
Citation: Quaddoura, R.; Al-Qerem,

A. Bipartite (P6,C6)-Free Graphs:

Recognition and Optimization

Problems. Symmetry 2024, 16, 447.

https://doi.org/10.3390/

sym16040447

Academic Editor: Manuel Lafond

Received: 25 February 2024

Revised: 24 March 2024

Accepted: 26 March 2024

Published: 7 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

Bipartite (P6,C6)-Free Graphs: Recognition and
Optimization Problems
Ruzayn Quaddoura * and Ahmad Al-Qerem

Computer Science Department, Faculty of Information Technology, Zarqa University, Zarqa 13110, Jordan;
ahmad_qerm@zu.edu.jo
* Correspondence: ruzayn@zu.edu.jo

Abstract: The canonical decomposition of a bipartite graph is a new decomposition method that
involves three operators: parallel, series, and K

⊕
S. The class of weak-bisplit graphs is the class of

totally decomposable graphs with respect to these operators, and the class of bicographs is the class of
totally decomposable graphs with respect to parallel and series operators. We prove in this paper that
the class of bipartite (P6, C6)-free graphs is the class of bipartite graphs that are totally decomposable
with respect to parallel and K

⊕
S operators. We present a linear time recognition algorithm for

(P6, C6)-free graphs that is symmetrical to the linear recognition algorithms of weak-bisplit graphs
and star1,2,3-free bipartite graphs. As a result of this algorithm, we present efficient solutions in this
class of graphs for two optimization graph problems: the maximum balanced biclique problem and
the maximum independent set problem.

Keywords: bipartite graphs; graphs decomposition; complexity; optimization problems

1. Introduction

All graphs under consideration are undirected and simple. A graph G = (V, E) is
called bipartite if the vertex set V can be partitioned into two sets: B, called the black
vertices, and W, called the white vertices, such that E ⊆ B × W. So, a bipartite graph
will be referred to as G = (B ∪ W, E). This property makes bipartite graphs useful in
various practical applications, including recommender systems [1], social networks [2], and
information retrieval [3]. A bipartite graph G = (B ∪ W, E) is called complete or biclique
if E = B × W. A complete bipartite graph with |B| = n and |W| = m is referred to as
Kn,m. A Stari,j,k is a tree for which there is only one vertex v of degree three and three other
vertices of degree one such that the distance from v to those vertices are, respectively, i, j,
and k. For example, K1,3 is Star1,1,1. We can remark that every connected component in a
bipartite Star1,1,1-free graph is either a chordless path or a chordless cycle. Fouquet et al.
in [4] presented a decomposition method concerning bipartite graphs, called canonical
decomposition, which is based on three operators: series, parallel, and K

⊕
S. They proved

that the class of graphs that are totally decomposable with respect to these three operators
of decomposition is the class of bipartite

(
Star 1,2,3, P7

)
-free graphs, which is called the

class of weak-bisplit graphs since it is considered as a bipartite analog of the class of split
graphs. The class of weak-bisplit graphs is a natural generalization of the class of bipartite(

P6, C6
)
-free graphs, which is a natural generalization of the class of bipartite Star1,2,2-free

graphs, studied by Lozin in [5]. Giakoumakis et. al. [6] defined the class of bicographs as
a bipartite analog of the class of cographs. It is proved in [6] that the class of bicographs
is exactly the class of bipartite

(
Star 1,2,3, P7, Sun4

)
-free graphs (see Figure 1) and is the

class of totally decomposable graphs with respect to parallel and series decompositions.
We prove in this work that the class of bipartite (P6, C6)-free graphs is the class of totally
decomposable graphs with respect to parallel and K

⊕
S decompositions. As a result of

this fact, the class of bipartite (P6, C6)-free graphs can be recognized in linear time using the

Symmetry 2024, 16, 447. https://doi.org/10.3390/sym16040447 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym16040447
https://doi.org/10.3390/sym16040447
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0003-2187-6194
https://doi.org/10.3390/sym16040447
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym16040447?type=check_update&version=2

Symmetry 2024, 16, 447 2 of 14

recognition algorithm of weak-bisplit graphs presented in [7] or the recognition algorithm
of Star1,2,3-free graphs presented in [8]. However, since these two algorithms contain
several redundant cases when projected to bipartite (P6, C6)-free graphs, we propose a
symmetric algorithm of these two algorithms to adapt only the class of bipartite (P6, C6)-
free graphs. As a result of this adapted algorithm, we present efficient solutions in this
class of graphs for two optimization graph problems: the first is the maximum balanced
biclique problem, and the second is the maximum independent set problem.

Symmetry 2024, 16, x FOR PEER REVIEW 2 of 15

in linear time using the recognition algorithm of weak-bisplit graphs presented in [7] or
the recognition algorithm of 𝑆𝑡𝑎𝑟 , , -free graphs presented in [8]. However, since these
two algorithms contain several redundant cases when projected to bipartite (𝑃 , 𝐶)-free
graphs, we propose a symmetric algorithm of these two algorithms to adapt only the class
of bipartite (𝑃 , 𝐶)-free graphs. As a result of this adapted algorithm, we present efficient
solutions in this class of graphs for two optimization graph problems: the first is the max-
imum balanced biclique problem, and the second is the maximum independent set prob-
lem.

Figure 1. The configuration 𝑃 , 𝐶 , 𝑆𝑡𝑎𝑟 , and 𝑆𝑢𝑛 .

2. Notation and Terminology
For a graph 𝐺, we use 𝑉(𝐺) to represent its vertex set and 𝐸(𝐺) to represent its edge

set. The number |𝑉(𝐺)| is represented by 𝑛 and the number |𝐸(𝐺)| is represented by 𝑚.
If the two vertex sets 𝐵 and 𝑊 in a bipartite graph 𝐺 = (𝐵 ∪ 𝑊, 𝐸) are both
nonempty, the graph is referred to as bichromatic; otherwise, it is monochromatic. The bi-
complement of bipartite graph 𝐺 = (𝐵 ∪ 𝑊, 𝐸) is defined as �̅� = (𝐵 ∪ 𝑊, 𝐵 𝑊 − 𝐸). The set of neighbors of a vertex 𝑣 in 𝐺 is represented by 𝑁(𝑣), and the number |𝑁(𝑣)| is referred to as the degree of 𝑣 and is represented by 𝑑(𝑣). A vertex 𝑣 is consid-
ered isolated if 𝑑(𝑣) = 0 and is considered universal if 𝑑(𝑣) = |𝐵| when 𝑣 ∈ 𝑊 or 𝑑(𝑣) = |𝑊| when 𝑣 ∈ 𝐵. A 2𝐾 is the complement of 𝐶 . A subset 𝑆 of vertices of 𝑉(𝐺)
is called an independent set if there is no edge between any two vertices of 𝑆. The sub-
graph induced by a subset 𝑋 of vertices of 𝑉(𝐺) is represented by 𝐺[𝑋]. A graph 𝐺 is
considered 𝑍-free, where 𝑍 is a set of graphs, if for any subset 𝑋 ⊆ 𝑉(𝐺), 𝐺[𝑋] ∉ 𝑍; that
is, there is no sub-graph of 𝐺 isomorphic to a graph in 𝑍. The decomposition of graphs
according to predefined operators is a powerful method for obtaining efficient solutions
to a large number of graph problems. The reader can find a survey on graph decomposi-
tion methods and their uses in [9]. In this direction, Fouquet et al. in [4] presented a de-
composition method concerning bipartite graphs, which is based on three operators: de-
composing a bipartite graph into connected components, decomposing the bi-comple-
ment of a bipartite graph into connected components, and decomposing a bipartite graph
into 𝐾⨁𝑆 components. Our recognition algorithm of bipartite (𝑃 , 𝐶) -free graphs de-
pends mainly on this method of decomposition, so to introduce our algorithm, we need
to present an overview of this method.

Definition 1 [4]. A bipartite graph 𝐺 = (𝐵 ∪ 𝑊, 𝐸) where 𝑛 2 is a 𝐾⨁𝑆 graph if the ver-
tex set 𝑉(𝐺) contains an isolated vertex or there is a partition of 𝑉(𝐺) into two sets: a biclique set 𝐾 and an independent set 𝑆.

Property 1 [4]. A bipartite graph 𝐺 = (𝐵 ∪ 𝑊, 𝐸) with 𝑛 2 is a 𝐾⨁𝑆 graph if and only if 𝑉(𝐺) can be partitioned into two sets, 𝑉 and 𝑉 , such that for every black vertex 𝑏 ∈ 𝑉 and
every white vertex 𝑤 ∈ 𝑉 , 𝑏𝑤 ∈ 𝐸; and for every white vertex 𝑤 ∈ 𝑉 and every black vertex 𝑏 ∈𝑉 , 𝑏𝑤 ∉ 𝐸.

𝑆𝑡𝑎𝑟 , , 𝑃 𝐶 𝑃 𝑆𝑢𝑛

Figure 1. The configuration P6,C6, Star123, and Sun4.

2. Notation and Terminology

For a graph G, we use V(G) to represent its vertex set and E(G) to represent its edge
set. The number |V(G)| is represented by n and the number |E(G)| is represented by m. If
the two vertex sets B and W in a bipartite graph G = (B ∪ W, E) are both nonempty, the
graph is referred to as bichromatic; otherwise, it is monochromatic. The bi-complement

of bipartite graph G = (B ∪ W, E) is defined as Gbip
= (B ∪ W, B × W – E). The set of

neighbors of a vertex v in G is represented by N(v), and the number |N(v)| is referred to
as the degree of v and is represented by d(v). A vertex v is considered isolated if d(v) = 0
and is considered universal if d(v) =|B| when v ∈ W or d(v) =|W| when v ∈ B. A 2K2 is
the complement of C4. A subset S of vertices of V(G) is called an independent set if there
is no edge between any two vertices of S. The sub-graph induced by a subset X of vertices
of V(G) is represented by G[X]. A graph G is considered Z-free, where Z is a set of graphs,
if for any subset X ⊆ V(G), G[X] /∈ Z; that is, there is no sub-graph of G isomorphic to a
graph in Z. The decomposition of graphs according to predefined operators is a powerful
method for obtaining efficient solutions to a large number of graph problems. The reader
can find a survey on graph decomposition methods and their uses in [9]. In this direction,
Fouquet et al. in [4] presented a decomposition method concerning bipartite graphs, which
is based on three operators: decomposing a bipartite graph into connected components,
decomposing the bi-complement of a bipartite graph into connected components, and
decomposing a bipartite graph into K

⊕
S components. Our recognition algorithm of

bipartite (P 6, C6)-free graphs depends mainly on this method of decomposition, so to
introduce our algorithm, we need to present an overview of this method.

Definition 1 [4]. A bipartite graph G = (B ∪ W, E) where n ≥ 2 is a K
⊕

S graph if the vertex
set V(G) contains an isolated vertex or there is a partition of V(G) into two sets: a biclique set
K and an independent set S.

Property 1 [4]. A bipartite graph G = (B ∪ W, E) with n ≥ 2 is a K
⊕

S graph if and only
if V(G) can be partitioned into two sets, V1 and V2, such that for every black vertex b ∈ V1 and
every white vertex w ∈ V2, bw ∈ E; and for every white vertex w ∈ V1 and every black vertex
b ∈ V2, bw /∈ E.

We denote the ordered pair (V 1, V2) to represent the partition of the vertex set V(G)
of K

⊕
S graph G and we called it a K

⊕
S partition of G.

Symmetry 2024, 16, 447 3 of 14

Property 2 [4]. In a bipartite graph G = (B ∪ W, E) that does not contain universal or isolated
vertices, either G is a K

⊕
S graph or, for any partition of the black vertices B or white vertices W

into two sets X1 and X2, there is an induced 2K2 in G with vertices in both X1 and X2.

Corollary 1 [4]. If a graph G is not a K
⊕

S graph, then for every vertex v ∈ V(G), v is a vertex
of some 2K2.

Theorem 1 provides a method for decomposing a graph of type K
⊕

S.

Theorem 1 [4]. A bipartite graph G is a K
⊕

S graph if and only if there exists a unique partition
(V1, . . . , Vr) of V(G), such that the following conditions hold:

• For every i = 1, . . . , r,Vi ̸= ∅.
• For every i = 1, . . . , r − 1, the sets V1 ∪ . . .∪Vi and Vi+1 ∪ . . .∪Vr form a K

⊕
S partition

of G.
• For every i = 1, . . . , r, the sub-graph G[Vi] is not a K

⊕
S graph.

The partition (V1, . . . , Vr) of the vertex set V(G) is called the K
⊕

S decomposition of
the graph G, and each set Vi is referred to as a K

⊕
S component of G.

According to Theorem 1, the arrangement of components in a K
⊕

S decomposition is
important. Specifically, let (V1, . . . , Vr) be the K

⊕
S decomposition of G; if a black vertex

b ∈ Vi, then for every white vertex w ∈ V j where j > i, bw ∈ E(G), and for every white
vertex w ∈ Vk where k < i, bw /∈ E(G). Similarly, if a white vertex w ∈ Vi, then for every
black vertex b ∈ Vj where j > i, bw /∈ E(G), and for every black vertex b ∈ Vk where k < i,
bw ∈ E(G).

The canonical decomposition of a bipartite graph G is a new decomposition method
defined in [4] as follows:

• Decompose G into its K
⊕

S components; if G is a K
⊕

S graph, this decomposition is
called K

⊕
S decomposition and is denoted by K

⊕
S.

• Decompose G into the connected components of G; if G is not a connected graph, this
decomposition is called parallel decomposition and is denoted by P.

• Decompose G into the connected components of Gbip; if Gbip is not a connected graph,
this decomposition is called series decomposition and is denoted by S.

• If G cannot be decomposed in K
⊕

S, parallel, or series decomposition, then G is called
an indecomposable graph or a prime graph.

It has been proven in [4] that no matter the order in which the operator of the decom-
position is applied (series decomposition, parallel decomposition, or K

⊕
S decomposition),

the set of indecomposable graphs obtained is unique. This also creates a unique tree (up to
isomorphism) associated with this decomposition known as the canonical decomposition
tree. The internal nodes of the tree are labeled by the type of decomposition applied,
and the leaves correspond to indecomposable graphs. Figure 2 shows an illustration of a
bipartite graph and its canonical decomposition tree.

The canonical decomposition tree T(G) of a bipartite graph G resulting in an order
from the K

⊕
S decomposition, parallel decomposition, and series decomposition pro-

cedure has several properties outlined below. The terms vertex node, son, parent, and
grandparent are used in their conventional sense. If α is an internal node, then G[α] is the
sub-graph induced by the set of vertex nodes having α as their least common grandparent.

(1) The tree T(G) consists of three types of internal nodes: parallel nodes denoted by P,
series nodes denoted by S, and K

⊕
S-nodes.

(2) Two consecutive internal nodes cannot have the same label.
(3) An internal node δ labeled P or S cannot have a son that is a vertex node v. Otherwise,

v would be either an isolated or universal vertex in G[δ]. By the definition of a K
⊕

S
graph, G[δ] would be a K

⊕
S graph.

(4) The parent of a vertex node is always labeled K
⊕

S (a consequence of Property 3).

Symmetry 2024, 16, 447 4 of 14

(5) If G is a bi-chromatic graph, then for any K
⊕

S node δ, G[δ] must also be bi-chromatic.
Otherwise, if there is a node δ labeled K

⊕
S and G[δ] is a monochromatic graph, then

the parent of δ, say, γ, would have isolated or universal vertices so G[γ] would be a
K
⊕

S graph, a contradiction with Property 2.
(6) The sons of a K

⊕
S node are ordered according to the K

⊕
S decomposition.

(7) Let δ be a K
⊕

S node, and δ1 and δ2 are, respectively, the first and last sons of δ. If the
parent of δ, say, γ, is a P-node, then δ1 cannot be a white vertex node and δ2 cannot be
a black vertex node. Otherwise, by Property 1, δ1 and δ2 are isolated vertices in G[δ];
since γ is a P-node, δ1 and δ2 are also isolated vertices in G[γ], so γ must be a K

⊕
S

node, a contradiction with Property 2.
(8) If the parent of a K

⊕
S-node δ is labeled S, and δ1 and δ2 are, respectively, the first

and last sons of δ, then δ1 cannot be a black vertex node and δ2 cannot be a white
vertex node (similar to Property 7).

Symmetry 2024, 16, x FOR PEER REVIEW 4 of 15

Figure 2. An example of bipartite graph 𝐺 and the canonical decomposition tree 𝑇(𝐺).

The canonical decomposition tree 𝑇(𝐺) of a bipartite graph 𝐺 resulting in an order
from the 𝐾⨁𝑆 decomposition, parallel decomposition, and series decomposition proce-
dure has several properties outlined below. The terms vertex node, son, parent, and
grandparent are used in their conventional sense. If 𝛼 is an internal node, then 𝐺[𝛼] is
the sub-graph induced by the set of vertex nodes having 𝛼 as their least common grand-
parent.
(1) The tree 𝑇(𝐺) consists of three types of internal nodes: parallel nodes denoted by 𝑃,

series nodes denoted by 𝑆, and 𝐾⨁𝑆-nodes.
(2) Two consecutive internal nodes cannot have the same label.
(3) An internal node 𝛿 labeled 𝑃 or 𝑆 cannot have a son that is a vertex node 𝑣. Oth-

erwise, 𝑣 would be either an isolated or universal vertex in 𝐺[𝛿]. By the definition
of a 𝐾⨁𝑆 graph, 𝐺[𝛿] would be a 𝐾⨁𝑆 graph.

(4) The parent of a vertex node is always labeled 𝐾⨁𝑆 (a consequence of Property 3).
(5) If 𝐺 is a bi-chromatic graph, then for any 𝐾⨁𝑆 node 𝛿, 𝐺[𝛿] must also be bi-chro-

matic. Otherwise, if there is a node 𝛿 labeled 𝐾⨁𝑆 and 𝐺[𝛿] is a monochromatic
graph, then the parent of 𝛿, say, 𝛾, would have isolated or universal vertices so 𝐺[𝛾]
would be a 𝐾⨁𝑆 graph, a contradiction with Property 2.

(6) The sons of a 𝐾⨁𝑆 node are ordered according to the 𝐾⨁𝑆 decomposition.
(7) Let 𝛿 be a 𝐾⨁𝑆 node, and 𝛿 and 𝛿 are, respectively, the first and last sons of 𝛿.

If the parent of 𝛿, say, 𝛾, is a 𝑃-node, then 𝛿 cannot be a white vertex node and 𝛿
cannot be a black vertex node. Otherwise, by Property 1, 𝛿 and 𝛿 are isolated ver-
tices in 𝐺[𝛿]; since 𝛾 is a 𝑃-node, 𝛿 and 𝛿 are also isolated vertices in 𝐺[𝛾], so 𝛾
must be a 𝐾⨁𝑆 node, a contradiction with Property 2.

𝑏 𝑤

𝑏′

𝑏′

𝑏′

𝑤′

𝑤′

𝑤′ 𝑏

𝑏

𝑏

𝑤

𝑤

𝑤

𝑤′ 𝑏′ 𝑤′ 𝑏′ 𝑤′ 𝑏′

𝑏 𝑏 𝑤 𝑏 𝑤 𝑏 𝑤 𝑤

𝐾⨁𝑆

𝑃

𝑆

𝑆

𝐾⨁𝑆 𝐾⨁𝑆 𝐾⨁𝑆

𝐾⨁𝑆 𝐾⨁𝑆 𝐾⨁𝑆

Figure 2. An example of bipartite graph G and the canonical decomposition tree T(G).

3. Recognition Algorithm of Bipartite (P6,C6)-Free Graphs

The following theorem is the key to our recognition algorithm for bipartite (P6, C6)-
free graphs.

Theorem 2. A bipartite graph G is (P 6, C6)-free if and only if every connected sub-graph of G is a
K
⊕

S graph.

Proof. Suppose that G is a bipartite (P 6, C6)-free graph. Let H be a connected sub-
graph of G which is not a K

⊕
S graph. By Corollary 1, H contains a 2K2, say, b1w1, b2w2.

Since H is a connected sub-graph of G and G is a (P6, C6)-free graph, there is a vertex
in V(H) that connects b1w1 and b2w2. Suppose without a loss of generality that b is a
black vertex such that bw1, bw2 ∈ E(H). Since H is not a K

⊕
S graph, the vertex b is not

universal, so there is a white vertex w such that bw /∈ E(H). Since H is connected, there is

Symmetry 2024, 16, 447 5 of 14

a path in H that connects the vertex w and the path P5 = b1, w1, b, w2, b2. But now, the set
{b1, w1, b, w2, b2, w} forms a P6 or a C6, a contradiction.
The inverse is clear since a P6 or a C6 is connected and contains a 2K2, so it is not a K

⊕
S

graph. □

Theorem 2 states that the class of bipartite (P 6, C6)-free graphs is the smallest class
closed under parallel and K

⊕
S decomposition. So, the canonical decomposition tree of

a bipartite (P6, C6)-free graph consists only of P-nodes or K
⊕

S-nodes. Our recognition
algorithm builds a decomposition tree with P- or K

⊕
S-labeled internal nodes if the

input graph is (P 6, C6)-free; otherwise, it produces a failure message. This building was
influenced by the cograph recognition method proposed by Corneil et al. in [10]. Moreover,
this algorithm greatly simplifies two recognition algorithms when projected on bipartite
(P 6, C6)-free graphs. The first is for weak-bisplit graphs presented in [7], and the second
for bipartite Star123-free graphs presented in [8], where both these two algorithms need
to examine more than twenty cases to confirm that the input graph is (P6, C6)-free or not,
while, as we will see, our algorithm needs to examine only two cases that are presented
below in Theorems 3 and 4. The algorithm begins with an empty graph and gradually adds
vertices, ensuring that the resulting sub-graphs remain (P6, C6)-free. The initial bipartite
graph is considered (P 6, C6)-free if all vertices can be added successfully in this manner.
The principal step of the algorithm takes into consideration the decomposition tree T of
a (P6, C6)-free bipartite graph G = (B ∪ W, E), a vertex x /∈ B ∪ W, and a set of edges
denoted by E(x) = {xv : v ∈ B ∪ W and v ∈ N(x)} and produces the decomposition tree
T′ of the resulting graph G′ = (B ∪ W ∪ {x}, E ∪ E(x)) if it remains (P 6, C6)-free or stops
otherwise. The algorithm considers the connections of x to other vertices in G using a
marking procedure. We can assume without a loss of generality that x is a white vertex
and the graph G is a bichromatic graph.

3.1. Marking Procedure

The marking procedure, presented in Algorithm 1 and used in [10], takes into consider-
ation the neighbors of the vertex x in the graph G to mark the nodes of T, the decomposition
tree of G.

Algorithm 1 Marking

Input: The canonical decomposition tree T of G and the white vertex x.
Output: The marking tree T.

For every black vertex node v of T.
If v is a neighbor of x, mark v by (t) if v is not a neighbor of x, mark v by ().
Traverse T on a bottom-up traversal, let α be an internal node of T:
If every son of α which is distinct from a white vertex node is marked by () then mark α by ().
If there is a son of α marked by (t) and a son marked by () then mark α by (p).
If every son of α which is distinct from a white vertex node is marked by (t) then mark α by (t).

At the end of the marking procedure on tree T, a node can have three possible states:
marked by (t), marked by (p), or marked by (). If a node δ is marked by (t), it means
that x is total for G[δ], that is, x is connected to all black vertices in G[δ]. If it is marked
by (p), it means that x is partial for G[δ], that is, x is connected to some but not all black
vertices in G[δ]. If it is marked by (), it means that x is independent of G[δ], that is, x is not
connected to any black vertices in G[δ]. If a node is a vertex node, it can either be marked
by () or marked by (t). By Theorem 2, the marking procedure focuses only on P-nodes
and K

⊕
S-nodes, ignoring the S-nodes that must be unavailable. For the graph G′ to be

considered bipartite and (P6, C6)-free, it must meet a necessary condition.

Lemma 1. If two internal nodes in the tree T are marked by (p), and G′ is a (P6, C6)-free bipartite
graph, then one of these two nodes must be a grandparent of the other.

Symmetry 2024, 16, 447 6 of 14

Proof. Suppose that α and β are two internal nodes marked by (p), then α and β are partial
with respect to x. Let δ be the least common grandparent of α and β. We denote α′ and β′

to be, respectively, the son of δ containing α and the son of δ containing β. Since G[α] and
G[β] are sub-graphs of G[α′] and G[β′], then α′ and β′ are partial with respect to x. Assume
that δ is labeled P, then G[α′] and G[β′] are connected sub-graphs of G[δ]. Thus, there is an
induced path b1, w1, b2 in G[α′] (resp. b′1, w′

1, b′2 in G[β′]) such that x is adjacent to b1 and
not adjacent to b2 (resp. to b′1 and not to b′2). The set {w′

1, b′1, x, b1, w1, b2} forms a P6,
a contradiction.
Assume that δ is labeled K

⊕
S. By Corollary 1, α′ (resp. β′) contains a 2K2 that is partial

with respect to x. Let b1w1, b2w2 (resp. b′1w′
1, b′2w′

2) be a 2K2 in G[α′] (resp. in G[β′] such
that x is adjacent to b1 and not adjacent to b2 (resp. to b′1 and not to b′2). Now, the set
{w2, b2, w′

2, b1, x, b′1, w′
1} forms a P6, a contradiction. □

By Lemma 1, the nodes in T that are marked by (p) are arranged in a single path
that starts from the lowest node marked by (p) and goes up to the root. The lowest node
marked by (p) is referred to as α. It is assumed that the conditions of Lemma 1 are met and
that α is known. The following notations are introduced:

• Given two internal nodes δ and δ′ such that δ is a grandparent of δ′, the unique son of
δ that contains δ′ is denoted as son(δ, δ′).

• For an internal node δ, which is either α or one of its grandparents, the set of sons of δ

that are marked by () is denoted as sons()(δ), and the set of sons that are marked by
(t) is denoted as sons(t)(δ).

• If δ has a label K
⊕

S, considering the ordering of the sons of δ, the set of sons of δ

marked by (t) and located before son(δ, α) is denoted as sons(t)1 (δ), and the set of sons

marked by (t) and located after son(δ, α) is denoted as sons(t)2 (δ). The set of sons of δ

marked by () and located before son(δ, α) is denoted as sons()1 (δ), and the set of sons

marked by () and located after son(δ, α) is denoted as sons()2 (δ).

So, a node δ labeled P which is a grandparent of α splits its sons into at most three
categories: sons(t)(δ), sons()(δ), and son(δ, α), the son that contains α. If δ is labeled K

⊕
S,

its sons can be divided into at most five sets: son(δ, α), sons(t)1 (δ), sons()1 (δ), sons(t)2 (δ),

and sons()2 (δ). Meanwhile, the sons of α are split into two nonempty categories: sons()(α)
and sons(t)(α).

Definition 2. If δ is a grandparent of α in T, then δ is considered an incompatible P-node if it has at
least one son marked by (t) (i.e., sons(t)(δ) ̸= ∅). If δ is a K

⊕
S-node, it is considered incompatible

before α if it has at least one son marked by () located before son(δ, α) (i.e., sons()1 (δ) ̸= ∅). If δ is
a K

⊕
S-node, it is considered incompatible after α if it has at least one son marked by (t) located

after son(δ, α) (i.e., sons(t)2 (α) ̸= ∅).

3.2. Building the Tree T′

We assume that the necessary condition of Lemma 1 has been verified and that all
nodes that are marked by (p) are known and are arranged in a single path that starts from
the lowest marked node α and goes up to the root of T. To build T′, we examine the label
of α and the presence of incompatible marked nodes. When α is a K

⊕
S-node, since it is

the lowest node marked by (p), we can divide its group of sons into a maximum of four
consecutive subsets, namely, X(t)

1 , X()
2 , X(t)

3 , and X4, where:

X(t)
1 includes the first group of consecutive sons of α that are either a group of white

vertex nodes or total with respect to x.
X()

2 includes the first group of consecutive sons of α that are not part of X(t)
1 and are

either a group of white vertex nodes or not related to x.

Symmetry 2024, 16, 447 7 of 14

X(t)
3 includes the first group of consecutive sons of α that are not part of X()

2 nor of

X(t)
1 and are either a group of white vertex nodes or total with respect to x.

X4 represents the remaining sons of α.
Note that as a result of this division of the sons of α, when its label is K

⊕
S, X()

2 and

X(t)
3 cannot be monochromatic graphs together.

Lemma 2. Assume that α is a K
⊕

S-node. If G′ is a bipartite (P6, C6)-free graph, then the
following conditions hold:

(1) x has no neighbor in X4.

(2) If X(t)
3 is empty, then G

[
X(t)

3

]
is a monochromatic graph or a complete bipartite graph.

Proof. Suppose that X4 is not empty, otherwise, we are done. Let it show that x has no
neighbor in X4. Since X4 is not empty, then X(t)

3 and X()
2 are both nonempty. Let b4 ∈ X4

such that x is adjacent to b4. Now, X4 contains two adjacent vertices b′4, w′
4 such that x is

not adjacent to b′4; otherwise, b4 ∈ X(t)
3 . Let b2 and b3 be two black vertices of X()

2 and X(t)
3 ,

respectively. By construction, there is a white vertex w such that w is adjacent to b2 and w is
not adjacent to b3. But now, the set {b4, x, b3, w4, b2, w} forms a P6, a contradiction. □

Now, condition 2 must be satisfied. Suppose that X(t)
3 is not empty, then X()

2 is also
not empty.

Claim 1. Every element of X(t)
3 is a vertex node.

Proof. Suppose that δ is an element of X(t)
3 that is an internal node. Then δ is a P-node;

thus, it contains a 2K2, say, b1w1, b2w2. Let b ∈ X()
2 , then the set {b, w1, b1, x, b2, w2} forms

a C6, a contradiction. □

Claim 2. X()
2 contains a white vertex.

Proof. Suppose that X()
2 does not contain any white vertex, then X(t)

3 contains an element
that is an internal node, a contradiction with Claim 1.

Let b2, w2 be two vertices of X()
2 such that b2w2 ∈ E(G). Suppose that G

[
X(t)

3

]
is

neither a monochromatic graph nor a complete bipartite graph. Then X(t)
3 contains the

vertices b3, b′3, w3 such that b3 is adjacent to w3 and b′3 is independent of w3. Consequently,
{b′3, x, b3, w3, b2, w2} forms a P6, a contradiction. □

Theorem 3. Assume that there is no incompatible grandparent of α. G′ is a bipartite (P6, C6)-
free graph if and only if either:

(1) α is a P-node; or
(2) α is a K

⊕
S-node and Lemma 2 is holding.

Proof. The if part of the Theorem has been proved in Lemma 2. We will describe the
building of T′ for the only if part. The building of T′ when α is a P-node is described in
Figure 3a. If sons(t)(α) consists of a unique son, then this son will be a son of the node
labeled K

⊕
S. Suppose that α is a K

⊕
S-node. If X(t)

3 is empty, then we insert x in T as a

new son of α. The building of T′ when G
[
X(t)

3
]

is a monochromatic graph or a complete

bipartite graph is also described in Figure 3b. In this case, if G
[
X(t)

3
]

is a monochromatic
graph, then Wα = ∅. □

Symmetry 2024, 16, 447 8 of 14

Symmetry 2024, 16, x FOR PEER REVIEW 8 of 15

Let 𝑏 , 𝑤 be two vertices of 𝑋() such that 𝑏 𝑤 ∈ 𝐸(𝐺) . Suppose that 𝐺[𝑋()] is
neither a monochromatic graph nor a complete bipartite graph. Then 𝑋() contains the
vertices 𝑏 , 𝑏′ , 𝑤 such that 𝑏 is adjacent to 𝑤 and 𝑏′ is independent of 𝑤 . Conse-
quently, {𝑏′ , 𝑥, 𝑏 , 𝑤 , 𝑏 , 𝑤 } forms a 𝑃 , a contradiction.□

Theorem 3. Assume that there is no incompatible grandparent of 𝛼. 𝐺′ is a bipartite (𝑃 , 𝐶)-
free graph if and only if either:
(1) 𝛼 is a 𝑃-node; or
(2) 𝛼 is a 𝐾⨁𝑆-node and Lemma 2 is holding.

Proof. The if part of the Theorem has been proved in Lemma 2. We will describe the build-
ing of 𝑇′ for the only if part. The building of 𝑇′ when 𝛼 is a 𝑃-node is described in Fig-
ure 3a. If 𝑠𝑜𝑛𝑠()(𝛼) consists of a unique son, then this son will be a son of the node la-
beled 𝐾⨁𝑆. Suppose that 𝛼 is a 𝐾⨁𝑆-node. If 𝑋() is empty, then we insert 𝑥 in 𝑇 as
a new son of 𝛼. The building of 𝑇′ when 𝐺[𝑋()] is a monochromatic graph or a com-
plete bipartite graph is also described in Figure 3b. In this case, if 𝐺[𝑋()] is a monochro-
matic graph, then 𝑊 = ∅. □

 (a) (b)

Figure 3. Building of 𝑇′ when there is no incompatible grandparent of 𝛼.

Lemma 3. Assume that 𝐺′ is a bipartite (𝑃 , 𝐶)-free graph. If there is an incompatible grandpar-
ent 𝛽 of 𝛼, then the following conditions hold:
(1) 𝛽 is a 𝐾⨁𝑆-incompatible node after 𝛼.
(2) 𝛽 is the unique incompatible grandparent of 𝛼.
(3) The set 𝑠𝑜𝑛𝑠()(𝛽) consists of black vertex nodes located exactly after 𝑠𝑜𝑛(𝛽, 𝛼).

Proof. Suppose that 𝛽 is an incompatible grandparent of α of type 𝑃. Then there exists
two adjacent vertices, 𝑏 , 𝑤 , in an element of 𝑠𝑜𝑛𝑠()(𝛽). Since 𝑠𝑜𝑛(𝛽, 𝛼) induces a con-
nected graph, it contains an induced 𝑃 , say, 𝑏 , 𝑤 , 𝑏 , such that 𝑏 is adjacent to 𝑥 and 𝑏 is independent of 𝑥. But now, {𝑥, 𝑏 , 𝑤 , 𝑏 , 𝑏 , 𝑤 } forms a 𝑃 , a contradiction.

𝛼 𝐾⨁𝑆

𝑋() 𝑋() 𝐵 𝑊 𝑋

𝑋()⃖ ⃗ 𝛼

𝑥

𝑃

𝐾⨁𝑆

𝐾⨁𝑆 𝐾⨁𝑆

𝑋() 𝑊 𝑋

𝐵 𝑋()

𝛼

𝛼

𝑠𝑜𝑛𝑠()(𝛼) 𝑠𝑜𝑛𝑠()(𝛼)

𝑃

𝑥

𝐾⨁𝑆

𝑃

𝑠𝑜𝑛𝑠()(𝛼)

𝑠𝑜𝑛𝑠()(𝛼)

𝑃

Figure 3. Building of T′ when there is no incompatible grandparent of α.

Lemma 3. Assume that G′ is a bipartite (P6, C6)-free graph. If there is an incompatible grandpar-
ent β of α, then the following conditions hold:

(1) β is a K
⊕

S-incompatible node after α.
(2) β is the unique incompatible grandparent of α.

(3) The set sons(t)2 (β) consists of black vertex nodes located exactly after son(β, α).

Proof. Suppose that β is an incompatible grandparent of α of type P. Then there exists two
adjacent vertices, b3, w3, in an element of sons(t)(β). Since son(β, α) induces a connected
graph, it contains an induced P3, say, b1, w1, b2, such that b1 is adjacent to x and b2 is
independent of x. But now, {x, b1, w1, b2, b3, w3} forms a P6, a contradiction.
If β is a K

⊕
S-incompatible node before α, then sons()1 (β) contains a black vertex b indepen-

dent of x. By Corollary 1, son(β, α) contains a 2K2, say, b1w1, b2w2, such that x is adjacent
to b1 and x is independent of b2. The set {x, b1, w1, b, w2, b2} forms a P6, a contradiction.
Consequently, β is a K

⊕
S-incompatible node after α. Let us consider β to be the highest

incompatible grandparent of α and let b ∈ sons(t)2 (β). □

Claim 3. There is no grandparent δ of α containing a white vertex total for son(δ, α).

Proof. Let δ be a grandparent of α and w is a white vertex of the δ total for son(δ, α). Let
b1w1, b2w2 be an induced 2K2 of son(δ, α) such that x is adjacent to b1 and independent of
b2. Then the set {b, x, b1, w, b2, w2} forms a P6, a contradiction.

By this claim, if δ is a K
⊕

S-incompatible node after α, then the set sons(t)2 (δ) consists
of black vertex nodes located exactly after son(δ, α). Moreover, for every grandparent δ
of α labeled K

⊕
S and located between α and β, son(δ, α) is the last son of δ; otherwise, δ

contains a white vertex total for son(δ, α), a contradiction; thus, δ cannot be incompatible.
Therefore, β is the unique incompatible grandparent of α. □

Symmetry 2024, 16, 447 9 of 14

Theorem 4. Assume that β is the unique K
⊕

S-incompatible grandparent after α and that
the set sons(t)2 (β) consists of black vertex nodes located exactly after son(β, α). G′ is a bipartite
(P 6, C6)-free graph if and only if one of the following conditions holds:

(1) α is a P-node.

(2) α is a K
⊕

S-node such that X(t)
3 is an empty set.

Proof. Suppose that α is a K
⊕

S-node and let b ∈ sons(t)2 (β). Suppose that X(t)
3 is nonempty.

By Lemma 2, G
[
X(t)

3
]

is a monochromatic graph or a complete bipartite graph. In the two

cases, G
[
X()

2
]

cannot be a monochromatic graph, otherwise, X(t)
3 would be empty. Thus

X()
2 contains two adjacent vertices, b2, w2. Let b3 be a black vertex of X(t)

3 . Since G[α]
is a connected graph, then there is a white vertex, say, w3, in the last son of α, but now
{b, x, b3, w3, b2, w2} forms a P6, a contradiction.
For the only if part, we describe the building of T′. When α is a P-node, the building of T′

is illustrated in Figure 4a. If the set sons(t)(α) is a unique son, then this son must be labeled
K
⊕

S. In this case, we delete the node δ1, and the element sons(t)(α) will be a son of δ2.
The building of T′ when condition 2 is satisfied is illustrated in Figure 4b. If X()

2 is a unique
son, then this son is either a node labeled P or a black vertex node. In this case, we delete
the node δ2, and the element X()

2 will be a son of δ1. □

Symmetry 2024, 16, x FOR PEER REVIEW 10 of 15

 (a) (b)

Figure 4. Building of 𝑇′ when 𝛽, the unique 𝐾 + 𝑆-incompatible grandparent of 𝛼, exists.

3.3. Recognition Algorithm
The recognition algorithm of bipartite (𝑃 , 𝐶)-free graphs is given by Algorithm 2,

whereas the procedure of the step Build-tree (𝐺′, 𝑇, ℎ𝑒𝑎𝑑(𝐿)) is presented in Algorithm
3.

Algorithm 2 Recognition of bipartite (𝑃 , 𝐶)-free graph
Input: a bipartite graph 𝐺 = (𝐵 ∪ 𝑊, 𝐸).
Output: if 𝐺 is a (𝑃 , 𝐶)-free graph then the canonical decomposition tree 𝑇(𝐺), other-
wise a failure message “𝐺 is not (𝑃 , 𝐶)-free graph”.
Initialization step: Let 𝐿 be the list of all the vertices of 𝐺 sorted in descending order
according to their degrees. 𝑇 = new-vertex; 𝐺 = ∅;
Build-tree (𝐺′, 𝑇, ℎ𝑒𝑎𝑑(𝐿)).

Algorithm 3 Procedure Build-tree (𝐺′, 𝑇, ℎ𝑒𝑎𝑑(𝐿))
(1) Marking(𝑇, 𝑥)
(2) Find the set 𝑆 = {𝛿: 𝛿 is an internal node marked by (𝑝)}
(3) If 𝑆 = ∅ then 𝑇 = 𝑖𝑛𝑠𝑒𝑟𝑡(𝑥, 𝑇)

𝛽 𝐾⨁𝑆

𝑠𝑜𝑛𝑠()(𝛽) 𝛼 𝑃

𝑠𝑜𝑛𝑠()(𝛼) 𝑠𝑜𝑛𝑠()(𝛼)

𝛼

𝛽

𝑠𝑜𝑛𝑠()(𝛽)

𝐾⨁𝑆

𝐾⨁𝑆

𝑋() 𝑋()

𝑥
𝛿

𝛿

𝛽

𝛼

𝐾⨁𝑆

𝐾⨁𝑆

𝑃

𝑃

𝑠𝑜𝑛𝑠()(𝛼)

𝑠𝑜𝑛𝑠()(𝛼)

𝑠𝑜𝑛𝑠()(𝛽)
𝛿

𝑥

𝛿

𝑃

𝐾⨁𝑆

𝐾⨁𝑆

𝐾⨁𝑆 𝐾⨁𝑆

𝑋()

𝑋() 𝑠𝑜𝑛𝑠()(𝛽)

𝛼

𝛿

𝛽

Figure 4. Building of T′ when β, the unique K + S-incompatible grandparent of α, exists.

3.3. Recognition Algorithm

The recognition algorithm of bipartite (P6, C6)-free graphs is given by Algorithm 2,
whereas the procedure of the step Build-tree (G′, T, head(L)) is presented in Algorithm 3.

Symmetry 2024, 16, 447 10 of 14

Algorithm 2 Recognition of bipartite (P6, C6)-free graph

Input: a bipartite graph G = (B ∪ W, E).
Output: if G is a (P 6, C6)-free graph then the canonical decomposition tree T(G), otherwise a
failure message “G is not (P6, C6)-free graph”.
Initialization step: Let L be the list of all the vertices of G sorted in descending order according to
their degrees.
T = new-vertex;
G′ = ∅;
Build-tree (G′, T, head(L)).

Algorithm 3 Procedure Build-tree (G′, T, head(L))

(1) Marking (T, x)
(2) Find the set S = {δ : δ is an internal node marked by (p)}
(3) If S = ∅ then T = insert(x, T)

(If x is independent of T (resp. total for T) then create a new root δ of T labeled K
⊕

S such
that x is the left (resp. right) son of δ and the root of T is the right (resp. left) son of δ)

(4) Else if |S|> 2 then Exit with the message “failure”.
(5) Else if |S| = 1 then T = insert(x, T) (according to Theorem 3)
(6) Else if one of the two nodes of S is not a grandparent of the other then Exit with the

message “failure”.
Else let S = {α, β} and β is the grandparent of α

(7) If β is a P-node then Exit with the message “failure”.
(8) Else T = insert(x, T) (according to Theorem 4)
(9) G′ = G[V(G′) ∪ {x}];
(10) If L = ∅ then Exit else L = L − {x}; x = head(L); Build-tree(G′, T, x)

3.4. Complexity

The aim of this section is to demonstrate that recognizing a bipartite (P 6, C6)-free
graph G can be accomplished in O(n + m) time complexity. Since the principal step of
our algorithm is the step Build-tree (G′, T, x), we will demonstrate the linearity of our
algorithm by showing that this step requires only O(dG′(x)) operations, where dG′(x) is
the degree of the node x in G′.

It is evident that step 1 runs within O(dG′(x)) time, as only a maximum of O(dG′(x))
nodes are marked. Furthermore, we can assume that for every node in the tree T, the set
of its sons that are marked by (t), by (p), or by () has been calculated. So, finding the set
S also requires O(dG′(x)) operations. Suppose that S = |2|. We can check whether one of
the two nodes of S is a grandparent of the other as follows: Choose an element of S and
start to mark the parent of this element, then mark the parent of the parent, and so on until
the other element of S is marked or until the root of T is marked. For the last case, that
is, if the root of T has been marked, we repeat this process for the other element of S. In
this manner, we can also determine the node α, the lowest node marked by (p), and the
grandparent β. This process can be conducted in O(dG′(x)) mark operations.

Next, we must analyze the time complexity of the function insert (x, T). This requires
verifying the necessary conditions in Theorem 3 or Theorem 4. Therefore, we need to
compute all the required sets for building the tree T′. If α has the label P, then the computa-
tion of the set sons(t)(α) and the set sons()(α) is straightforward. Suppose α has the label
K ⊕ S. We can compute the sets X(t)

1 , X()
2 , X(t)

3 , and X4 as follows: First, we compute X(t)
1 by

traversing the set of sons of α from left to right. In this manner, X(t)
1 will be the first nodes

that are either a set of white vertices or nodes marked by (t); we continue this traversing
until a son of α marked by () has been found. The remaining sons of α marked by (t) must
belong to X(t)

3 since X4 is independent of x according to Lemma 2. To compute X(t)
3 , we

choose a son of α (let us call it c) from the remaining nodes marked by (t) and we traverse
the set of sons of α starting from c in the left and right directions, from the left until a son of

Symmetry 2024, 16, 447 11 of 14

α marked by () has been found and from the right also until a son of α marked by () has
been found or until the last son from the right has been found. We continue this traversing
until every son is either a white vertex node or a node marked by (t). As soon as the set
X(t)

3 has been computed, the set X()
2 can be computed immediately. The remaining sons of

α form the set X4 which must be independent of x. This computation requires O(dG′(x))
time complexity.

Finally, we need to determine if the node β, whose label is K ⊕ S, is incompatible after
α or not and check whether the set sons(t)2 (β) is a set of black vertex nodes located exactly
after son(β, α). These two conditions can be achieved together as follows: Since β is known
as a grandparent of α, the son son(β, α) is identified. Now, we can traverse the sons of β
starting from the first son located exactly after son(β, α) and determine whether any one
of these sons is a white vertex node or not. In addition, we must traverse the sons of β

starting from the first son located exactly before son(β, α) to determine if the set sons()1 (δ)
is empty or not. This traverse also requires O(dG′(x)) time complexity.

We leave it to the reader to verify that the step Build-tree (G, T, x)) that corresponds
to insert x in the tree T takes a constant time in all cases.

Since testing whether G′ = G ∪ {x} is a bipartite (P 6, C6)-free graph or not can be
performed within O(dG′(x)) time complexity, it is clear that recognition of the bipartite
(P6, C6)-free graph algorithm runs in O(n + m) time complexity.

4. Optimization Problems

We believe that the canonical decomposition tree for a bipartite (P6, C6)-free graph
can be used to find efficient solutions for several optimization graph problems because
of the simple structure of this tree. In this paper, we limit ourselves to showing that
the canonical decomposition tree of a bipartite (P6, C6)-free graph can be used to solve,
in polynomial time, the maximum balanced biclique problem and, in linear time, the
maximum independent set problem. In the concluding section of this paper, we talk about
some potential uses for this result and consider it as a subject for further study.

Let T(G) be the canonical decomposition tree for a bipartite (P6, C6)-free graph G. To
present our solutions to the above two problems, we need to covert T(G) to a binary tree
as follows:

Visit the nodes of T(G) in a depth-first search.
Let S be an internal visited node, and S1, . . . , Sk are the sons of S. If k > 2, then the left

son of S is S1, and the right son becomes a new son, S′, that has the same label as S with
sons S2, . . . , Sk.

4.1. Maximum Balanced Biclique Problem

A sub-graph F = G[X ∪ Y] of a bipartite graph G is called a balanced biclique if F is a
biclique and |X| =|Y|. The balanced biclique problem is computing a balanced biclique
in G of maximum size. This problem is important in many different fields of study. It
has numerous practical uses in very-large-scale integration (VLSI), such as the design of
defect-tolerant devices [11,12], and programmable logic array folding [13]. The balanced
biclique problem is NP-complete for a general bipartite graph [14], and there are very
few works dedicated to obtaining an exact maximum balanced biclique, aside from the
work [15] where two exact algorithms are proposed to find a maximum balanced biclique
for small dense and large sparse bipartite graphs, respectively. The majority of known
techniques for determining a maximum balanced biclique are heuristic algorithms (see, for
example, [16,17]).

We propose in this work an O
(
n3) time complexity algorithm to compute a maximum

balanced biclique in a bipartite (P 6, C6)-free graph G using its canonical decomposition
binary tree T(G). The idea of our solution is to compute all possible bicliques in G that
are maximal with respect to set inclusion, then find among them the one that contains a
maximum balanced biclique. A biclique F is maximal with respect to set inclusion if no
biclique in G contains F. The structure of T(G) when G is a bipartite (P6, C6)-free graph

Symmetry 2024, 16, 447 12 of 14

and the definition of K
⊕

S operation allow us to achieve this computation by a post-order
traversal of T(G), associating for each internal node α all possible maximal bicliques in G[α]
(with respect to set inclusion) through the two sets of maximal bicliques associated with the
left son α1 and the right son α2 of α. The set of maximal bicliques associated with α1 denoted
by L(α1) =

{
F1

i = G
[
X1

i ∪ Y1
i
]

: i = 1, . . . , r
}

and the set of maximal bi-cliques associated
with α2 denoted by L(α2) =

{
F2

i = G
[
X2

i ∪ Y2
i
]

: i = 1, . . . , k
}

. We suppose that for every

biclique Fj
i = G

[
X j

i ∪ Y j
i
]
, X j

i is a set of black vertices and Y j
i is a set of white vertices. In

addition, we suppose that the members of L(α1) are arranged from left to right according
to their appearance in the sub-tree T(α1). Likewise, we suppose that the members of L(α2)
are arranged from left to right according to their appearance in the sub-tree T(α2). This
supposition is performed directly according to the arrangement of sons for every K

⊕
S-

node in T(G). The reader can simply verify the truth of computation used in Algorithm 4
for the set of maximal bicliques L(α) according to the definition of a K

⊕
S-node and the

definition of a P-node. Figure 5 can help us to imagine this computation.

Algorithm 4 Balanced Bi-clique

Input: A binary canonical decomposition tree T(G) of a bipartite (P6, C6)−free graph
G = (B ∪ W, E).
Output: A maximal balanced biclique F = G[X ∪ Y] for G
Let α be a node on a post − order traversal of T(G)
If α is a black vertex node b (resp. a white vertex node w), then
L(α) = {G[{b} ∪∅]} (resp. L(α) = {G[∅∪ {w}]}
Else let α1 and α2 be the left and right son of α, respectively, and let
L(α1) =

{
F1

i = G
[
X1

i ∪ Y1
i
]

: i = 1, . . . , r
}

, L(α2) =
{

F2
i = G

[
X2

i ∪ Y2
i
]

: i = 1, . . . , k
}

.
If α is a K

⊕
S-node, then

Let L1 =
{

G
[(

X1
1 ∪ . . . ∪ X1

r
)
∪
(
Y2

1 ∪ . . . ∪ Y2
k
)
]}

L2 =
{

G
[
X1

i ∪
(
Y1

i ∪ Y2
1 ∪ . . . ∪ Y2

k
)
] : i = 1, . . . r

}
L3 =

{
G
[(

X2
i ∪ X1

1 ∪ . . . ∪ X1
r
)
∪ Y2

i
]

: i = 1, . . . k
}

If r ̸= 1 or k ̸= 1, then L(α) = L1 ∪ L2 ∪ L3 else L(α) = L2 ∪ L3
Else//α is a P-node//L(α) = L(α1) ∪ L(α2)
If α is the root of T(G), then let L(α) = {Fi = G[Xi ∪ Yi], i = 1, . . . , s}
Let st = max{min(|X 1| , |Y1|), . . . , min(|X s|, |Ys|)} return Ft

Symmetry 2024, 16, x FOR PEER REVIEW 13 of 15

that the members of 𝐿(𝛼) are arranged from left to right according to their appearance
in the sub-tree 𝑇(𝛼). This supposition is performed directly according to the arrange-
ment of sons for every 𝐾⨁𝑆-node in 𝑇(𝐺). The reader can simply verify the truth of com-
putation used in Algorithm 4 for the set of maximal bicliques 𝐿(𝛼) according to the defi-
nition of a 𝐾⨁𝑆-node and the definition of a 𝑃-node. Figure 5 can help us to imagine this
computation.

Algorithm 4 Balanced Bi-clique
Input: A binary canonical decomposition tree 𝑇(𝐺) of a bipartite (𝑃 , 𝐶)-free graph 𝐺 = (𝐵 ∪ 𝑊, 𝐸).
Output: A maximal balanced biclique 𝐹 = 𝐺[𝑋 ∪ 𝑌] for 𝐺
Let 𝛼 be a node on a post-order traversal of 𝑇(𝐺)
If 𝛼 is a black vertex node 𝑏 (resp. a white vertex node 𝑤), then 𝐿(𝛼) = {𝐺[{𝑏} ∪ ∅]}
(resp. 𝐿(𝛼) = {𝐺[∅ ∪ {𝑤}]}
Else let 𝛼 and 𝛼 be the left and right son of 𝛼, respectively, and let 𝐿(𝛼) = {𝐹 =𝐺[𝑋 ∪ 𝑌]: 𝑖 = 1, … , 𝑟}, 𝐿(𝛼) = {𝐹 = 𝐺[𝑋 ∪ 𝑌]: 𝑖 = 1, … , 𝑘}.
If 𝛼 is a 𝐾⨁𝑆-node, then
Let 𝐿 = {𝐺[(𝑋 ∪ … ∪ 𝑋) ∪ (𝑌 ∪ … ∪ 𝑌)]} 𝐿 = {𝐺[𝑋 ∪ (𝑌 ∪ 𝑌 ∪ … ∪ 𝑌)]: 𝑖 = 1, … 𝑟} 𝐿 = {G[(𝑋 ∪ 𝑋 ∪ … ∪ 𝑋) ∪ 𝑌]: 𝑖 = 1, … 𝑘}
 If 𝑟 ≠ 1 or 𝑘 ≠ 1, then 𝐿(𝛼) = 𝐿 ∪ 𝐿 ∪ 𝐿 else 𝐿(𝛼) = 𝐿 ∪ 𝐿
Else//𝛼 is a 𝑃-node//𝐿(𝛼) = 𝐿(𝛼) ∪ 𝐿(𝛼)
If 𝛼 is the root of 𝑇(𝐺), then let 𝐿(𝛼) = {𝐹 = 𝐺[𝑋 ∪ 𝑌], 𝑖 = 1, … , 𝑠}
Let 𝑠 = max {min(|𝑋 |, |𝑌 |), … , min (|𝑋 |, |𝑌 |)} return 𝐹

The number of bicliques computed for each internal node is at most 𝑂(𝑛). Since 𝑇(𝐺) contains an 𝑂(𝑛) node, the algorithm Balanced Bi-clique has a time complexity of 𝑂(𝑛).

Figure 5. A node 𝛼 and the sets of all maximal bicliques associated with its sons.

4.2. Maximum Independent Set Problem
A subset 𝑆 of the vertex set 𝑉(𝐺) in a graph 𝐺 is called an independent set if any

two vertices in 𝑆 are not adjacent. The maximum independent set problem is the task of

𝑌

𝑋
𝑌

𝑋
𝑌

𝑋
𝑌

𝑋

𝛼

𝛼 𝛼

𝐿(𝛼) 𝐿(𝛼)

.

Figure 5. A node α and the sets of all maximal bicliques associated with its sons.

Symmetry 2024, 16, 447 13 of 14

The number of bicliques computed for each internal node is at most O
(
n2). Since T(G)

contains an O(n) node, the algorithm Balanced Bi-clique has a time complexity of O
(
n3).

4.2. Maximum Independent Set Problem

A subset S of the vertex set V(G) in a graph G is called an independent set if any
two vertices in S are not adjacent. The maximum independent set problem is the task
of computing an independent set in G of maximum size. This problem is NP-complete
for general graphs [14], but it can be solved in O

(
n1.5√m/log n

)
time complexity for a

general bipartite graph [18]. This time complexity can be improved to O(n) for a bipartite
(P6, C6)-free graph using its canonical binary decomposition tree. The idea of our solution
results from the structure of K

⊕
S graph G as follows: Let (V1, V2) be a K

⊕
S partition of

the vertex set V(G). By Property 1, every black vertex of V1 is connected to every white
vertex of V2, and every white vertex of V1 is independent of every black vertex of V2.
So, the maximum independent set in G is either the maximum independent set in G[V1],
the maximum independent set in G[V2], or the independent set formed by the union of
white vertices of G[V1] and black vertices of G[V2]. This remark proves the correctness of
Algorithm 5. Note that if G is not connected, then the maximum independent set in G is
equal to the union of the maximum independent sets in its connected components.

Algorithm 5 Maximum Independent Set

Input: A binary canonical decomposition tree T(G) of a bipartite (P6, C6)-free graph
G = (B ∪ W, E).
Output: A maximum independent set S for G

Let α be a node on a post-order traversal of T(G).
If α is a black vertex node b (resp. a white vertex node w), then
S(α) = {b}, B(α) = {b}, W(α) = ∅ (resp. S(α) = {w} , B(α) = ∅, W(α) = {w})
Else let α1 and α2 be, respectively, the left and right son of α and let S(α1) be a maximum
independent set of G[α1] and S(α2) be a maximum independent set of G[α2]; let
W(α1), B(α1) be, respectively, the white and black vertices of G[α1]; and let
W(α2), B(α2) be, respectively, the white and black vertices of G[α2].
If α is a K

⊕
S-node, then

s = max{|S(α1)|, |S(α2)|, |W(α1) ∪ B(α2)|}
S(α) = S where |S| = s, W(α) = W(α1) ∪ W(α2) and B(α) = B(α1) ∪ B(α2)
else//α is a P-node
S(α) = S(α1) ∪ S(α2), W(α) = W(α1) ∪ W(α2) and B(α) = B(α1) ∪ B(α2)

Since T(G) contains an O(n) node, the algorithm’s maximum independent set has a
time complexity of O(n).

5. Conclusions

We have shown in this paper that bipartite (P6, C6)-free graphs can be recognized in
linear time. Using this result, we solved two optimization graph problems in this class of
graphs: the first is the maximum balanced biclique problem, and the second is the maximum
independent set problem. An additional potential use of the canonical decomposition tree
of a bipartite (P 6, C6)-free graph is to solve the problem P| prec. pj = 1| Cmax: Suppose
there are n tasks with a unit execution time, and their order is constrained by a directed
acyclic graph. Additionally, there are m machines of the same type. The goal is to discover
a schedule that minimizes the makespan, which is the time when the final task in the graph
finishes its execution. It is proved in [19] that this problem is NP-complete even if the
precedence constraints form a bipartite graph of depth one. We conjecture that this problem
can be solved in polynomial time for a bipartite (P6, C6)-free graph.

Author Contributions: Conceptualization, R.Q. and A.A.-Q.; methodology, R.Q. and A.A.-Q.; inves-
tigation, R.Q. and A.A.-Q.; writing—original draft preparation, R.Q. and A.A.-Q. All authors have
read and agreed to the published version of the manuscript.

Symmetry 2024, 16, 447 14 of 14

Funding: This research is funded by the Deanship of Scientific Research at Zarqa University/Jordan.

Data Availability Statement: Data are contained within the article.

Acknowledgments: The authors would like to thank the reviewers for their valuable suggestions
and useful comments, which helped improve the presentation of the manuscript. The authors also
would like to thank the Deanship of Scientific Research at Zarqa University.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Chakraborty, X.; Kumar, A.; Tomar, G. A survey on bipartite graph based recommender systems. Inf. Process. Manag. 2021, 58,

102536.
2. Wang, R.; Wu, Y.; Hu, X.; Liu, J. Bipartite graph neural networks for social recommendation. Inf. Sci. 2021, 572, 396–409. [CrossRef]
3. Biró, P.; Fleiner, T. Recent advances in matching algorithms. Eur. J. Oper. Res. 2022, 294, 745–769.
4. Fouquet, J.L.; Giakoumakis, V.; Vanherpe, J.M. Bipartite graphs totally decomposable by canonical decomposition. Internat. J.

Found. Comput. Sci. 1999, 10, 513–533. [CrossRef]
5. Lozin, V.V. E-free bipartite graphs. Discret. Anal. Oper. Res. Ser. 2000, 7, 49–66. (In Russian)
6. Giakoumakis, V.; Vanherpe, J.-M. Bi-complement reducible graphs. Adv. Appl. Math. 1997, 18, 389–402. [CrossRef]
7. Giakoumakis, V.; Vanherpe, J.M. Linear time recognition and optimization for weak bisplit graphs, bi-cographs and bipartite

P6-free graphs. Int. J. Found. Comput. Sci. 2003, 14, 107–136. [CrossRef]
8. Quaddoura, R. Linear time recognition of bipartite Star123-free graphs. Int. Arab. J. Inf. Technol. 2006, 3, 193–220.
9. Quaddoura, R.; Mansour, K. Classical graphs decomposition and their totally decomposable graphs. IJCSNS Int. J. Comput. Sci.

Netw. Secur. 2010, 10, 240–250.
10. Corneil, D.G.; Perl, Y.; Stewart, L.K. A linear recognition algorithm for cographs. SIAM J. Comput. 1985, 14, 926–934. [CrossRef]
11. Al-Yamani, A.; Ramsundar, S.; Pradhan, D.K. A defect tolerance scheme for nanotechnology circuits. IEEE Trans. Circuits Syst. I

2007, 54, 2402–2409. [CrossRef]
12. Tahoori, M.B. Application-independent defect tolerance of reconfigurable Nano architectures. ACM J. Emerg. Technol. Comput.

Syst. (JETC) 2006, 2, 197–218. [CrossRef]
13. Ravi, S.; Lloyd, E.L. The complexity of near-optimal programmable logic array folding. SIAM J. Comput. 1988, 17, 696–710.

[CrossRef]
14. Garey, M.R.; Johnson, D.S. Computers and Intractability, A Guide to the Theory of NP-Completeness; Mathematical Series; Freeman:

San Francisco, CA, USA, 1979.
15. Chen, L.; Liu, C.; Zhou, R.; Xu, J.; Li, J. Efficient Exact Algorithms for Maximum Balanced Biclique Search in Bipartite Graphs.

In Proceedings of the SIGMOD ’21: Proceedings of the 2021 International Conference on Management of Data, Toronto, ON,
Canada, 15–18 June 2021; pp. 248–260.

16. Li, M.; Hao, J.-K.; Wu, Q. General swap based multiple neighborhood adaptive search for the maximum balanced biclique
problem. Comput. Oper. Res. 2020, 119, 104922. [CrossRef]

17. Zhou, Y.; Hao, J.K. Tabu search with graph reduction for finding maximum balanced bicliques in bipartite graphs. Eng. Appl.
Artif. Intell. 2019, 77, 86–97. [CrossRef]

18. Alt, H.; Blum, N.; Mehlhorn, K.; Paul, M. Computing a maximum cardinality matching in bipartite graphs in time n1.5√m/log n.
Inform. Process. Lett. 1991, 37, 237–240. [CrossRef]

19. Bampis, E. The Complexity of short schedules for UET bipartite graphs. RAIRO Oper. Res. 1999, 33, 367–370. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.ins.2021.02.045
https://doi.org/10.1142/S0129054199000368
https://doi.org/10.1006/aama.1996.0519
https://doi.org/10.1142/S0129054103001625
https://doi.org/10.1137/0214065
https://doi.org/10.1109/TCSI.2007.907875
https://doi.org/10.1145/1167943.1167945
https://doi.org/10.1137/0217045
https://doi.org/10.1016/j.cor.2020.104922
https://doi.org/10.1016/j.engappai.2018.09.017
https://doi.org/10.1016/0020-0190(91)90195-N
https://doi.org/10.1051/ro:1999115

	Introduction
	Notation and Terminology
	Recognition Algorithm of Bipartite (P6,C6)-Free Graphs
	Marking Procedure
	Building the Tree T
	Recognition Algorithm
	Complexity

	Optimization Problems
	Maximum Balanced Biclique Problem
	Maximum Independent Set Problem

	Conclusions
	References

