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Abstract: In this paper, we explore a model of an N-player, non-cooperative stochastic game, drawing
inspiration from the discrete formulation of the red-and-black gambling problem, as initially intro-
duced by Dubins and Savage in 1965. We extend upon the work of Pontiggia from 2007, presenting a
main theorem that broadens the conditions under which bold strategies by all players can achieve a
Nash equilibrium. This is obtained through the introduction of a novel functional inequality, which
serves as a key analytical tool in our study. This inequality enables us to circumvent the restrictive
conditions of super-multiplicativity and super-additivity prevalent in the works of Pontiggia and
others. We conclude this paper with a series of illustrative examples that demonstrate the efficacy
of our approach, notably highlighting its ability to accommodate a broader spectrum of probability
functions than previously recognized in the existing literature.
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1. Preliminaries
1.1. Introduction

Consider a simplified roulette game with two or more players. This game takes place
on a board divided into red and black fields, with a special green “0” field where betting
is prohibited. Each player starts with an equal number of identical tokens. Players can
individually wager one token on either the red or black field, adhering to a “first come,
first served” rule that allows only one token per field. After players have placed their bets,
the wheel is spun. If the wheel lands on a red or black field matching a player’s bet, that
player collects all the tokens on the board. However, if the wheel lands on the green “0”
field, all bets are forfeited and the tokens remain on the board for the next round. This
simplified model captures the essence of risk-taking and potential rewards inherent in many
real-world scenarios while providing a controlled and easily understandable framework
for further analysis and experimentation.

The role of the board and wheel in this simplified model is to represent a controlled
and random draw mechanism. Each player bets on a specific outcome (red or black), and
the wheel’s landing position determines the winner based on predetermined rules. This
draw incorporates an element of chance, where the probability of winning depends on
the following:

1. Number of tokens wagered: Players who bet on the winning color with more tokens
stand to gain more as they collect all tokens on the board. However, this also translates
to a higher risk of losing everything if they choose the wrong color.

2. Bets of other players: While not directly influencing the winning color, the distribu-
tion of bets can indirectly impact individual players’ perceptions and strategies. If
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other players bet more, then they increase their chances of victory in a given round,
therefore decreasing ours.

By replacing the physical roulette wheel and board with a computer simulation, we
remove the limitations of a physical setup. This allows for the following:

• Increased control and flexibility: We can precisely define the number of fields, initial
token distribution, and winning conditions, enabling tailored simulations for specific
research purposes.

• Efficiency in conducting a large number of trials: A computer simulation can run
thousands or even millions of games in a short time, generating statistically significant
data to analyze winning probabilities, player strategies, and game dynamics.

• Exploration of new game mechanics: Freed from the constraints of physical limita-
tions, the computer simulation opens the door to experimenting with novel gameplay
possibilities that might not be feasible with a physical setup. This forms the foundation
for our “title game”, where these new mechanics are implemented to create a unique
and potentially more complex gaming experience.

1.2. Red-and-Black Game

The red-and-black game’s rich history dates back to the groundbreaking 1965 work of
Lester E. Dubins and Leonard J. Savage in their book ”How to gamble if you must” [1].
Their approach fundamentally shifted the focus from the morally charged question of
whether to gamble, to the more pragmatic issue of how to play strategically when a player
seeks a specific monetary target and finds lesser outcomes unacceptable.

Dubins and Savage addressed this question by providing guidance on optimizing
betting strategies based on the player’ available capital and his desired winning. A key
innovation presented in their work was a model where a player’s probability of winning
was directly influenced by the size of his bet. This insight added an intriguing layer of
complexity and strategic consideration to the classic red-and-black game.

Furthermore, their analysis motivated other researchers and led to the identification
of a Nash equilibrium for the red-and-black game when played between two opponents
(see Secchi [2], Chen and Hsiau [3,4]). For those unfamiliar with game theory, a Nash
equilibrium is a state where neither player gains any advantage by changing their strat-
egy while holding the opponent’s strategy constant. In this context, we consider the
following strategies:

• Timid play: This strategy is best employed when the opponent wagers their entire for-
tune. In this scenario, the player should bet the minimum amount possible (one token),
as this maximizes their probability of winning.

• Bold play: This strategy is ideal when the opponent bets the minimum amount,
and the player cannot immediately reach their goal by wagering less. The player
should bet all his money for the best chance to win (with an exception if a smaller bet
is enough to win in one round).

These strategic concepts of “timid” and “bold” play (precisely defined in Definition 1 of
their article) offer a foundation for a deeper analysis of the dynamics of the red-and-black
game. This work continues to be highly relevant for understanding risk-taking and decision-
making in scenarios where outcomes hinge on calculated choices under uncertainty.

The groundbreaking work of Dubins and Savage ignited further exploration of the
red-and-black game, most notably inspiring Ashok P. Maitra and William D. Sudderth’s
influential book [5]. They delved deeper into the game’s complexities, posing new chal-
lenges such as determining the consequences of players disregarding their game history
when making strategic decisions in the present moment. These two seminal works laid the
foundation for extensive research on the red-and-black game and its variations, fostering
continued interest in this deceptively simple model.

Despite the numerous modifications and analyses applied to the red-and-black game
throughout its evolution, one consistent theme stands out: the bold-timid strategy frame-
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work has proven remarkably resilient. Researchers have successfully employed and
adapted this core concept across multiple game iterations, demonstrating its applicability
to a wide range of strategic gambling scenarios. This resilience underscores the enduring
power of the original model and the ingenuity of its creators.

The exploration of the red-and-black game continued to flourish in the early 2000s.
In 2005, L. Pontiggia introduced a two-player game model in [6] where both players aimed to
seize all their opponent’s money. This model explored different winning probability structures:

• Proportional to bets: The probability of winning directly corresponded to the size of
each player’s bet, building upon the core concept of the original red-and-black game.

• Weighted probability: The model introduced an additional parameter, the “weight” ω,
allowing for more nuanced control over the influence of bets on winning probabilities.

This model, along with earlier work by P. Secchi [2], provided fertile ground for further
research. In 2006, M. Chen and S. Hsiau in [3] took a significant step by introducing a
general winning probability function f dependent on a single variable. Their analysis
yielded two key results:

1. Optimal strategy with known opponent strategy: They identified the optimal strat-
egy for a player when their opponent’s strategy was known, providing valuable
insights into decision-making based on the anticipated actions of others.

2. Best strategy for specific properties of f : They further explored the best strategy
for a player under specific properties of the winning probability function f , revealing
crucial factors influencing optimal decision-making.

Additionally, Chen and Hsiau identified a counterexample to an assumption made by
Pontiggia in their earlier work (reference [6]) for the N-person model with N players greater
than or equal to 2. This highlighted the importance of careful analysis and refinement when
extending existing models to more complex scenarios.

Building upon the evolving understanding of the red-and-black game, in 2007, L.
Pontiggia introduced a novel model [7] that incorporated a gambling house into the N-
person scenario. This model introduced a crucial twist: in every round, the gambling house
held a positive probability of winning all players’ bets. This new element fundamentally
changed the dynamics of the game and led to a surprising conclusion. In this specific model
with the inclusion of the house, Pontiggia demonstrated that the optimal strategy for all
participants surprisingly became “bold play”—constantly betting their entire capital. This
unexpected outcome underscores the importance of considering all participants and game
mechanics when formulating optimal strategies.

1.3. Our Contribution

This paper delves deeper into the previously discussed N-person red-and-black game
with a non-constant winning sum, expanding upon the work presented in [7] by L. Pon-
tiggia. We draw inspiration from [8], which generalizes the results of Chen and Hsiau [3].
By leveraging these insights, we aim to construct a more general model that surpasses the
limitations of previously explored scenarios.

We will establish a more general model that surpasses the generality of existing
models by incorporating a non-constant winning sum and building upon the advancements
outlined in [8].

By constructing this more general model and providing concrete examples, we aim
to extend the key findings of Pontiggia’s work [7]. This extension will shed light on the
behavior of optimal strategies in a broader range of N-person red-and-black game scenarios
with non-constant winning sums.

Finally, to demonstrate the applicability of our model, we will present several exam-
ples of winning probability functions that satisfy the assumptions of our main theorem,
showcasing the model’s flexibility and adaptability.
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Through these steps, we hope to contribute significantly to the ongoing exploration of
red-and-black game dynamics and further enhance our understanding of optimal strategies
within the context of N-person games with non-constant winning sums.

Our model features N players, each possessing an initial fortune equal to a positive
integer. Players engage in simultaneous betting, where each wager is an integer portion of
their current capital. The outcome is determined by a probability function that depends on
all players’ bets. This can result in two scenarios:

1. Player victory: With a certain probability, one player wins the entire pool of com-
bined bets.

2. Casino takeover: Alternatively, the casino claims the entire pool with a specific probability.

In this context, we focus on bold strategies, where players bet their entire fortune
at each round. Our main result delves into the stability of bold strategies as a Nash
equilibrium, which essentially means that no player has the incentive to deviate from this
strategy, given that all other players adhere to it.

However, under specific conditions outlined in our main theorem, we demonstrate
that a profile consisting solely of bold strategies for all players forms a Nash equilibrium.
This implies that assuming everyone else plays boldly, no individual player gains any
advantage by deviating from a bold strategy themselves. This finding provides valuable
insights into the dynamics and potential stability of bold play in N-person red-and-black
games with non-constant winning sums.

Our approach breaks new ground by introducing a general functional inequality
(inequality (12) below), which significantly expands upon the limitations of previous works
that relied on more restrictive assumptions like super-additivity and super-multiplicativity.
These assumptions limit the applicability of existing models.

Functional inequalities play a crucial role in game theory and related fields, offering a
powerful tool for analyzing strategic interactions. While often overlooked in the past, they
have gained significant traction in recent years, as evidenced by the following works:

• J.C. Candeal et al. [9]: This comprehensive survey, published in 1997, offers valuable
insights into the application of functional equations in game theory research up to
that point, highlighting the potential of this approach.

• M. Chudziak [10]: This recent work emphasizes the importance of inequalities in
utility theory, contributing to the growing body of research in this area.

• J. Chudziak and M. Chudziak [11] and J. Chudziak [12,13]: These publications show-
case further advancements in applying inequalities to analyze and understand some
concepts of mathematical economy.

By incorporating a general functional inequality, our model transcends the limitations
of past approaches, allowing us to explore a broader spectrum of scenarios within N-
person red-and-black games with non-constant winning sums. This opens doors for deeper
understanding and potentially more generalizable results regarding optimal strategies and
player behavior in these complex game environments.

For the sake of organization and clarity, we have structured this paper as follows:

• Game Description: We begin by introducing the specific N-person red-and-black
game with a non-constant winning sum that forms the foundation of our analysis.
This section clearly defines the players, their actions, and the mechanics of the game.

• Main Result: Following the game description, we present our core finding: the
theorem demonstrating the conditions under which bold strategies form a Nash
equilibrium for all players. This section includes a clear statement of the theorem
accompanied by a rigorous proof.

• Functional Inequality Exploration: We then delve into the key element of our
approach—the general functional inequality. This section unpacks the inequality
itself (inequality (12) below), explains its significance, and explores its basic properties
within the context of our model.
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• Experimental Data Analysis: As an additional layer of insight, we conclude the
paper by presenting and discussing experimental data obtained through a computer
program. These data simulate the number of wins achieved by players employing
different strategies under a specific winning probability function. This analysis adds
a practical dimension to our theoretical findings, providing further validation and
potential avenues for future exploration.

• Illustrative Examples: To solidify the applicability and generality of our approach,
we provide concrete examples of winning probability functions that satisfy the as-
sumptions of our main theorem. These examples showcase scenarios not covered by
previous works, highlighting the broader scope of our model.

We believe this structure effectively guides the reader through our research, ensuring
a comprehensive understanding of the game, the main result, its underlying mathematical
framework, and its practical implications.

2. Rules of the Game

Let N ≥ 2 be a fixed integer, which denotes the number of players in the game. Next,
assume that (x0

1, . . . , x0
N) is a vector of positive integers, where x0

j denotes the initial fortune

of j-th player. Put M := ∑N
i=1 x0

i (the total amount of money at the beginning of the game)
and let G be a positive integer equal to a fixed goal that the players aim to reach. We assume
that the goal is the same for all players; only one player can win and at least some players
have a chance to win. Therefore, we impose the following double inequality:

G ≤ M < 2G. (1)

Denote S := {0, 1, . . . , M}. We define the state space for the game as

P := {(x1, . . . , xN) : xj ∈ S, j = 1, . . . , N,
N

∑
i=1

xi ≤ M}.

The absorbing states of the game consist of all vectors, with one of the coordinates greater
or equal to G (when one of the players wins), and also of all vectors for which ∑N

i=1 xi < G
(when it is no longer possible to win by any of the players).

Now, we define an action set of Player j when the current fortunes of the players are
equal to (x1, . . . , xj, . . . , xN):

Aj(x1, . . . , xN) :=

{
{1, . . . , xj}, if xj ∈ {1, . . . , G − 1},
{0}, if xj ∈ {0, G, G + 1, . . . },

and his payoff function:

Wj(x1, . . . , xN) :=

{
1, if xj ≥ G,
0, if xj < G.

(2)

Note that the game is non-cooperative, which means that each player does not know
the actions that were simultaneously taken by the others.

Now, assume that we are given a function Φ : {1, 2, . . . , N} × P → [0, 1], which repre-
sents the probability of winning for the players. More precisely, if the bets of the players are
equal to (a1, . . . , aN), then the number Φ(j; a1, . . . , aN) is the probability of victory of Player
j (whose bet is aj). Note that function Φ is defined on the product of the set {1, . . . , N} and
the state space. This however does not mean that the players bet all their fortunes. But
every possible vector of bets always belongs to the set P.
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A special case of function Φ, namely

Φ(j; a1, . . . , aN) = f
( aj

a1 + · · ·+ aN

)
, (3)

where f is super-additive and super-multiplicative, was studied by Pontiggia in [7]. Recall
that a map f : [0, 1] → R is termed super-additive if

f (x + y) ≥ f (x) + f (y), x, y ∈ [0, 1], x + y ≤ 1.

Next, f is super-multiplicative, whenever

f (x · y) ≥ f (x) · f (y), x, y ∈ [0, 1].

Typically, the graph of function f that satisfies both above inequalities jointly with f (0) = 0
and f (1) = 1 lies below the diagonal on the interval (0, 1) (for example, this is the case
if f is continuous and not equal to the identity map). Therefore, in such a case at each
round of the game, the expected value of victory for a player is smaller than his bet. This
can be interpreted as follows: the casino is charging a tax or imposing a hidden fee for
the players. Therefore, our model allows the casino to tax the players more flexibly, not
necessarily depending only upon the quotient of the bid of the j-th player and the sum
of all the bids made during this stage of the game. Another interpretation is given in [7]
(Remark 3.1), where the idea of introducing function f is to penalize the players by reducing
their probability of winning. Therefore, our model allows us to punish the players more
flexibly. However, as has been pointed out by one of the reviewers, this interpretation can
be misunderstood, since the word “punishment” suggests that the players are discouraged
from playing at all.

We impose another assumption upon Φ, which is in particular fulfilled by all mappings
of the form (3). Namely, we will assume that

If
N

∑
i=1

ai =
N

∑
i=1

bi and aj = bj, then Φ(j; a1, . . . , aN) = Φ(j; b1, . . . , bN). (4)

Therefore, the winning probability of a player depends only on his bet and the sum of all
in-game bets. Note that it can also depend on j. Therefore, our model allows for potential
asymmetry between the players.

The next condition guarantees that the total probability does not exceed one:

N

∑
i=1

Φ(i; a1, . . . , aN) ≤ 1. (5)

For technical reasons, we will need another natural condition that the probability of victory
of a given player is equal to zero if his bet is equal to zero (which, according to the rules of
the game, is possible only if he lost all his capital at an earlier stage of the game):

Φ(j; a1, . . . , aN) = 0 if aj = 0. (6)

Now, we are at the point of precisely defining the game’s law of motion. Let us fix a
positive integer, m, a current stage of the game. Let Xm,j be a random variable that is equal
to the fortune of the j-th player at time m. By am,j, we denote an amount that he bids at this
stage of the game. By the casino rules, 1 ≤ am,j ≤ Xm,j and X1,j < G for j = 1, 2, . . . , N. The
law of motion is as follows:

X1,1 = x0
1, X1,2 = x0

2, . . . X1,N = x0
N (7)
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(Xm+1,1, . . . , Xm+1,N) ={
(Xm,1 − am,1, . . . , Xm,N − am,N), w.p. 1 − ∑N

i=1 Φ(i; a1, . . . , aN),
(Xm,1 − am,1, . . . , Xm,j + ∑i ̸=j am,i, . . . , Xm,N − am,N), w.p. Φ(j; a1, . . . , aN)

(8)

(here, “w.p.” is an abbreviation for “with probability”).
Note that inequality (5) together with the rules (7) and (8) implies that

N

∑
i=1

Xm+1,i ≤
N

∑
i=1

Xm,i. (9)

Sometimes we will omit double subscripts when it is clear which stage of the game
is considered.

3. The Main Result

Our main result builds upon and generalizes a theorem established by L. Pontiggia [7]
(Theorem 3.1). In her work, the analysis relied on assumptions of super-additivity and
super-multiplicativity, which limit the applicability of the model. We overcome this lim-
itation by introducing a less restrictive functional inequality (presented in detail in the
following section), which allows for a broader range of scenarios.

This novel inequality plays a critical role in our analysis. It governs the relationship
between the winning probabilities of individual players and their combined bets. By
leveraging this inequality, we can derive conditions under which bold strategies, where
players wager their entire fortune in each round, form a Nash equilibrium. In simpler
terms, this means that when all players adopt the bold strategy, no individual player gains
an advantage by deviating and choosing a different strategy.

The concept of a Nash equilibrium is crucial in game theory, signifying a state where
rational players have no incentive to change their strategies given the strategies employed
by others. Our main result demonstrates that under specific conditions, bold play becomes
a stable and strategically sound approach for all players in the N-person red-and-black
game with a non-constant winning sum.

Definition 1. A strategy of Player j is called bold if for every m = 1, 2, . . . one has am,j = Xm,j,
whenever 0 < am,j < G. A strategy of Player j is called timid if for every m = 1, 2, . . . , such that
0 < Xm,j < G, one has am,j = 1.

Theorem 1. We consider an N-person red-and-black game with N ≥ 2 and with the law of
motion described by formulas (7) and (8), with probability function Φ : {1, 2, . . . , N} × P → [0, 1]
satisfying conditions (4) and (5).

Assume that for every fixed j ∈ {1, . . . , N} and every choice of Xm,1, . . . , Xm,N ∈ S, such
that Xm,1 + · · ·+ Xm,N ≥ G, the functions f j, gj : S → [0, 1] are given by

f j(x) := Φ(j; Xm,1, . . . , Xm,j−1, x, Xm,j+1, . . . , Xm,N), x ∈ S, (10)

gj(x) := ∑
i ̸=j

Φ(i; Xm,1, . . . , Xm,i−1, x, Xm,i+1, . . . , Xm,N), x ∈ S, (11)

and satisfy inequality
f j(x)− f j(a) ≥ gj(a) f j(x − a), (12)

for all a, x ∈ S, such that a ≤ x. Then, the Nash equilibrium for all players is to play boldly.

Proof. We will follow the idea of the proof of [7] (Theorem 3.1).
Fix j ∈ {1, . . . , N} and assume that all players play boldly. Denote

Qj(X1, . . . , XN) = P[Player j reaches G, when the game starts at (X1, . . . XN)]. (13)
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The law of motion of the game at time m is as follows:

(Xm+1,1, . . . , Xm+1,j, . . . , Xm+1,N) ={
(0, . . . , 0), w.p. 1 − ∑N

i=1 Φ(i; Xm,1, . . . , Xm,N),
(0, . . . , 0, ∑N

i=1 Xm,i, 0, . . . , 0), w.p. Φ(j; Xm,1, . . . , Xm,N).
(14)

One can see that when all players adopt bold strategies, then the game terminates after the
first round, i.e., m = 1. Clearly, since all the players bet their entire fortunes, then either
one of them wins (say Player j) and reaches his goal, or all players go bankrupt and the
casino collects their bets. Moreover, since X1,1 + · · ·+ X1,N ≥ G, then obviously

Qj(0, . . . , 0,
N

∑
i=1

X1,i, 0, . . . , 0) = 1,

since Player j won after the first round. Thus, we see that the expected return to Player j
equals the value of his probability function at vector (X1,1, . . . , X1,N):

Qj(X1,1, . . . , X1,N) = Φ(j; X1,1, . . . , X1,N) · Qj(0, . . . ,
N

∑
i=1

X1,i, . . . , 0)

= Φ(j; X1,1, . . . , X1,N).

(15)

Observe that
Qj(0, . . . , 0, X1,j − a1,j, 0, . . . , 0) = 0,

since ∑N
i=1 X1,i ≥ G and X1,j − a1,j < G, so Player j will not be able to increase his fortune

and, as a consequence, reach his goal, G.
To complete the proof we will show that Qj is excessive. Then [5] (Theorem 3.3.10)

implies that a bold strategy is optimal for Player j if all remaining players play boldly.
Therefore, we need to prove that if at the first stage of the game, Player j, bets an amount
a1,j < X1,j, i.e., less than his entire fortune, and then plays boldly for the rest of the game
(if the game lasts until the second round), then the expected return for him is not greater
than his expected return would be if he played boldly at the first stage as well. Denote
the expected return for Player j, who adopts this strategy by σj(X1,1, . . . , X1,j, . . . , X1,N).
Staking an amount, 1 ≤ a1,j ≤ X1,j, for him means that

σj(X1,1, . . . , X1,j, . . . , X1,N)

= Φ(1; X1,1, . . . , a1,j, . . . , X1,N) · Qj(∑
i ̸=j

X1,i + a1,j, 0, . . . , X1,j − a1,j, . . . , 0)

+ . . . + Φ(j; X1,1, . . . , a1,j, . . . , X1,N) · Qj(0, . . . ,
N

∑
i=1

X1,i, . . . , 0) + . . .+

+ Φ(1; X1,1, . . . , a1,j, . . . , X1,N) · Qj(0, . . . , X1,j − a1,j, . . . , 0, ∑
i ̸=j

X1,i + a1,j)

+

[
1 − ∑

i ̸=j
Φ(i; X1,1, . . . , a1,j, . . . , X1,N)− Φ(j; X1,1, . . . , a1,j, . . . , X1,N)

]
· Qj(0, . . . , X1,j − a1,j, . . . , 0).

In the above calculations, we counted all the possibilities of winning by each player,
different from j (in this case, Player j continues to play with fortune X1,j − a1,j), the case
when Player j wins (which is represented by the middle element), as well as the casino,
rakes in the stake (the last term).
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To proceed, we need to focus on the case where only two players remain in the game.
By (4) and using (15), we have the following:

Qj(a1,j + ∑
i ̸=j

X1,i, 0, . . . , X1,j − a1,j, . . . , 0)

= . . . = Qj(0, . . . , X1,j − a1,j, . . . , 0, ∑
i ̸=j

X1,i + a1,j)

= Φ(j; ∑
i ̸=j

X1,i + a1,j, 0, . . . , 0, X1,j − a1,j, 0 . . . , 0).

Finally, joining the above estimates, we arrive at the following:

σ(X1,1, . . . , X1,j, . . . , X1,N) = Φ(j; X1,1, . . . , a1,j, . . . , X1,N) · 1

+ ∑
i ̸=j

Φ(i; X1,1, . . . , a1,j, . . . , X1,N) · Φ(j; ∑
i ̸=j

X1,i + a1,j, 0, . . . , 0, X1,j − a1,j, 0 . . . , 0).

To show that Qj is excessive, we need to verify the inequality

Qj(X1,1, . . . , X1,N) ≥ σj(X1,1, . . . , X1,N).

Note that it is equivalent to the following:

Φ(j;X1,1, . . . , X1,N) ≥ Φ(j; X1,1, . . . , a1,j, . . . , X1,N)

+ ∑
i ̸=j

Φ(i; X1,1, . . . , a1,j, . . . , X1,N) · Φ(j; ∑
i ̸=j

X1,i + a1,j, 0, . . . , 0, X1,j − a1,j, 0 . . . , 0).

Now, introduce functions f j, gj as in the statement of the theorem, i.e.,

f j(x1,j) = Φ(j; X1,1, . . . , X1,j−1, x1,j, X1,j+1, . . . , X1,N)

and
gj(a1,j) = ∑

i ̸=j
Φ(i; X1,1, . . . , X1,j−1, a1,j, X1,j+1, . . . , X1,N).

The inequality in question takes the form

f j(x1,j)− f j(a1,j) ≥ gj(a1,j) · f j(x1,j − a1,j).

Note also that f (0) = 0 by (6). Therefore, we reduced the problem to the inequality (12),
and now the proof is completed.

Remark 1. A special case of the above theorem is when N = 2 and with no possibility of winning by
the casino. In this situation, condition (5) simplifies, which together with inequality (12) applied to
functions f j and gj for both players after an easy calculation, leads to the same functional inequality
that appeared in [8] in a bit of a different situation, where the bold strategy was shown to be the best
response to the timid strategy ([8] (Theorem 1 and inequality (7) therein)).

4. Functional Inequality

We will begin this section with a fundamental observation about solutions to inequality
(12). For simplicity, we will drop subscript j in f j and gj.

Proposition 1. Assume that we are given two functions f , g : S → [0, 1] and f is positive on S.
Then f , g satisfy inequality (12) for all a, x ∈ S, such that a ≤ x if and only if

g(y) ≤ min
{

f (x)− f (y)
f (x − y)

: x ∈ {y + 1, . . . , M}
}

, y ∈ S. (16)
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Proof. Straightforward.

From the above proposition, we have an immediate corollary.

Corollary 1. Assume that f : S → (0, 1] is a non-decreasing function and g : S → [0, 1] is defined
by the following formula:

g(y) = min
{

f (x)− f (y)
f (x − y)

: x ∈ {y + 1, . . . , M}
}

, y ∈ S. (17)

Then, the pair ( f , g) satisfies inequality (12) for all a, x ∈ S, such that a ≤ x.

One can ask about solutions of a corresponding functional equation when one replaces
the inequality sign in (12) by equality, i.e.,

f (x)− f (a) = g(a) f (x − a), (18)

for all a, x ∈ S, such that a ≤ x. However, it is not difficult to find all solutions of (18). Let
us note the following observation:

Proposition 2. Assume we are given two functions, f , g : S → R. Then, f , g satisfy functional
Equation (18) for all a, x ∈ S, such that a ≤ x if and only if

(i) g = 0 and f is constant on S, or
(ii) f = 0 and g is arbitrary on S, or
(iii) f (x) = f (1)x for all x ∈ S and g = 1 on S, or
(iv) f (x) = α(g(0)x − 1) and g(x) = g(1)x for all x ∈ S with some constant α ∈ R.

Proof. The “if” implication is straightforward; thus, we will justify the “only if” implication.
Apply (18) with x = a to deduce that g(a) f (0) = 0 for all a ∈ S. Thus, either g = 0 on S
or f (0) = 0. We will now discuss the second case. Put a = 0 in (18) to obtain either f = 0
on S or g(0) = 1. So, assume that g(0) = 1. Next, observe that if for some b ∈ S, b > 0,
we have f = 0 on {1, 2, . . . , b}, then by (18), we obtain f (b + 1)− f (1) = g(1) f (b) = 0, so
f (b + 1) = 0. Therefore, we can assume that f (1) ̸= 0. Without loss of generality, assume
that f (1) = 1, by multiplying Equation (18) by a constant and replacing f by f (1)−1 f ,
if necessary. Denote c := g(1) and use (18) to obtain the following:

f (x + 1)− 1 = c f (x), x ∈ S, x + 1 ∈ S.

A straightforward induction leads to

f (y) = cy−1 + · · ·+ 1, y ∈ S, y > 0.

Thus, if c = 1, then f (y) = y and f (y) = cy−1
c−1 if c ̸= 1, corresponding to cases (iii) and

(iv), respectively.

Remark 2. The first three cases of Proposition 2 correspond to rather uninteresting possibilities
in the game. The first (when g = 0, and f is constant on S) occurs when the casino never wins
and each player wins with the probability of 1/N, regardless of the bets. The second (when f = 0)
occurs when the casino collects all the bets with probability one. The third option spoken of in
Proposition 2 is not applicable, since if f (1) ̸= 0, then condition (5)—which guarantees that the
sum of probabilities of winning does not exceed one—is not satisfied. The fourth case is—on the
contrary—of definite interest since it corresponds to the power functions that were considered as
win probability functions in [3]; see also [7] (Example 3.2).
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5. Numerical Simulations

We conducted a numerical experiment that illustrates our main theorem. Assume that
there are four players, each with an initial capital equal to 500. They play red-and-black
games in a casino and the target for each one is to achieve a capital of at least 1500. If the
players bet amounts of a1, a2, a3, anda4, then in our experiment, the probability of victory
for Player i is equal to (

ai
a1 + a2 + a3 + a4

)1.3
.

Therefore, the game is sub-fair for all the players, and, as a consequence, the casino has a
positive probability of collecting all the bets. We considered four sets of strategies:

Strategy 1. Players 1, 2, and 3 adopt the bold strategy, and Player 4 bets randomly.
Strategy 2. Players 1, 2, and 3 bet randomly, and Player 4 adopts the bold strategy.
Strategy 3. All players bet randomly.
Strategy 4. All players adopt the bold strategy.

By “betting randomly”, we mean that the player chooses his bet from the set of all
allowed bets according to the discrete uniform probability.

The game has been played 100,000 times. The number of victories for each player and
the casino is presented in Table 1.

Table 1. Victories for each player and the casino.

Player 1 Player 2 Player 3 Player 4 Casino

Strategy 1. 19,687 20,065 19,691 7848 32,709
Strategy 2. 12,211 12,359 12,050 20,944 42,436
Strategy 3. 11,677 11,604 11,612 11,839 53,268
Strategy 4. 16,346 16,618 16,567 16,550 33,919

The experimental data obtained through the computer program paint a clear picture.
Players who adopted the bold strategy, consistently wagering their entire fortune, achieved
a significantly higher number of wins compared to those who employed a randomized
betting approach. This finding aligns with our theoretical predictions, suggesting that bold
play provides a substantial advantage in this specific game setting.

Furthermore, the data reveal a particularly noteworthy observation. The scenario
where all players adhered to the bold strategy (Strategy 1) resulted in the lowest number of
wins for the casino. This implies that coordinated bold play significantly minimizes the
casino’s advantage, further solidifying the strategic benefit of this approach for the players.

Therefore, based on both the theoretical analysis and the experimental data, we can
confidently conclude that the bold strategy emerges as the optimal choice for players
in the N-person red-and-black game with a non-constant winning sum, outperforming
random betting and posing a significant challenge to the casino’s advantage, especially
when adopted by all players in a coordinated manner. Future research could explore
potential counter-strategies for the casino or investigate the dynamics of mixed strategies
(combining bold play with other approaches) in this game context.

6. Examples and Final Remarks

A calculation of [7] (p. 552, before Remarks 3.1) leads us to the following corollary:

Corollary 2. Assume that φ : [0, 1] → [0, 1] is a super-multiplicative and super-additive function
and x1, . . . , xN ∈ S are fixed. Then function Φ : {1, 2, . . . , N} × P → [0, 1] given by

Φ(j; a1, . . . aN) := φ

(
aj

∑N
j=1 aj

)
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satisfy assumptions of Theorem 1.

Two particular examples of function φ that fulfill assumptions of the above corollary
are given in [7] (Examples 3.1 and 3.2), such as φ(s) = ws with w ≤ 1, and f (s) = sp

with p ≥ 1.
We will conclude the paper with a few simple examples of probability functions that

satisfy (3) (except for the last one, which describes a situation where the assumptions of
our model are not satisfied). Then, we will compute corresponding functions, f and g, and
check whether inequality (12) is satisfied or not. This shows that our approach is more
general than the one presented in the literature on red-and-black gambling.

Example 1. Assume that function Φ is defined as follows:

Φ(j; a1, . . . , aN) :=
1

M · N
[a1 + · · ·+ aN − aj]

when aj > 0 and Φ(j; a1, . . . , aN) = 0 if aj = 0. Factor 1/M · N guarantees that Φ is a probability
function and condition (5) holds. Moreover, (3) is satisfied by Φ. It is easy to check that f and g are
constant functions. Thus, inequality (12) is satisfied if and only if f = 0 or g = 0. This corresponds
to uninteresting cases of the game (which should be of no surprise, since in this example, the chance
of winning for Player j does not depend on his bet).

Example 2. Assume that function Φ is defined as follows:

Φ(j; a1, . . . , aN) :=
aj

M

when aj > 0 and Φ(j; a1, . . . , aN) = 0 if aj = 0. Again, (3) is satisfied by Φ, f and g are also
easy to find, and inequality (12) is always satisfied. If (and only if), all the players choose the bold
strategy, i.e., aj = Xj; then the sum of all Φ’s equals 1, which means that the casino has no chance
to rack in their bets. Therefore, in this example, the bold strategy is dominant.

Further examples are easy and show that in the context of non-constant sum games
with bet-dependent probabilities, it is no longer relevant whether the game is sub-fair or
super-fair. Namely, it is possible to construct a super-fair game in which a player should
adopt a bold strategy and a sub-fair game with a timid strategy being optimal.

Example 3. Assume that for every j ∈ {1, . . . , N} and every choice of bets (a1, . . . , aN), we have

Φ(j; a1, . . . , aN) :=
1
N

.

In this situation, a timid strategy is always dominant for each player.
One can modify this example by introducing a positive probability for the casino to collect all

the bets, as follows:

Φ(j; a1, . . . , aN) :=
1

2N
.

Now the situation changes, and with the probability of 1/2, all the bets are taken by the casino.
Still, it is unwise for a single player to deviate from a dominant timid strategy and increase his
bet. Consequently, with the timid strategies of all players, the probability that any of them will win
decreases as the initial sum is large.

However, we note that if the players are allowed to cooperate, then they will adopt bold strategies
to increase their expected payoffs.
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Example 4. Assume that the win probability function for the first player is equal to

Φ(1; a1, . . . , aN) :=
{

0, if a1 < x0
1,

1, if a1 ≥ x0
1.

Thus, without any additional restrictions upon the remaining probability functions, we see that
the bold strategy is a dominant strategy, guaranteeing her a sure victory. Here, equilibrium is not
unique (provided the game lasts more than one turn) since any bet of Player 1 that is greater than or
equal to x0

1 is a dominant strategy. Note that, in this example, assumptions of our model are violated.
Therefore, our conditions are by no means necessary for the bold profile.

7. Conclusions

In this paper, we significantly expanded the theoretical basis of the N-person red-and-
black gambling model established in prior game theory research. Our key innovation—
introducing a functional inequality —elegantly sidesteps the restrictions inherent in the
super-multiplicativity and super-additivity assumptions that constrained earlier models.

This broader theoretical framework offers a more nuanced and flexible understanding
of the game’s dynamics. It allows us to consider a wider spectrum of winning probability
functions, opening up new avenues for strategic analysis and exploration. We are confident
that this contribution will ignite further research in this area, furthering the understanding
of strategic decision-making in similar gambling scenarios.

While our work paves the way for a deeper understanding of the N-person red-and-
black game with a non-constant winning sum, it also opens doors for exciting avenues in
future research:

1. Exploring alternative functional inequalities: While our functional inequality proves
effective in this specific context, further exploration of alternative inequalities could
broaden the scope of applicable scenarios and potentially reveal new insights. Exam-
ining the properties of different inequalities and their impact on optimal strategies
could be a fruitful direction.

2. Analyzing N-person games with incomplete information: In this work, players
possessed complete information about the winning probability function. However,
real-world scenarios often involve incomplete information. Investigating how the
introduction of incomplete information (where players have limited knowledge about
the winning probability function) affects optimal strategies and Nash equilibria would
be a valuable extension.

3. Incorporating player dynamics and learning: Our model assumed players to be static
entities with fixed strategies. However, introducing elements of player dynamics and
learning capabilities could significantly increase the model’s complexity and realism.
Examining how players adapt their strategies over time based on past experiences
and observations could offer valuable insights into long-term behavior and potential
evolutionary dynamics within the game.

4. Exploring generalizations to other game settings: The core concepts explored in this
paper, such as the use of functional inequalities to analyze strategic interactions, could
hold potential for application in other game settings beyond the N-person red-and-
black game. Investigating the applicability of our framework and the development
of analogous inequalities for different games could lead to broader advancements in
game theory research.

5. Integrating the model with real-world data: While the current work focused on
theoretical analysis and experimental simulations, future research could explore the
integration of real-world data from actual gambling environments. By analyzing
betting patterns and outcomes in real-world scenarios, researchers could potentially
validate or refine the theoretical findings and gain further insights into player behavior
in practice.
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These are just a few potential avenues for future research inspired by our work. By
delving deeper into these directions, researchers can continue to enrich our understanding
of strategic decision-making in complex game environments and contribute to the ongoing
development of game theory.
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