi, and mean absolute error
(MAE) of the nuclear matter parameters Qi = [K0, J0, L, Ksym, Jsym] for the example illustrated in
Figure 11. All values are given in MeV. Please see the text for further details.

Qi Exact Predicted µi σi MAE

K0 259.19 256.49 292.18 55.66 50.50
J0 −78.38 −73.22 −69.91 69.05 56.66
L 58.90 58.99 71.38 12.79 13.35

Ksym −225.75 −223.30 −227.52 51.41 42.23
Jsym 520.61 516.33 531.51 226.82 179.65

It is important to note that the uncertainties presented in our analysis were solely
introduced to the test dataset, and the trained DNN model does not possess any prior
knowledge of uncertainties in the training data. Despite this, our findings demonstrate that
the neural network is capable of accurately extracting the nuclear matter parameters and
reconstructing Esym(ρ), even when faced with moderately noisy input EOS data. In order to
further improve the performance of the DNN, it may be beneficial to introduce uncertainties
to the training dataset as well. Although the impact of measurement uncertainties was
not the primary focus of the current study, the potential effects of such uncertainties can
be studied in detail in future works. This includes investigating the effects of introducing
“noise” to the training data, as well as conducting systematic studies on the impacts of
measurement uncertainties. These investigations may provide further insight into the
behavior of the DNN and help to enhance its performance in future applications.

3.3.4. Application to Realistic Nuclear Models

So far we have demonstrated that the trained NuPRO DNN model performs with high
accuracy on the test dataset. Having established this, we now proceed to applying the
model to a set of realistic EOSs, which were previously discussed in Section 3.2. It is
important to acknowledge the complexity of the inference task and limitations of our
model assumptions before discussing the results. Firstly, the DNN model was trained on a
dataset that assumes the nuclear matter EOS depends on the matter isospin asymmetry
via a quadratic dependence only, as described in Equation (1). Secondly, in regards to the
hadronic part of the EOS, we employed the models parameterized by Equations (2) and (3)
for symmetric nuclear matter and nuclear symmetry energy Esym(ρ), respectively. These
models were used in the density range of approximately 0.04 fm−3 to 0.8 fm−3. It is
important to note that beyond the saturation density ρ0, these expressions should be
regarded solely as parameterizations, and not as Taylor expansions. Thirdly, our model
was based on the assumption that β-equilibrated neutron-star matter consists of nucleons,
electrons, and muons. This assumption was made to simplify the problem, and it may not
accurately represent the composition of matter in neutron stars, which may include other
exotic particles, such as hyperons, or quark matter.

In Figure 12, we present the discrepancies between the predicted values of the nuclear
matter parameters K0, L, and Ksym obtained from the trained NuPRO DNN model and their
true values obtained from the CompOSE repository for each of the considered realistic EOSs.
These discrepancies represent the residuals in our analysis. We note that Ksym values were
not available for the APR and BL EOSs, and hence, we do not show the residuals for these
models. We also computed the standard deviations, σi, of the residuals to evaluate the
uncertainty in estimating the nuclear matter parameters from a realistic neutron-star EOS
in β-equilibrium. The standard deviations for K0, L, and Ksym are 30.18 MeV, 11.22 MeV,
and 19.09 MeV, respectively. These values are smaller than the reported uncertainties in the
literature [159].

Here we reiterate that our model assumptions and limitations should be taken into
account when interpreting these results. Therefore, the applicability of our results to other
types of matter, such as hyperonic matter or quark matter, remains an open question.
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Nonetheless, our findings demonstrate the potential of using DNN models to extract
nuclear matter parameters from astrophysical observations of neutron stars.

Precise measurements of the masses and radii of a sufficient number of neutron stars
would ultimately allow for the accurate determination of the EOS of β-stable matter through
converting the M(R) curve, via various methods, to the underlying EOS [119]. However,
extracting the properties of nuclear matter from the β-equilibrated equation of state presents
another challenge since the exact composition of a neutron star’s interior is unknown, and
even determining the proton fraction is highly challenging [119]. For instance, in Ref. [160]
the authors applied a Bayesian approach and showed that it is impossible to determine
precisely the properties of nuclear matter from the EOS of β-stable matter. Similarly, the
authors of Ref. [161] demonstrated the existence of multiple solutions for the determination
of the NS interior composition from the β-stable matter EOS, owing to the high level of
degeneracy. Additionally, accurately determining the nuclear symmetry energy from the
β-equilibrium EOS presents a challenge as it necessitates precise knowledge of the equation
of state of symmetric nuclear matter [162]. This is because determining the proton fraction
in the interior of a neutron star is dependent on an accurate understanding of symmetric
nuclear matter. Due to the inherent correlations among the nuclear matter properties and
their intertwined relationship to both the EOS of symmetric nuclear matter and the nuclear
symmetry energy, the precise determination of the nuclear matter properties from the beta-
stable matter EOS is extremely challenging [163]. In order to determine unambiguously the
nuclear matter properties from the EOS of beta-stable matter, both the EOS of symmetric
nuclear matter and the nuclear symmetry energy need to be known independently at a
given density [163]. These considerations underscore the key role and potential of the
data-driven methods presented in this work as they provide a model-independent avenue
to deducing the EOS of β-stable matter, and in turn, the nuclear matter properties and
Esym(ρ).

Figure 12. NuPRO DNN (nuclear matter properties deep neural network) model residuals for K0 (left
window), L (middle window), and Ksym (right window) for the equations of state (EOSs) considered
in our analysis. Note that Ksym values are not available for the APR and BL EOSs and therefore
residuals for these models are not shown in the figure. See text for details.

4. Summary and Outlook

In this work, we have presented a successful application of deep learning techniques to
extract the equation of state of dense matter directly from neutron star observations. By an-
alyzing simulated mass and radius measurements of neutron stars, our results demonstrate
that deep neural networks can accurately extract the EOS of β-stable matter. Moreover,
the findings presented in this work highlight the capability of the trained DNN model
to determine selected nuclear matter properties, including the nuclear symmetry energy
Esym(ρ). Most importantly, we have demonstrated that our DL approach is highly effective
in accurately extracting realistic EOSs and associated nuclear matter properties from obser-
vational data of neutron stars. This achievement is significant, as it represents a major step
towards the ultimate objective of determining the EOS of dense nuclear matter. Our results
underscore the potential of DL-based techniques in the era of multi-messenger astrophysics,
where a growing body of NS observational data is rapidly emerging.

In the near future, we plan to systematically examine the uncertainties associated
with the NS observational data and the DNN model, and their impact on the model’s
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performance. By understanding the effect of these uncertainties, we aim to explore potential
approaches to further enhance the model’s reliability and performance. In particular, in
order to apply our approach practically, it is essential to consider the empirical errors and
uncertainties and incorporate them consistently into the formalism. A possible strategy to
achieve this is to recast the regression problem of extracting the EOS and nuclear matter
properties into a statistical model.

In particular, in future studies, our aim is to use Bayesian neural networks to carry
out the inference procedure. In this approach, rather than obtaining deterministic val-
ues, the weights of the network are described by probability distributions by applying a
prior over the network weights [164]. In following works, we also plan to apply our DL
approach to real observational data of neutron stars, which would enable the extraction
of a model-independent EOS, nuclear matter properties, and symmetry energy. Lastly,
we aim to explore likelihood-free inference approaches through the use of normalizing
flows [165]. These methods have the ability to model intricate posteriors by applying non-
linear transformations to a simple posterior shape, such as a multivariate Gaussian, without
the need for direct likelihood evaluation.This approach has already generated consider-
able interest in the scientific community and it has been successfully applied in multiple
research domains. For example, a recent research work [166] employed a likelihood-free
inference technique that used normalizing flows to efficiently estimate the parameters of
eight binary black hole (BBH) events from the first LIGO Gravitational Wave Transient
Catalog, GWTC-1 [167]. As the next-generation space telescopes and GW detectors become
operational, they are expected to detect and observe a large number of compact binary
collisions and neutron stars spanning the history of the universe. These instruments will
identify more than a million events each year, including thousands of BNS and NSBH
detections, and processing this vast amount of observational data with speed and accuracy
will be critical. It should be noted that traditional Bayesian inference methods may not
be feasible for analyzing such large datasets and, hence, more modern techniques such as
normalizing flow models may be essential in accurately and rapidly extracting important
neutron star parameters.

Ultimately, as the number of observed neutron star events increases, these modern
data-driven techniques will allow us to efficiently handle the growing volume of observa-
tional data and precisely determine the equation of state of dense nuclear matter and the
nuclear symmetry energy.

Software: Matplotlib (https://matplotlib.org (accessed on 25 March 2023)), Seaborn
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TensorFlow (https://www.tensorflow.org (accessed on 25 March 2023)), Adobe Illustrator
(https://www.adobe.com/products/illustrator.html (accessed on 25 March 2023)).
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