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Abstract: In this paper, we consider the representation and extension of the analytic functions of three
variables by special families of functions, namely branched continued fractions. In particular, we
establish new symmetric domains of the analytical continuation of Lauricella–Saran’s hypergeometric
function FK with certain conditions on real and complex parameters using their branched continued
fraction representations. We use a technique that extends the convergence, which is already known
for a small domain, to a larger domain to obtain domains of convergence of branched continued
fractions and the PC method to prove that they are also domains of analytical continuation. In
addition, we discuss some applicable special cases and vital remarks.
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1. Introduction

Special functions, including Lauricella–Saran’s hypergeometric functions, occur natu-
rally in various problems in mathematics, statistics, physics, chemistry, and engineering.
This paper discusses the representation and analytical extension of these functions. Do-
mains of analytical continuation will be symmetric domains of convergence of special
families of functions, namely branched continued fractions. Note that here, the domain is
an open connected subset of C3.

Lauricella–Saran’s family of 14 functions (FA, FB, . . . , FT or F1, F1, . . . , F14) owes its
appearance mainly to two papers [1,2]. These functions are defined by triple power series,
particularly

FK(α1, α2, β1, β2; γ1, γ2, γ3; z) =
+∞

∑
p,q,r=0

(α1)p(α2)q+r(β1)p+r(β2)q

(γ1)p(γ2)q(γ3)r

zp
1

p!
zq

2
q!

zr
3

r!
,

where α1, α2, β1, β2, γ1, γ2, γ3 ∈ C; γ1, γ2, γ3 ̸∈ {0,−1,−2, . . .}; (α)k = α(α + 1)k−1, k ≥ 1,
(α)0 = 1; and z = (z1, z2, z3) ∈ Θ, where

Θ = {z ∈ C3 : |z1| < 1, |z2| < 1, |z3| < (1 − |z1|)(1 − |z2|)}.

Various applications and studies of different properties of Lauricella–Saran’s functions
are discussed in many scientific works. In particular, Lauricella–Saran’s hypergeometric
function FK was used to compute the canonical partition function of the model of het-
eropolymers in the form of a freely jointed chain [3,4] and the generalized Nordsieck
integral [5] to investigate the compound gamma bivariate distribution [6,7] and the prop-
agator seagull diagram [8]. The problem of analytical continuation and asymptotics for
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the FK function using the integral representation was considered in [9,10]. Asymptotic
expansions of the function FD were studied in [11].

The authors of [12] gave the formal expansion

FK(α1, α2, β1, β2; α1, β2, γ3; z)
FK(α1, α2, β1 + 1, β2; α1, β2, γ3 + 1; z)

= 1 − z1 −
u1z3

1 − z2 −
u2z3

1 − z1 −
u3z3

1 − z2 −
u4z3

1 − . . .

, (1)

where

u2k−1 =
(α2 + k − 1)(γ3 + k − 1 − β1)

(γ3 + 2k − 2)(γ3 + 2k − 1)
, u2k =

(β1 + k)(γ3 + k − α2)

(γ3 + 2k − 1)(γ3 + 2k)
, k ≥ 1, (2)

as well as the following expansion, which is symmetrical to it:

FK(α1, α2, β1, β2; α1, β2, γ3; z)
FK(α1, α2 + 1, β1, β2; α1, β2, γ3 + 1; z)

= 1 − z2 −
v1z3

1 − z1 −
v2z3

1 − z2 −
v3z3

1 − z1 −
v4z3

1 − . . .

, (3)

where

v2k−1 =
(β1 + k − 1)(γ3 + k − 1 − α2)

(γ3 + 2k − 2)(γ3 + 2k − 1)
, v2k =

(α2 + k)(γ3 + k − β1)

(γ3 + 2k − 1)(γ3 + 2k)
, k ≥ 1. (4)

It is also established here that

Ωτ,r =
{

z ∈ C3 : zk ̸∈ [1 − r,+∞), k = 1, 2, z3 ̸∈
[ r

4τ
,+∞

)}
, 0 < r < 1, (5)

is the domain of the analytical continuation of the function on the left side of Equation (1)
(or Equation (3)), provided that 0 < uk ≤ τ (or 0 < vk ≤ τ), where k ≥ 1. The problem
of representing and extending Lauricella–Saran’s hypergeometric functions FD and FS
through branched continued fractions was considered in [13–15], respectively.

In Section 2 of this paper, we give the necessary definitions and preliminary results.
New symmetric domains of the analytical continuation of Lauricella–Saran’s hypergeo-
metric function FK with certain conditions for real and complex parameters, using their
branched continued fraction representations, are established in Section 3.

General information on branched continued fractions can be found in [16–18].

2. Preliminary Definitions and Results

The concept of a branched continued fraction can be approached in different ways,
particularly through the sequence of its approximants. A brief description follows.

Let i(0) = 0, I0 = {0}, and let

Ik = {i(k) : i(k) = (i1, i2, . . . , ik), 1 ≤ is ≤ 3, 1 ≤ s ≤ k}, k ≥ 1,

denote the sets of multiindices.
The ordered pair of sequences

⟨{ui(k)}i(k)∈Ik , k∈N, {vi(k)}i(k)∈Ik , k∈N0
⟩

of complex numbers satisfies the following conditions:

(1) ui(k) ̸= 0 for i(k) ∈ Ik; k ≥ 1,
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(2) If for k ≥ 1 there exists a multiindex i(k) ∈ Ik such that vi(k) = 0, then vi(k−1),j ̸= 0 for
1 ≤ j ≤ 3 and j ̸= ik.

We then generate the sequence { fk} as follows:

f0 = v0,

f1 = v0 +
3

∑
i1=1

ui(1)

vi(1)
,

f2 = v0 +
3

∑
i1=1

ui(1)

vi(1) +
3

∑
i2=1

ui(2)

vi(2)

,

and so on, in addition to

fk = v0 +
3

∑
i1=1

ui(1)

vi(1) +
3

∑
i2=1

ui(2)

vi(2) + . . .
+

3

∑
ik=1

ui(k)

vi(k)

,

and so on.
The ordered pair

⟨⟨{ui(k)}i(k)∈Ik ,k∈N, {vi(k)}i(k)∈Ik ,k∈N0
⟩, { fk}k∈N0⟩

is the branched continued fraction denoted by

v0 +
3

∑
i1=1

ui(1)

vi(1) +
3

∑
i2=1

ui(2)

vi(2) + . . .
+

3

∑
ik=1

ui(k)

vi(k) + . . .

. (6)

The values v0, ui(k) and vi(k), i(k) ∈ Ik, are called elements of Equation (6). The value
fk is called the kth approximant, where k ≥ 0.

Furthermore, considering the branched continued fraction in Equation (6), we admit a
confluent case where there are no constraints (1).

We shall need the following:

Definition 1. A branched continued fraction (Equation (6)) converges if, at most, a finite number
of its approximants do not make sense and if the limit of its sequence of approximants

lim
n→∞

fn

exists and is finite.

Note that the approximant makes sense if the 0/0 uncertainty does not arise when
computing its value. We assume that

1
0
= ∞,

1
∞

= 0, and
u
0
+

v
0
=

0
0

for all u, v ∈ C.
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Definition 2. A branched continued fraction (Equation (6)) converges absolutely if

∞

∑
n=1

| fn+1 − fn| < ∞.

The convergence criteria for branched continued fractions are often given in terms of
convergence sets. The definition is as follows:

Definition 3. A convergence set Ω is a set where Ω ̸= ∅ and Ω ⊆ C × C such that if
⟨ui(k), vi(k)⟩ ∈ Ω for all i(k) ∈ Ik, where k ≥ 1, then Equation (6) converges.

Definition 4. A uniform convergence set Ω is a convergence set to which there corresponds a
sequence {εk} of positive numbers depending only on Ω and converging to zero such that

| fk+p − fk| ≤ εk for all k, p ∈ N,

for every branched continued fraction (Equation (6)) with all ⟨ui(k), vi(k)⟩ ∈ Ω.

Theorem 1 below was proven in [19]. Here, for convenience, we give its formulation
using multiindex notation in the same way as in the triple power series. Note that this is
possible because for any k ≥ 1, there is a mapping φ : Jk → Ek, where

Jk = {i(k) : i(k) = (i1, i2, . . . , ik), 1 ≤ is ≤ is−1, 1 ≤ s ≤ k, i0 = 3}, k ≥ 1,

and

Ek = {ei(k) : ei(k) = ei1,i2,...,ik = ei1 + ei2 + . . . + eik , i(k) ∈ Jk}, k ≥ 1,

where ek = (δk,1, δk,2, δk,3), 1 ≤ k ≤ 3, and δi,j is the Kronecker delta, such that φ(i(k)) = ei(k)
for all i(k) ∈ Jk. Also, it can be shown that the mapping φ is bijective.

Theorem 1. Let m0,0,k, where k ≥ 1, be real constants satisfying

0 < m0,0,k ≤ 1, k ≥ 1.

Then, the following are true:

(1) The branched continued fraction

1 − z1,0,0 −
m0,0,1z0,0,1

1 − (1 − m0,0,1)z0,1,1 −
m0,0,2(1 − m0,0,1)z0,0,2

1 − (1 − m0,0,2)z1,0,2 −
m0,0,3(1 − m0,0,2)z0,0,3

1 − . . .

,

(7)

converges absolutely and uniformly for

|z1,0,2k| ≤
1
2

, |z0,1,2k+1| ≤
1
2

, |z0,0,k+1| ≤
1
2

, k ≥ 1; (8)

(2) The values of the branched continued fraction and of its approximants are in the closed domain

|w − 1| ≤ 1. (9)

Indeed, Theorem 1 (1) follows directly from Theorem 1 [19], with

m1,0,2r = m0,1,2r+1 = 1, z1,0,2r+1 = z0,1,2r = 0, r ≥ 0.
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Next, by setting
F(n)

n = 1, n ≥ 1,

it is clear that

F(2n)
2k−1 = 1 − (1 − m0,0,2k−1)z0,1,2k−1 −

m0,0,2k(1 − m0,0,2k−1)z0,0,2k

F(2n)
2k

,

F(2n)
2k−2 = 1 − (1 − m0,0,2k−2)z1,0,2k−2 −

m0,0,2k−1(1 − m0,0,2k−2)z0,0,2k−1

F(2n)
2k−1

,

where m0,0,0 = 0 and

F(2n+1)
2k−1 = 1 − (1 − m0,0,2k−1)z0,1,2k−1 −

m0,0,2k(1 − m0,0,2k−1)z0,0,2k

F(2n+1)
2k

,

F(2n+1)
2k = 1 − (1 − m0,0,2k)z1,0,2k −

m0,0,2k+1(1 − m0,0,2k)z0,0,2k+1

F(2n+1)
2k+1

are valid for n ≥ 1 and 1 ≤ k ≤ n. Therefore, the nth approximants of Equation (7) can be
written as follows:

fn = 1 − z1,0,0 −
m0,0,1z0,0,1

F(n)
1

.

In the proof of Theorem 1 [19], it is shown that

|F(n)
1 | ≥ m0,0,1, n ≥ 1, (10)

and hence, according to Equations (8) and (10), any n ≥ 1 yields

| fn − 1| ≤ |z1,0,0|+
m0,0,1|z0,0,1|

|F(n)
1 |

≤ 1
2
+

1
2

= 1,

which proves Theorem 1 (2).
Note that this theorem is analogous to Theorem 11.1 in [20]. Also, the fact that the

majorant method [17] (p. 51) and the formula for the difference of two approximants of the
branched continued fraction [17] (p. 28) were used in the proof of Theorem 1 [19].

An important application of branched continued fractions is the representation of holo-
morphic functions by branched continued fractions, the elements of which are functions,
particularly polynomials. And here, we need the following definition:

Definition 5. A branched continued fraction whose elements are functions in a certain domain
D ⊂ C3 converges uniformly on the set E ⊂ D if its sequence of approximants converges uniformly
on E. If this occurs for an arbitrary set E such that E ⊂ D, (Here, E is the closure of the set E) then
the branched continued fraction converges uniformly on every compact subset of D.

3. Branched Continued Fractions and Analytic Continuation

In this section, we prove that the branched continued fraction in Equation (1) (as
well as Equation (3)) converges in new symmetric domains and provides the analytic
continuation in these domains. One of the key results here is Theorem 2. Its proof reveals
a technique for extending the convergence, which is already known for a small domain,
to a larger domain, and it uses some of the results for Theorem 6 [12]. It also shows that
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one of the reasons why parabolic regions are so important is that they form the basis of the
cardioid domains. Note that here, the region is a domain together with all, part, or none of
its boundary.

Theorem 2. Let α2, β1, and γ3 be complex constants which satisfy the conditions

|uk|+ Re(uk) ≤ pq(1 − q), k ≥ 1, (11)

where uk, k ≥ 1 are defined by Equation (2), γ3 ̸∈ {0,−1,−2, . . .}, p is a positive number, and
0 < q < 1. Then, the following are true:

(1) The branched continued fraction in Equation (1) converges uniformly on every compact subset
of the domain

Θu,r
p,q = Ωp,q

⋃
Ωu,r, (12)

where

Ωp,q =

{
z ∈ C3 : zk ̸ ̸=

[ q
2

,+∞
)

, k = 1, 2, |z3| <
1 + cos(arg(z3))

2p

}
(13)

and

Ωu,r =

{
z ∈ C3 : |zk| <

1 − r
2

, k = 1, 2, |z3| <
r(1 − r)

2u

}
, (14)

where

u = max
k∈N

{|uk|}, 0 < r < 1, (15)

to a function f (z) holomorphic in Θu,r
p,q;

(2) The function f (z) is an analytic continuation of the function on the left side of Equation (1) in
Equation (12).

Proof. We show that (1) is valid in the domain in Equation (13), where for convenience we
write the sets

zk ̸ ̸=
[ q

2
,+∞

)
, k = 1, 2,

as

Re(zke−(i/2) arg(z3)) <
q
2

cos
(

1
2

arg(z3)

)
, k = 1, 2.

Let

F(n)
n (z) = 1, n ≥ 1, (16)

Then, it is clear that the recurrence relations

F(2n)
2k−1(z) = 1 − z2 −

u2kz3

F(2n)
2k (z)

, F(2n)
2k−2(z) = 1 − z1 −

u2k−1z3

F(2n)
2k−1(z)

, (17)

and

F(2n+1)
2k−1 (z) = 1 − z2 −

u2kz3

F(2n+1)
2k (z)

, F(2n+1)
2k (z) = 1 − z1 −

u2k+1z3

F(2n+1)
2k+1 (z)

,

are valid for n ≥ 1 and 1 ≤ k ≤ n.
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Thus, the nth approximants of Equation (1) can be written as follows:

fn(z) = 1 − z1 −
u1z3

F(n)
1 (z)

. (18)

Let us show that the approximants of the branched continued fraction in Equation (1)
form a sequence of functions holomorphic in the domain in Equation (13). Since the numer-
ator and denominator of each approximant are polynomials, they are the entire functions
of three variables. And the quotient of two entire functions, where the denominator is not
equal to zero, is a holomorphic function. Therefore, it suffices to show that

F(n)
1 (z) ̸= 0 for all n ≥ 1 and z ∈ Ωp,q. (19)

Let n be an arbitrary natural number and z be an arbitrary fixed point in Equation (13).
We set arg(z3) = ψ. Then the inequalities

Re(F(2n)
2k−1(z)e

−iψ/2) > (1 − q) cos(ψ/2) ≥ c > 0 (20)

and

Re(F(2n+1)
2k−1 (z)e−iψ/2) > (1 − q) cos(ψ/2) ≥ c > 0 (21)

are valid for 1 ≤ k ≤ n.
Indeed, since z is an arbitrary fixed point in Ωp,q, then for its arbitrary neighborhood,

there exists ε, 0 < ε ≤ π/2 such that

|ψ/2| ≤ π/2 − ε,

and therefore

(1 − q) cos(ψ/2) ≥ (1 − q) cos(ψ/2 − ε) = (1 − q) sin(ε) = c > 0.

Next, we prove the first inequality in Equation (20). From Equation (16), it is clear that
Equation (20) is valid for k = n. Let the first inequality in Equation (20) hold for k = s + 1,
where s + 1 ≤ n. Then, from Equation (17), one finds that

F(2n)
2s−1(z)e

−iψ/2 = e−iψ/2 − z2e−iψ/2 − u2sz3e−iψ

F(2n)
2s (z)e−iψ/2

,

F(2n)
2s (z)e−iψ/2 = e−iψ/2 − z1e−iψ/2 − u2s+1z3e−iψ

F(2n)
2s+1(z)e

−iψ/2
,

and hence, under Equations (11) and (13) and Corollary 2 [12], we have

Re(F(2n)
2s (z)e−iψ/2) = Re(e−iψ/2)− Re(z1e−iψ/2)− Re

 u2s+1z3e−iψ

F(2n)
2s+1(z)e

−iψ/2


≥ cos(ψ/2)− Re(z1e−iψ/2)− |z3|

|u2s+1|+ Re(u2s+1)

2 Re(F(2n)
2s+1(z)e

−iψ/2)

> cos(ψ/2)− q cos(ψ/2)
2

− pq(1 − q)
2(1 − q) cos(ψ/2)

1 + cos(ψ)
2p

= (1 − q) cos(ψ/2)
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and

Re(F(2n)
2s−1(z)e

−iψ/2) = Re(e−iψ/2)− Re(z2e−iψ/2)− Re

(
u2sz3e−iψ

F(2n)
2s (z)e−iψ/2

)

≥ cos(ψ/2)− Re(z2e−iψ/2)− |z3|
|u2s|+ Re(u2s)

2 Re(F(2n)
2s (z)e−iψ/2)

> cos(ψ/2)− q cos(ψ/2)
2

− pq(1 − q)
2(1 − q) cos(ψ/2)

1 + cos(ψ)
2p

= (1 − q) cos(ψ/2).

Similarly, we obtain the first inequality in Equation (21). Thus, the inequalities in
Equation (19) hold, and therefore, { fn(z)} is a sequence of functions holomorphic in the
domain in Equation (13).

Next, for an arbitrary compact subset Υ of Ωp,q, there exists an open triple-disk

ΞR = {z ∈ C3 : |zk| < R, 1 ≤ k ≤ 3}, R > 0, (22)

such that Υ ⊂ ΞR, and hence, under Equations (18), (20), and (21), for any n ≥ 1 and
z ∈ Ωp,q

⋂
ΞR, we have

| fn(z)| ≤ 1 + |z1|+
|u1||z3|

Re(F(n)
1 (z)e−iψ/2)

< 1 + R +
uR

(1 − q) cos(ψ/2)

= C(Υ),

In other words, { fn(z)} is a sequence of functions uniformly bounded on every
compact subset of Equation (13).

It is clear that for each L that satisfies the inequalities

0 < L < min
{

1 − r
2

,
r(1 − r)

2u
,

1
p

,
q
2

}
the domain

ΓL = {z ∈ R3 : 0 < zk < L, 1 ≤ k ≤ 3}

is contained in Equation (13), particularly ΓL/2 ⊂ Ωp,q. Moreover, for any z ∈ ΓL, ΓL ⊂ Ωp,q,
using Equation (15), one finds that

|z1| <
1 − r

2
, |z2| <

1 − r
2

, |ukz3| <
r(1 − r)

2
, k ≥ 1,

In other words, the elements of Equation (1) satisfy Theorem 1 with m0,0,k = r, where
k ≥ 1. Thus, under Theorem 1 (1), the branched continued fraction in Equation (1) converges
in ΓL, ΓL ⊂ Ωp,q. An application of Theorem 5 [12] then yields the uniform convergence of
Equation (1) to a holomorphic function on every compact subset of Equation (13).

Therefore, to prove (1), it suffices to show that this assertion is also valid in the domain
in Equation (14). An application of Theorem 1 (1) with m0,0,k = r, where k ≥ 1, shows that
the branched continued fraction in Equation (1) converges for all z ∈ Ωu,r. Theorem 1 (2)
implies that the approximants of Equation (1) all lie in the closed domain in Equation (9) if
z ∈ Ωu,r. Hence, under Theorem 5 [12], the convergence of the branched continued fraction
in Equation (1) is uniform on every compact subset of the domain in Equation (14).

The proof of (2) is analogous to the proof of Theorem 6 (2) [12], and hence it was
omitted. Note that from the proof of Theorem 6 (2) [12], it follows that the branched
continued fraction in Equation (1) corresponds at z = 0 to the function on the left side
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of Equation (1). Since, as was proved above, the sequence of its approximants converges
uniformly on each compact subset of some neighborhood of the origin to a function f (z)
holomorphic in this neighborhood, one can apply the PC method (see [12]) and easily prove
that the function f (z) to which the branched continued fraction in Equation (1) converges
on the domain in Equation (12) is an analytic continuation of the function on the left side of
Equation (1) in this domain.

Corollary 1. Let α2 and γ3 be complex constants satisfying Equation (11), where

u2k−1 =
(α2 + k − 1)(γ3 + k − 2)

(γ3 + 2k − 3)(γ3 + 2k − 2)
, u2k =

k(γ3 + k − 1 − α2)

(γ3 + 2k − 2)(γ3 + 2k − 1)
, k ≥ 1, (23)

p is a positive number, γ3 ̸∈ {1, 0,−1,−2, . . .}, and 0 < q < 1. Then, we have

1

1 − z1 −
u1z3

1 − z2 −
u2z3

1 − z1 −
u3z3

1 − z2 −
u4z3

1 − . . .

(24)

converging uniformly on every compact subset of Equation (12) to a function f (z) holomorphic in
Θu,r

p,q, and f (z) is an analytic continuation of the function

FK(α1, α2, 1, β2; α1, β2, γ3; z) (25)

in the domain in Equation (12).

Theorem 3 is symmetric to Theorem 2, and thus it can be proven in much the same
way as in Theorem 2.

Theorem 3. Let α2, β1, and γ3 be complex constants which satisfy the conditions

|vk|+ Re(vk) ≤ pq(1 − q), k ≥ 1, (26)

where vk with k ≥ 1 are defined by Equation (4), γ3 ̸∈ {0,−1,−2, . . .}, p is a positive number,
and 0 < q < 1. Then, thet following are true:

(1) The branched continued fraction in Equation (3) converges uniformly on every compact subset
of the domain

Θv,r
p,q = Ωp,q

⋃
Ωv,r, (27)

where Ωp,q is defined by Equation (13) and

Ωv,r =

{
z ∈ C3 : |zk| <

1 − r
2

, k = 1, 2, |z3| <
r(1 − r)

2v

}
,

where

v = max
k∈N

{|vk|}, 0 < r < 1,

for a function f (z) holomorphic in Θv,r
p,q;

(2) The function f (z) is an analytic continuation of the function on the left side of Equation (3) in
Equation (27).
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Corollary 2. Let β1, and γ3 be complex constants satisfying Equation (26), where

v2k−1 =
(β1 + k − 1)(γ3 + k − 2)
(γ3 + 2k − 3)(γ3 + 2k − 2)

, v2k =
k(γ3 + k − 1 − β1)

(γ3 + 2k − 2)(γ3 + 2k − 1)
, k ≥ 1, (28)

p is a positive number, γ3 ̸∈ {1, 0,−1,−2, . . .}, and 0 < q < 1. Then, we have

1

1 − z2 −
v1z3

1 − z1 −
v2z3

1 − z2 −
v3z3

1 − z1 −
v4z3

1 − . . .

, (29)

converging uniformly on every compact subset of Equation (27) to a function f (z) holomorphic in
Θv,r

p,q, and f (z) is an analytic continuation of the function

FK(α1, 1, β1, β2; α1, β2, γ3; z) (30)

in the domain in Equation (27).

An application of Theorem 2 follows:

Theorem 4. Let α2, β1, and γ3 be real constants such that

−u ≤ uk < 0, k ≥ 1, (31)

where u is a positive number and uk, where k ≥ 1, are defined by Equation (2). Then, the following
are true:

(1) The branched continued fraction in Equation (1) converges uniformly on every compact subset
of the domain

Θu =

{
z ∈ C3 : zk ̸∈

[
1
2

,+∞
)

, k = 1, 2, z3 ̸∈
(
−∞,− 1

8u

]}
(32)

to a function f (z) holomorphic in Θu;
(2) The function f (z) is an analytic continuation of the function on the left side of Equation (1) in

Equation (32).

Proof. If uk < 0 for k ≥ 1, then the conditions in Equation (11) hold for all p > 0
and 0 < q < 1. Let Υ be an arbitrary compact set contained in Equation (32). Then,
Υ ⊆ Θu,r

p,q ⊆ Θu for some p which is sufficiently small and q sufficiently close to one, whose
Θu,r

p,q is the domain in Equation (12). Theorem 3 is thus an immediate consequence of
Theorem 2.

Note that Equation (32) is the Cartesian product of two planes cut along the real axis
from 1/2 to +∞ and one plane cut along the real axis from −1/(8u) to −∞, where u is a
positive number satisfying Equation (31).

Corollary 3. Let α2 and γ3 be real constants satisfying Equation (31), where uk, k ≥ 1 are defined
by Equaton (23) and u is a positive number. Then, Equation (24) converges uniformly on every
compact subset of Equation (32) to a function f (z) holomorphic in Θu, and f (z) is an analytic
continuation of Equation (25) in Equation (32).

An application of Theorem 3 is Theorem 5 below, which can be proven in much the
same way as Theorem 4.
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Theorem 5. Let α2, β1, and γ3 be real constants such that

−v ≤ vk < 0, k ≥ 1, (33)

where v is a positive number and vk, k ≥ 1 are defined by Equation (4). Then, the following are true:

(1) The branched continued fraction in Equation (3) converges uniformly on every compact subset
of the domain

Θv =

{
z ∈ C3 : zk ̸∈

[
1
2

,+∞
)

, k = 1, 2, z3 ̸∈
(
−∞,− 1

8v

]}
(34)

to function f (z), which is holomorphic in Θv;
(2) The function f (z) is an analytic continuation of the function on the left side of Equation (3) in

Equation (34).

Corollary 4. Let β1, and γ3 be real constants satisfying Equation (33), where vk, k ≥ 1 are defined
by Equation (28) and v is a positive number. Then, Equation (29) converges uniformly on every
compact subset of Equation (34) to a function f (z), which is holomorphic in Θv, and f (z) is an
analytic continuation of Equation (30) in (34).

The following result gives the analytical extension domain that is the Cartesian product
of two planes cut along the real axis from (1 − r)/2 to +∞ and one plane cut along the
real axis from 1/(8u) to ∞, where 0 < r ≤ 1/2 and u is a positive number that satisfies the
following conditions (Equation (35)):

Theorem 6. Let α2, β1, and γ3 be real constants which satisfy the conditions

0 < uk ≤ u, k ≥ 1, (35)

where uk, k ≥ 1 are defined by Equation (2) and u is a positive number. Then, the following are
true:

(1) The branched continued fraction in Equation (1) converges uniformly on every compact subset
of the domain

Θu,r =

{
z ∈ C3 : zk ̸∈

[
1 − r

2
,+∞

)
, k = 1, 2, z3 ̸∈

[
1

8u
,+∞

)}
, (36)

where 0 < r ≤ 1/2 for function f (z), which is holomorphic in Θu,r;
(2) The function f (z) is an analytic continuation of the function on the left side of Equation (1) in

Equation (36).

Proof. First of all, for convenience, we write the domain in Equation (36) as

Θu,r =
⋃

−π/2<ψ<π/2

Ωu,ψ
⋃

Ωu,r,

where

Ωu,ψ =

{
z ∈ C3 : Re(z2e−iψ) <

cos(ψ)
4

, k = 1, 2, |z1|+ Re(z3e−2iψ) <
cos2(ψ)

4u

}
(37)

and Ωu,r is defined by Equation (14) with 0 < r ≤ 1/2.
As in the proof of Theorem 2, we show that (1) is valid in the domain⋃

−π/2<ψ<π/2

Ωu,ψ. (38)
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Let n be an arbitrary natural number, ψ be an arbitrary real value from (−π/2, π/2),
and z be an arbitrary fixed point in Equation (37). Then, we have

Re(F(2n)
2k−1(z)e

−iψ) >
cos(ψ)

2
> 0 (39)

and

Re(F(2n+1)
2k−1 (z)e−iψ) >

cos(ψ)
2

> 0 (40)

being valid for 1 ≤ k ≤ n.
Let us prove Equation (39). From Equation (16), it is clear that the inequalities in

Equation (39) are valid for k = n. Assuming through the induction that Equation (39) holds
for k = s + 1, where s + 1 ≤ n, then from Equation (17), one obtains

F(2n)
2s−1(z)e

−iψ = e−iψ − z2e−iψ − u2sz3e−2iψ

F(2n)
2s (z)e−iψ

,

F(2n)
2s (z)e−iψ = e−iψ − z1e−iψ − u2s+1z3e−2iψ

F(2n)
2s+1(z)e

−iψ
.

Then, under Equations (35) and (37), and Corollary 2 [12], we have

Re(F(2n)
2s (z)e−iψ) = Re(e−iψ)− Re(z1e−iψ)− Re

u2s+1z3e−2iψ

F(2n)
2s+1(z)e

−iψ


≥ cos(ψ)− Re(z1e−iψ)− |u2s+1|

|z3|+ Re(z3e−2iψ)

2 Re(F(2n)
2s+1(z)e

−iψ)

> cos(ψ)− cos(ψ)
4

− cos(ψ)
4

=
cos(ψ)

2

and

Re(F(2n)
2s−1(z)e

−iψ)Re(e−iψ)− Re(z2e−iψ)− Re

(
u2sz3e−2iψ

F(2n)
2s (z)e−iψ

)

≥ cos(ψ)− Re(z2e−iψ)− |u2s|
|z3|+ Re(z3e−2iψ)

2 Re(F(2n)
2s (z)e−iψ)

> cos(ψ)− cos(ψ)
4

− cos(ψ)
4

=
cos(ψ)

2
.

In the same way, we obtain the inequalities in Equation (40). Thus, the inequalities

F(n)
1 (z) ̸= 0 for all n ≥ 1 and z ∈ Ωu,ψ.

hold, and therefore, { fn(z)} is a sequence of functions holomorphic in the domain in
Equation (37).

For an arbitrary compact subset Υ of Equation (38), there exists an open triple-disk
(Equation (22)) such that Υ ⊂ ΞR. We cover Υ with domains of the form

Ωu ψ,R =
⋃

−π/2<ψ<π/2

Ωu,ψ
⋂

ΞR,
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and choose from this cover a finite subcover

Ωu ψ1,R, Ωu ψ2,R, . . . , Ωu ψk ,R.

Under Equations (18), (39), and (40), for any n ≥ 1, s ∈ {1, 2, . . . , k}, and z ∈ Ωu ψs ,R,
we have

| fn(z)| ≤ 1 + |z1|+
|u1||z3|

Re(F(n)
1 (z)e−iψ)

< 1 + R +
2uR

cos(ψ)

= C(Ωu ψs ,R).

We set
C(Υ) = max

s∈{1,2,...,k}
C(Ωu ψs ,R).

Then, for any n ≥ 1 and z ∈ Υ, we have

| fn(z)| ≤ C(Υ),

In other words, { fn(z)} is a sequence of functions uniformly bounded on every
compact subset of Equation (38).

It is clear that for each L such that

0 < L < min
{

1
4

,
1

8u

}
the domain

∆L = {z ∈ R3 : −L < zk < 0, 1 ≤ k ≤ 3}

is contained in Equation (38) (e.g., ∆L/2). Taking into account Equation (35), for any z ∈ ∆L,
where ∆L is contained in Equation (38), one can find that

|z1| <
1
4

, |z2| <
1
4

, |ukz3| <
1
8

, k ≥ 1,

In other words, the elements of Equation (1) satisfy Theorem 1, with m0,0,k = 1/2 and
k ≥ 1. Thus, according to Theorem 1 (1), the branched continued fraction in Equation (1)
converges in ∆L, where ∆L is contained in Equation (38). It follows from Theorem 5 [12]
that the convergence is uniform on compact subsets of Equation (38) to a holomorphic
function in this domain.

The fact that (1) is also valid in the domain in Equation (14) with 0 < r ≤ 1/2 can be
proven in much the same way as in the proof of Theorem 2 (1). The proof of (2) is analogous
to the proof of Theorem 2 (2) and Theorem 6 (2) [12], and hence it was omitted.

Corollary 5. Let α2 and γ3 be real constants satisfying Equation (35), where uk, k ≥ 1 are defined
by Equation (23) and u is a positive number. Then, Equation (24) converges uniformly on every
compact subset of Equation (36) to a function f (z) holomorphic in Θu,r, and f (z) is an analytic
continuation of Equation (25) in this domain.

Finally, we have the following theorem, which is symmetric to Theorem 6:

Theorem 7. Let α2, β1, and γ3 be complex constants which satisfy the conditions

0 < vk ≤ v, k ≥ 1, (41)

where vk, k ≥ 1 are defined by Equation (4) and v is a positive number. Then, the following are true:



Symmetry 2024, 16, 220 14 of 16

(1) The branched continued fraction in Equation (3) converges uniformly on every compact subset
of the domain

Θv,r =

{
z ∈ C3 : zk ̸∈

[
1 − r

2
,+∞

)
, k = 1, 2, z3 ̸∈

[
1

8v
,+∞

)}
, (42)

where 0 < r ≤ 1/2 for the function f (z), which is holomorphic in Θv,r;
(2) The function f (z) is an analytic continuation of the function on the left side of Equation (3) in

Equation (42).

Corollary 6. Let β1 and γ3 be real constants satisfying Equation (41), where vk, k ≥ 1 are defined
by Equation (28) and v is a positive number. Then, Equation (29) converges uniformly on every
compact subset of Equation (42) to a function f (z), which is holomorphic in Θv,r, and f (z) is an
analytic continuation of Equation (30) in this domain.

When comparing the domain of the analytical continuation in Equation (5) and Equa-
tion (36) (or Equation (42)), we note that they are different under the same conditions for
the parameters of Lauricella–Saran’s hypergeometric functions FK.

4. Discussions and Conclusions

We considered the representation and extension of the analytic functions of three
variables by a special family of functions: branched continued fractions. The main results
were new symmetric domains of analytical continuation for Lauricella–Saran’s hypergeo-
metric functions FK with certain conditions for real and complex parameters, which were
established using their branched continued fraction representations. In particular, in the
case of real parameters, we obtained the Cartesian product of two planes cut along the real
axis from 1/2 to +∞ and one plane cut along the real axis from −1/(8u) to −∞, where u is
a positive number. To prove the above, we used a technique that extends the convergence
of branched continued fractions, which is already known for a small domain, to a larger do-
main, as well as the PC method (see [12]) to prove that they were also domains of analytical
continuation. In fact, in pairs, they were proven to be effective tools and could therefore
be applied to Lauricella–Saran’s other functions. However, we could not establish such
domains of analytical continuation for Lauricella–Saran’s hypergeometric functions FK
with arbitrary admissible real or complex parameters. Unfortunately, the well-developed
methods for investigating the convergence of continued fractions are generally not carried
over to their multidimensional generalization of branched continued fractions. Therefore,
there is a need to develop new methods that would provide effective convergence criteria
in both the partial and general cases.

The branched continued fraction, being a generalization of the continued fraction, is
interesting in itself because it has good approximate properties, such as wide regions of
convergence and numerical stability. Therefore, further investigations can be continued in
various directions. First, one can try to extend the domains of convergence of the branched
continued fraction expansions with real and complex coefficients in their elements using
parabolic regions of convergence and angular domains, which can be found in [21–24],
respectively. To render branchedcontinued fractions as more useful in computation, it is
necessary to know more about their rate of convergence and numerical stability. Therefore,
truncation error analysis and the computational stability of the branched continued fraction
expansions are other directions. These are interesting and somewhat new directions, and
there are not many results here (see [25–30]).

The numerical experiments in [12,31–35] have shown that branched continued fraction
expansions provide a useful tool for representing and computing the values of analytic func-
tions. Therefore, a no less interesting and essential direction of research is the application
of branched continued fractions to compute special functions, including Lauricella–Saran’s
hypergeometric functions, which naturally arise in various problems in various fields of
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science, especially physics (see, for example, [4–6,8,36] and also [37] (Part 5), [38] (Chapters
7 and 8), [39], and [40] (Chapters 5)).
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