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Abstract: Initially, fuzzy sets and intuitionistic fuzzy sets were used to address real-world problems
with imprecise data. Eventually, the notion of the hesitant fuzzy set was formulated to handle decision
makers’ reluctance to accept asymmetric information. However, in certain scenarios, asymmetric
information is gathered in terms of a possible range of acceptance and nonacceptance by players rather
than specific values. Furthermore, decision makers exhibit some hesitancy regarding this information.
In such a situation, all the aforementioned expansions of fuzzy sets are unable to accurately represent
the scenario. The purpose of this article is to present asymmetric information situations in which the
range of choices takes into account the hesitancy of players in accepting or not accepting information.
To illustrate these problems, we develop matrix games that consider the payoffs of interval-valued
intuitionistic hesitant fuzzy elements (IIHFEs). Dealing with these types of fuzzy programming
problems requires a significant amount of effort. To solve these matrix games, we formulate two
interval-valued intuitionistic hesitant fuzzy programming problems. Preserving the hesitant nature
of the payoffs to determine the optimal strategies, these two problems are transformed into two
nonlinear programming problems. This transformation involves using mathematical operations
for IIHFEs. Here, we construct a novel aggregation operator of IIHFEs, viz., min-max operators
of IIHFEs. This operator is suitable for applying the developed methodology. The cogency and
applicability of the proposed methodology are verified through a numerical example based on the
situation of conflict between hackers and defenders to prevent damage to cybersecurity. To validate
the superiority of the proposed model along with the computed results, we provide comparisons
with the existing models.

Keywords: matrix game; interval-valued intuitionistic hesitant fuzzy element; score function;
aggregation operator; cybercrime

1. Introduction

Neumann and Morgenstern [1] introduced a mathematical tool that can conceive a
conflicting situation that arises in reality. This mathematical tool is termed game theory. It
deals with mathematical models of strategic interaction between two players. However,
due to the ambiguity of decision makers and inadequate information, it becomes difficult
to formulate real game situations. To capture this inadequate information, Dubois and
Prade [2] used the notion of fuzzy sets in game theory. Several researchers [3,4] addressed
and extended this topic through their own opinions.

In 1986, Atanassov [5] brought a little change in the mode of description of a fuzzy set
by introducing it in the literature as an intuitionistic fuzzy (I-fuzzy) set. I-fuzzy sets are
described by the degree of membership and nonmembership values such that the sum of
these values must be bound by 1. Li [6] addressed matrix games with I-fuzzy payoffs by
rendering a nonlinear programming approach. Li [7] analyzed management problems in
the context of game theory using I-fuzzy sets. Xia [8] implemented Archimedean triangular
norms and triangular conorms for solving matrix games with payoffs of interval-valued

Symmetry 2024, 16, 573. https://doi.org/10.3390/sym16050573 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym16050573
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0001-9085-6184
https://orcid.org/0000-0003-4746-5369
https://doi.org/10.3390/sym16050573
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym16050573?type=check_update&version=2


Symmetry 2024, 16, 573 2 of 30

I-fuzzy numbers. Brikaa et al. [9] explored an indeterminacy approach for solving zero-sum
matrix games having intuitionistic fuzzy goals. Verma and Kumar [10] developed the
Ambika method to deal with matrix games in an intuitionistic fuzzy scenario. Verma and
Aggarwal [11] developed a generalized method to solve matrix games with payoffs of
linguistic intuitionistic fuzzy sets. Dong and Wan [12] developed a solution methodology
for solving matrix games with type-2 interval-valued intuitionistic fuzzy payoffs and ap-
plied it to energy vehicle industry development. Moreover, in the recent past, numerous
researchers explored their views to develop matrix games under several fuzzy environ-
ments, such as type-2 fuzzy [13], q-rung orthopair fuzzy [14], and neutrosophic [15–18]
environments.

It was observed that the I-fuzzy set was not always sufficient to portray all types of
inadequacies in the supplied information. So, aiming to consider hesitation among decision
makers, Torra [19] introduced the notion of a hesitant fuzzy set (HFS). The belongingness of
elements in such an HFS is assigned by a set of possible membership degrees, which lie in
the interval [0, 1]. Later, Xia and Xu [20] presented an HFS as the envelope of Atanassov’s I-
fuzzy set. Xu and Xia [21] developed distance, similarity, and correlation measures for HFSs.
Zeng et al. [22] applied the notion of interval-valued hesitant fuzzy sets (IVHFSs) to group
decision making. In the recent past, Jana and Roy [23] explored the linguistic Pythagorean
hesitant fuzzy matrix game and applied it to multicriteria decision making. Utilizing the
lexicographic approach, Seikh et al. [24] designed the solution methodology of a matrix
game with hesitant fuzzy payoffs. Yang and Song [25] rendered the solution procedure
for matrix games with triangular dual hesitant fuzzy payoffs. Naqvi et al. [26] developed
matrix games with payoffs represented by interval-valued hesitant fuzzy linguistic sets.

In 2013, Zhang [27] introduced the notion of IIHFSs, aiming to model a sufficient
mathematical tool. It permits hesitancy in terms of both membership and nonmembership
degrees. He introduced a series of aggregation operators for IIHFSs and used them to
develop group decision-making problems. Broumi and Smarandache [28] proposed some
operators for IIHFSs along with their properties. Joshi and Kumar [29] designed multi-
criteria group decision making in an interval-valued intuitionistic hesitant fuzzy (IIHF)
environment by defining the Choquet integral operator. Yuan et al. [30] also studied group
decision-making problems in the IIHF environment with a confidence level. Later, Joshi and
Kumar [31] explored the entropy of IIHFEs to make the solution to group decision-making
problems. Naryanmoorthy et al. [32] developed the VIKOR method in the IIHF environ-
ment for ranking the prescribed alternatives in industrial robot selection. De et al. [33]
extended the TOPSIS method to solve multiattribute decision-making problems with proba-
bilistic IIHF decisions. Du et al. [34] rendered a data-driven group decision-making method
under the IIHF environment. Bhaumik et al. [35] discussed a bimatrix game problem
with hesitant interval-valued intuitionistic linguistic payoffs in the light of the prisoner’s
dilemmatic approach and applied it to portray the human trafficking problem. Apart from
these, the notion of IIHFSs is used in different directions of decision-making theory by
several authors [36–38].

As IIHFS is a significant extension of the fuzzy set in the literature by its character, it
is, therefore, very reasonable and relevant to use IIHFS in game theory. In the literature,
it is found that Bhaumik and Roy [39] developed matrix games with IIHFEs for solving
management problems. In that discussion, two interval-valued intuitionistic hesitant fuzzy
programming models were derived. Later, they followed the usual method for solving
the interval-valued linear programming problem. However, the objective functions of the
derived problems were in the form of some intervals, which are part of an IIHFE. However,
the mathematical operations on IIHFEs do not follow the operational rule of classical
intervals. Rather, if we follow the existing operational rule of IIHFEs, the aforementioned bi-
objective programming problems should be transformed into two nonlinear programming
problems. So, there is a major drawback in the approach of Bhaumik and Roy [39]. This
paper aims to obviate such drawbacks and proposes a new methodology for solving matrix
games in the IIHF environment.
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Although there exist different aggregation operators for IIHFEs, for convenient cal-
culation, we define a novel aggregation operator, viz., the min-max enclosure operator.
Then we derive two interval-valued intuitionistic hesitant fuzzy programming problems
for solving the proposed game. These are converted into two nonlinear programming
models by following a few steps. Finally, to obtain the optimal solutions, the nonlinear
programming problems are solved by using Wolfram MATHEMATICA 9.0 software.

The contributions of this paper are listed here:

• A novel aggregation operator is introduced in this study, which is referred to as the
min-max enclosure operator. This operator is specifically designed for the aggregation
of IIHF information. One of the advantages of the proposed operator is its simplicity,
which makes it easy to implement and use. Additionally, the operator has the capabil-
ity to preserve the characteristics of IIHFEs, ensuring that the important features of
the information are not lost during the aggregation process.

• A nonlinear programming approach is delineated in this paper to handle interval-
valued intuitionistic hesitant fuzzy programming problems to solve IIHF matrix games.
In order to achieve the best possible outcomes, these problems are converted into two
distinct crisp nonlinear programming problems.

• Like in classical game theory, it is established that the gain floor of the winning player
is less than or equal to the loss ceiling of the defeated player.

• The proposed methodology is illustrated through the problem of cybercrime. The su-
periority of the proposed method is checked and verified by analyzing a comparative
study with two existing models.

The rest of this article is delineated as follows: Some basic definitions associated
with IIHFEs along with mathematical operations are recalled in Section 2. In Section 3,
a novel aggregation operator for IIHFEs, viz., the min-max enclosure operator, is defined.
In Section 4, a matrix game with payoffs of IIHFEs is amplified. A practical example of the
conflict between hackers and defenders to stop cybercrime is demonstrated in Section 5.
A comparison analysis along with a discussion of results is briefed in Section 6. Finally,
the conclusion is drawn in Section 7.

2. Preliminaries

In this section, some primary definitions related to IIHFEs are recalled, which helps us
to develop the succeeding discussions.

Definition 1 (IIFS ([40])). A set Ĩ can be defined as an IIFS on a universe of discourse Υ if Ĩ is
defined as Ĩ = {⟨x, ([ml , mu], [nl , nu])⟩|x ∈ Υ. Here, [ml , mu] ⊂ [0, 1] and [nl , nu] ⊂ [0, 1], and
also, mu + nu ≤ 1.

Definition 2 (HFS ([19])). A set Ẽ can be defined as an HFS on a universe of discourse Υ in terms
of a function. The function gives few possible values when applied on the universal set Υ. Xia and
Xu [20] symbolized an HFS as Ẽ = {⟨k, ϱ̃(k)⟩|k ∈ Υ} where each ϱ̃(k) takes some values from the
closed interval [0, 1]. These ϱ̃(k) values are termed as hesitant fuzzy elements (HFEs).

Definition 3 (IVHFS ([41])). An interval-valued hesitant fuzzy set (IVHFS) Ẽ on Υ is defined
symbolically as Ẽ = {⟨k, ϱ̃(k)⟩|k ∈ Υ}, where ϱ̃(k) represents some set of intervals in [0, 1],
i.e., ϱ̃(k) =

⋃
[ϱl ,ϱu ]∈ϱ̃(k)

[ϱl , ϱu]. The intervals ϱ̃(k) are termed as interval-valued hesitant fuzzy

elements (IVHFEs), where ϱl stands for the lower limit and ϱu stands for the upper limit of the
interval [ϱl , ϱu].

Definition 4 (IIHFS ([39])). An interval-valued intuitionistic hesitant fuzzy set (IIHFS) Ẽ

on Υ is defined symbolically as Ẽ = {⟨k, ϱ̃(k)⟩|k ∈ Υ}, where ϱ̃(k) =
〈

ϱ̃µ(k); ϱ̃ν(k)
〉

=〈⋃
∆[ϱ

l
µ, ϱu

µ];
⋃

∆[ϱ
l
ν, ϱu

ν ]
〉

represents the set of intervals in terms of degree of membership and
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nonmembership values. Each ϱ̃(k) =
〈

ϱ̃µ(k); ϱ̃ν(k)
〉

is termed as the interval-valued intuitionistic

hesitant fuzzy elements (IIHFEs). The interval [ϱl
µ, ϱu

µ] takes the value from [0, 1] for the membership
degree, whereas the interval [ϱl

ν, ϱu
ν ] takes the value from [0, 1] for the nonmembership degree of the

IIHFE ϱ̃(k), and
⋃

∆ denotes the union of all intervals.

Definition 5 (Mathematical operations on IIHFEs ([39])). Let ϱ̃, ϱ̃1, and ϱ̃2 be three IIH-

FEs, having the form ϱ̃ =
〈⋃

∆[ϱ
l
µ, ϱu

µ];
⋃

∆[ϱ
l
ν, ϱu

ν ]
〉

, ϱ̃1 =
〈⋃

∆[ϱ
l
1µ, ϱu

1µ];
⋃

∆[ϱ
l
1ν, ϱu

1ν]
〉

, and

ϱ̃2 =
〈⋃

∆[ϱ
l
2µ, ϱu

2µ];
⋃

∆[ϱ
l
2ν, ϱu

2ν]
〉

. Then the mathematical operations on IIHFEs are performed as

• ϱ̃1 ⊕ ϱ̃2 =
〈⋃

∆[ϱ
l
1µ + ϱl

2µ − ϱl
1µϱl

2µ, ϱu
1µ + ϱu

2µ − ϱu
1µϱu

2µ];
⋃

∆[ϱ
l
1νϱl

2ν, ϱu
1νϱu

2ν]
〉

,

• τϱ̃ =
〈⋃

∆[1 − (1 − ϱl
µ)

τ , 1 − (1 − ϱu
µ)

τ ];
⋃

∆[(ϱ
l
ν)

τ , (ϱu
ν)

τ ]
〉

, for any positive scalar τ.

Definition 6 (Extension principle of IIHFEs ([39])). Let Ω be the collection of m numbers of
IIHFEs, i.e., Ω = {ϱ̃p : p = 1, 2, . . . , m}, and 𭟋 be considered as a function on Ω, such that 𭟋:

[0, 1]m → [0, 1], then 𭟋 must satisfies the equality 𭟋(Ω) =
⋃

ϱ̃p∈⟨∪∆ [ϱ
l
pµ ,ϱu

pµ ];∪∆ [ϱ
l
pν ,ϱu

pν ]⟩

{
𭟋(ϱ̃p)

}
.

Definition 7 (Score function and accuracy function of IIHFEs). Let ϱ̃ =
〈⋃

∆[ϱ
l
µ, ϱu

µ];⋃
∆[ϱ

l
ν, ϱu

ν ]
〉

be an IIHFE. Then the score function and accuracy function of IIHFE ϱ̃ are defined as
follows:

Sc(ϱ̃) = |1
2
[(min ϱl

µ + max ϱu
µ)− (min ϱl

ν + max ϱu
ν)]|

Ac(ϱ̃) =
1
2
[(min ϱl

µ + max ϱu
µ) + (min ϱl

ν + max ϱu
ν)].

For example, consider an IIHFE, ϱ̃ = ⟨[0.55, 0.60], [0.55, 0.70]; [0.50, 0.60], [0.45, 0.60]⟩,
then the score function and accuracy function of ϱ̃ are calculated as Sc(ϱ̃) = | 1

2 [(0.55 +

0.70)− (0.45 + 0.60)]| = 0.1 and Ac(ϱ̃) = 1
2 [(0.55 + 0.70) + (0.45 + 0.60)] = 1.15.

It is worth noting that if the lower element and the upper element of the intervals of
IIHFE take the same value, then the accuracy function and the score function of an IIHFE
transforms into the same value of an intuitionistic fuzzy number. Furthermore, the accuracy
function and score function of that intuitionistic fuzzy number are the same, as shown by
Xu [42].

Definition 8 (Ranking of IIHFEs). Let ϱ̃a and ϱ̃b be two IIHFEs. Then, based on Definition 7, we
may define the ranking of the IIHFEs as

(i) If Sc(ϱ̃a) > Sc(ϱ̃b), then ϱ̃a >I IHF ϱ̃b.
(ii) If Sc(ϱ̃a) < Sc(ϱ̃b), then ϱ̃a <I IHF ϱ̃b.
(iii) If Sc(ϱ̃a) = Sc(ϱ̃b), then

(a) If Ac(ϱ̃a) < Ac(ϱ̃b), then ϱ̃a <I IHF ϱ̃b.
(b) If Ac(ϱ̃a) > Ac(ϱ̃b), then ϱ̃a >I IHF ϱ̃b.
(c) If Ac(ϱ̃a) = Ac(ϱ̃b), then ϱ̃a =I IHF ϱ̃b.

Here, ‘>I IHF’, ‘<I IHF’, and ‘=I IHF’ are used in the sense of the usual ‘greater than’, ‘less than’,
and ‘equal to’ in an IIHF environment.

Let us take two examples here to show the ranking of IIHFEs:

(i) Consider two IIFHEs, ϱ̃1 = ⟨[0.55, 0.60], [0.55, 0.70]; [0.50, 0.60], [0.45, 0.60]⟩ and
ϱ̃2 = ⟨[0.65, 0.70]; [0.35, 0.45], [0.35, 0.50]⟩. Then Sc(ϱ̃1) = 0.1, and Sc(ϱ̃2) = 0.25,
which concludes that ϱ̃2 >I IHF ϱ̃1.

(ii) Suppose ϱ̃3 = ⟨[0.30, 0.40], [0.30, 0.45]; [0.05, 0.15], [0.05, 0.10]⟩, and ϱ̃4 = ⟨[0.30, 0.35];
[0.30, 0.40], [0.05, 0.08], [0.06, 0.10]⟩. Then Sc(ϱ̃3) = 0.275, and Sc(ϱ̃4) = 0.275, which



Symmetry 2024, 16, 573 5 of 30

Sc(ϱ̃3) = Sc(ϱ̃4). So, in this case, we cannot assign the ranking based on the score
function, and we have to calculate the accuracy function of these two IIHFEs. Now
Ac(ϱ̃3) = 0.475 and Ac(ϱ̃4) = 0.425, which concludes ϱ̃2 =I IHF ϱ̃1.

In various decision-making problems, often we need to aggregate the information.
There are plenty of aggregation operators for IIHFEs available in the literature. To pre-
serve the hesitant character, the following section introduces a novel aggregation operator
for IIHFEs.

3. New Aggregation Operator

In order to aggregate the IIHFEs here, we define a new aggregation operator of IIHFEs.
The new aggregation operator is set up based on the notion of the extension principle
of IIHFEs and the mathematical operations on IIHFEs, depicted in Definitions 5 and 6,
respectively. This novel aggregation operator is termed as an interval-valued intuitionistic
hesitant fuzzy weighted min-max enclosure aggregation operator (IIHFWMEAO), or min-
max enclosure aggregation operator in short.

Definition 9 (Min-max enclosure of IIHFEs). Let us consider an IIHFE ϱ̃ =
〈
[ϱl

1µ, ϱu
1µ],

[ϱl
2µ, ϱu

2µ], . . . , [ϱl
mµ, ϱu

mµ]; [ϱl
1ν, ϱu

1ν], [ϱ
l
2ν, ϱu

2ν], . . . , [ϱl
nν, ϱu

nν]
〉

. It is worth noting that m and n
are two integers that may or may not exert the same values. Let us construct an IIHFE ϱ̃E as

ϱ̃E =
〈[

min
1≤p≤m

ϱl
pµ, max

1≤p≤m
ϱu

pµ

]
;
[

min
1≤q≤n

ϱl
qν, max

1≤q≤n
ϱu

qν

]〉
, where min

1≤p≤m
ϱl

pµ ≤ ϱl
pµ ≤ ϱu

pµ ≤

max
1≤p≤m

ϱu
pµ, ∀ p, and min

1≤q≤m
ϱl

qν ≤ ϱl
qν ≤ ϱu

qν ≤ max
1≤q≤m

ϱu
qν, ∀ q. This ϱ̃E is termed as the min-max

enclosure of the IIHFE ϱ̃.

Based on Definition 9, we can define the min-max enclosure operator of IIHFEs.

Definition 10 (Min-max enclosure operator). Suppose ϱ̃, ϱ̃1, ϱ̃2 ∈ Ω are three IIHFEs having the

forms ϱ̃ =
〈⋃

∆[ϱ
l
µ, ϱu

µ];
⋃

∆[ϱ
l
ν, ϱu

ν ]
〉

, ϱ̃1 =
〈⋃

∆[ϱ
l
1µ, ϱu

1µ];
⋃

∆[ϱ
l
1ν, ϱu

1ν]
〉

, and

ϱ̃2 =
〈⋃

∆[ϱ
l
2µ, ϱu

2µ];
⋃

∆[ϱ
l
2ν, ϱu

2ν]
〉

. Then the min-max enclosure operators of IIHFEs are defined
as follows:
Min-max enclosure sum:

ϱ̃1 + ϱ̃2 =
〈[

1 −
(

1 − min ϱl
1µ

)(
1 − min ϱl

2µ

)
, 1 −

(
1 − max ϱu

1µ

)(
1 − max ϱu

2µ

)]
;[(

min ϱl
1ν

)(
min ϱl

2ν

)
,
(

max ϱu
1ν

)(
max ϱu

2ν

)]〉
.

Min-max enclosure product:

ϱ̃1 × ϱ̃2 =
〈[(

min ϱl
1µ

)(
min ϱl

2µ

)
,
(

max ϱu
1µ

)(
max ϱu

2µ

)]
;[

1 −
(

1 − min ϱl
1ν

)(
1 − min ϱl

2ν

)
, 1 −

(
1 − max ϱu

1ν

)(
1 − max ϱu

2ν

)]〉
.

Min-max enclosure scalar product: For any scalar δ > 0,

δϱ̃ =
〈[

1 −
(

1 − min ϱl
µ

)δ
, 1 −

(
1 − max ϱu

µ

)δ]
;
[(

min ϱl
ν

)δ
,
(

max ϱu
ν

)δ]〉
.

Min-max enclosure index: For any scalar δ > 0,

(ϱ̃)δ =
〈[(

min ϱl
µ

)δ
,
(

max ϱu
µ

)δ]
;
[
1 −

(
1 − min ϱl

ν

)δ
, 1 −

(
1 − max ϱu

1ν

)δ]〉
.
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Let us take two IIHFEs ϱ̃1 = ⟨[0.60, 0.70]; [0.30, 0.40], [0.35, 0.50]⟩, ϱ̃2 = ⟨[0.40, 0.50],
[0.45, 0.50]; [0.25, 0.30], [0.35, 0.40]⟩ and a scalar δ = 0.8. Hence, the min-max enclosure sum,
min-max enclosure product, min-max enclosure scalar product, and min-max enclosure
index of these two IIHFEs are calculated as follows:

ϱ̃1 + ϱ̃2 = ⟨[0.60, 0.70]; [0.30, 0.40], [0.35, 0.50]⟩+ ⟨[0.40, 0.50], [0.45, 0.50]; [0.25, 0.30], [0.35, 0.40]⟩
= ⟨[0.76, 0.85]; [0.07, 0.20]⟩

ϱ̃1 × ϱ̃2 = ⟨[0.60, 0.70]; [0.30, 0.40], [0.35, 0.50]⟩ × ⟨[0.40, 0.50], [0.45, 0.50]; [0.25, 0.30], [0.35, 0.40]⟩
= ⟨[0.25, 0.35]; [0.47, 0.70]⟩

0.8ϱ̃1 = 0.8⟨[0.60, 0.70]; [0.30, 0.40], [0.35, 0.50]⟩ = ⟨[0.52, 0.62]; [0.38, 0.57]⟩
(ϱ̃1)

0.8 = (⟨[0.60, 0.70]; [0.30, 0.40], [0.35, 0.50]⟩)0.8 = ⟨[0.66, 0.75]; [0.25, 0.43]⟩

Definition 11 (Min-max enclosure aggregation operator). Let ϱ̃1, ϱ̃2, . . . ϱ̃m ∈ Ω be a collection
of m number of IIHFEs and ω = (ω1, ω2, . . . , ωm) be the set of weight vectors, such that each ωp

is associated with each ϱ̃p (t = 1, 2, . . . , m) with
m
∑

p=1
ωp = 1. Hence, interval-valued intuitionistic

hesitant fuzzy weighted min-max enclosure aggregation operator (IIHFWMEAO) is defined as a
mapping from Ωm to Ω, such that

I IHFWMEAO(ϱ̃1, ϱ̃2, . . . , ϱ̃m) =
m

∑
p=1

ωpϱ̃p.

Theorem 1. Let ϱ̃p (p = 1, 2, . . . , m) be a collection of m number of IIHFEs and ω = (ω1, ω2, . . . , ωm)
be the set of weight vectors. Suppose each ωp is associated with each ϱ̃p for p = 1, 2, . . . , m, with

m
∑

p=1
ωp = 1. Then the aggregation operator IIHFWMEAO is calculated as

I IHFWMEAO(ϱ̃1, ϱ̃2, . . . , ϱ̃m) =
m

∑
p=1

ωpϱ̃p

=
〈[

1 −
m

∏
p=1

(1 − ϱl
pµ
)ωp , 1 −

m

∏
p=1

(1 − ϱu
pµ)

ωp
]
;
[ m

∏
p=1

(ϱl
pν
),

m

∏
p=1

(ϱu
pν)

]〉
(1)

where ϱl
pµ

= min ϱl
pµ, ϱu

pµ = max ϱu
pµ, ϱl

pν
= min ϱl

pν and ϱu
pν = max ϱu

pν.

Proof. Let ϱ̃1, ϱ̃2 ∈ Ω be two IIHFEs. ω1 and ω2 are the assigned weights associated with
these two IIHFEs, respectively. Then by Definition 10,

ω1 ϱ̃1 + ω2 ϱ̃2 = ω1

{〈⋃
∆

[ϱl
1µ, ϱu

1µ];
⋃
∆

[ϱl
1ν, ϱu

1ν]
〉}

+ ω2

{〈⋃
∆

[ϱl
2µ, ϱu

2µ];
⋃
∆

[ϱl
2ν, ϱu

2ν]
〉}

=
{〈[

1 −
(

1 − min ϱl
1µ

)ω1
, 1 −

(
1 − max ϱu

1µ

)ω1
]
;
[(

min ϱl
1ν

)ω1
,
(

max ϱu
1ν

)ω1
]〉}

+{〈[
1 −

(
1 − min ϱl

2µ

)ω2
, 1 −

(
1 − max ϱu

2µ

)ω2]
;
[(

min ϱl
2ν

)ω2
,
(

max ϱu
2ν

)ω2]〉}
=

〈[
1 −

(
1 − min ϱl

1µ

)ω1
(

1 − min ϱl
2µ

)ω2
, 1 −

(
1 − max ϱu

1µ

)ω1
(

1 − max ϱu
2µ

)ω2]
;[(

min ϱl
1ν

)ω1
(

min ϱl
2ν

)ω2
,
(

max ϱu
1ν

)ω1
(

max ϱu
2ν

)ω2]〉
which shows that the statement assigned in Equation (1) holds for p = 2.

We now assume that the statement holds for p = t (let t be a natural number less than
m), i.e.,

t

∑
p=1

ωp ϱ̃p =
〈[

1 −
t

∏
p=1

(
1 − min ϱl

pµ

)ωp
, 1 −

t

∏
p=1

(
1 − max ϱu

pµ

)ωp ]
;
[ t

∏
p=1

(
min ϱl

pν

)ωp
,

t

∏
p=1

(
max ϱu

pν

)ωp ]〉
Now, for p = t + 1,
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t+1

∑
p=1

ωp ϱ̃p =
{ t

∑
p=1

ωp ϱ̃p

}
+ ωt+1ϱ̃t+1

=
{〈[

1 −
t

∏
p=1

(
1 − min ϱl

pµ

)ωp
, 1 −

t

∏
p=1

(
1 − max ϱu

pµ

)ωp ]
;
[ t

∏
p=1

(
min ϱl

pν

)ωp
,

t

∏
p=1

(
max ϱu

pν

)ωp ]〉}
+

{〈[
1 −

(
1 − min ϱl

(t+1)µ

)ωt+1
, 1 −

(
1 − max ϱu

(t+1)µ

)ωt+1
]
;
[(

min ϱl
(t+1)ν

)ωt+1
,
(

max ϱu
(t+1)ν

)ωt+1
]〉}

=
〈[

1 −
t+1

∏
p=1

(
1 − min ϱl

pµ

)ωp
, 1 −

t+1

∏
p=1

(
1 − max ϱu

pµ

)ωp ]
;
[ t+1

∏
p=1

(
min ϱl

pν

)ωp
,

t+1

∏
p=1

(
max ϱu

pν

)ωp ]〉
Thus, we conclude that the statement holds for all natural numbers m, using the

principle of mathematical induction. Consequently, we have
m

∑
p=1

ωp ϱ̃p =
〈[

1 −
m

∏
p=1

(1 − ϱl
pµ
)ωp , 1 −

m

∏
p=1

(1 − ϱl
pµ)

ωp
]
;
[ m

∏
p=1

(ϱl
pν
),

m

∏
p=1

(ϱu
pν)

]〉
where ϱl

pµ
= min ϱl

pµ, ϱu
pµ = max ϱu

pµ, ϱl
pν

= min ϱl
pν, and ϱu

pν = max ϱu
pν, which completes

the proof.

Consider three IIHFEs ϱ̃1 = ⟨[0.65, 0.70]; [0.35, 0.45], [0.35, 0.50]⟩, ϱ̃2 = ⟨[0.40, 0.50], [0.42,
0.55]; [0.25, 0.30], [0.20, 0.40]⟩, and ϱ̃3 = ⟨[0.35, 0.40], [0.35, 0.50]; [0.50, 0.60], [0.45, 0.60]⟩. Fur-
thermore, we assign three weights ω1 = 0.4, ω2 = 0.2, and ω3 = 0.4 corresponding to
ϱ̃1, ϱ̃1, and ϱ̃1, respectively. Hence, these three IIHFEs can be aggregated as

ϱ̃ = ω1ϱ̃1 + ω2ϱ̃2 + ω3ϱ̃3

= 0.4⟨[0.65, 0.70]; [0.35, 0.45], [0.35, 0.50]⟩+ 0.2⟨[0.40, 0.50], [0.42, 0.55]; [0.25, 0.30], [0.20, 0.40]⟩
+0.4⟨[0.35, 0.40], [0.35, 0.50]; [0.50, 0.60], [0.45, 0.60]⟩

= ⟨[0.5006, 0.6009]; [0.3460, 0.5144]⟩

Let us suppose that P̃, Q̃, and R̃ are three sets of IIHFEs. Furthermore, ϱ̃ap ∈ P̃, ϱ̃bp ∈
Q̃, ϱ̃p ∈ R̃ for (p = 1, 2, . . . , m). It can be easily verified that the proposed aggregation
operator satisfies the following properties:

(i) Monotonicity: If ϱ̃ap ≤I IHF ϱ̃bp, for p = 1, 2, . . . , m, then
m
∑

p=1
ωpϱ̃ap ≤I IHF

m
∑

p=1
ωpϱ̃bp.

(ii) Idempotency:
m
∑

p=1
ωpϱ̃ap =I IHF ϱ̃p, if ϱ̃ap =I IHF ϱ̃p for p = 1, 2, . . . , m.

(iii) Boundedness: min
1≤p≤m

ϱ̃p ≤I IHF
m
∑

p=1
ωpϱ̃p ≤I IHF max

1≤p≤m
ϱ̃p.

In light of Definition 7, we may define a new score function and an accuracy function
of the aggregated IIHFEs as follows.

Definition 12. The score function and accuracy function based on the min-max enclosure operator
of the aggregated IIHFEs are defined as

ScI IHFWMEAO

( m

∑
p=1

ωpϱ̃p

)
=

1
2

[(
2 −

m

∏
p=1

(1 − ϱl
pµ
)ωp +

m

∏
p=1

(1 − ϱl
pµ)

ωp
)
−

( m

∏
p=1

(ϱl
pν
) +

m

∏
p=1

(ϱu
pν)

)]
(2)

AcI IHFWMEAO

( m

∑
p=1

ωpϱ̃p

)
=

1
2

[(
2 −

m

∏
p=1

(1 − ϱl
pµ
)ωp +

m

∏
p=1

(1 − ϱl
pµ)

ωp
)
+

( m

∏
p=1

(ϱl
pν
) +

m

∏
p=1

(ϱu
pν)

)]
. (3)

4. Matrix Games with IIHFE Payoffs

Suppose two players, viz., XA and XB, are involved in a matrix game. Let us as-
sume that the pure strategies for Player XA are denoted by SI = {αp|p = 1, 2, . . . , m}.
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SI I = {βq|q = 1, 2, . . . , n} represents the same for Player XB. Furthermore, assume two sets
Y and Z with the representations

Y = {y = (y1, y2, ...ym)
T ∈ ℜm+|

m

∑
p=1

yp = 1}

and Z = {z = (z1, z2, ...zn)
T ∈ ℜn+|

n

∑
q=1

zq = 1}.

Here, Y and Z are considered as the set of mixed strategies for Players XA and XB.
ℜm+ represents the m-dimensional Euclidean space, while ℜn+ denotes n-dimensional
Euclidean space. It is customary to assume that Player XA is the maximizing player and
Player XB is the minimizing player. In this game, if Player XA chooses pure strategy
αp(∈ SI) to maximize their gain and simultaneously, Player XB takes βq(∈ SI I) as their
pure strategy to minimize their loss, then the outcome of the game will be ⟨αp, βq⟩ = ϱ̃pq,
the pqth entry of the payoff matrix Γ̃. The payoff matrix Γ̃ is considered as the outcome of
Player XA. ϱ̃pq gathers asymmetric information in a possible range of players’ hesitancy
in terms of their acceptance and nonacceptance. Hence, ϱ̃pq is in the form of an IIHFE,

where ϱ̃pq =
〈
∪∆

[
ϱl

pqµ, ϱu
pqµ

]
;∪∆

[
ϱl

pqν, ϱu
pqν

]〉
. Consequently, the payoff matrix can be

symbolized as

Γ̃ =
(

ϱ̃pq

)
m×n

=
(〈

∪∆

[
ϱl

pqµ, ϱu
pqµ

]
;∪∆

[
ϱl

pqν, ϱu
pqν

]〉)
m×n

.

Thus, we can express the game with IIHFE payoffs as H̃ =
(

Y, Z, Γ̃
)

.
If Player XA takes y and Player XB takes z as their mixed strategies, then the expected

payoff of the maximizing player will be

Ẽ(y, z) = yT Γ̃z =
m

∑
p=1

n

∑
q=1

yp

(〈
∪∆

[
ϱl

pqµ, ϱu
pqµ

]
;∪∆

[
ϱl

pqν, ϱu
pqν

]〉)
zq.

Using Theorem 1, the aggregated expected payoff can be obtained as

Ẽ(y, z) =
〈[

1 −
m

∏
p=1

n

∏
q=1

(
1 − ϱl

pqµ

)ypzq
, 1 −

m

∏
p=1

n

∏
q=1

(
1 − ϱu

pqµ

)ypzq]
;

[ m

∏
p=1

n

∏
q=1

(
ϱl

pqν

)ypzq
,

m

∏
p=1

n

∏
q=1

(
ϱu

pqν

)ypzq]〉
. (4)

Motivated by the work of Li [6], we may conceptualize the solution of the matrix game
with payoffs of IIHFEs as follows.

Definition 13. Suppose ˆ̃η and ˆ̃ζ are two IIHFEs. If there are some ŷ ∈ Y and ẑ ∈ Z such that for
any other y ∈ Y and z ∈ Z they satisfy the requirements ŷT Γ̃z ≥I IHF ˆ̃η and yT Γ̃ẑ ≥I IHF

ˆ̃ζ, then
(ŷ, ẑ, ˆ̃η, ˆ̃ζ) is said to be the reasonable solution of the matrix game H̃ with payoffs of IIHFEs.

Here, ŷ, and ẑ are termed as the reasonable strategies for Player XA and Player XB,
respectively, whereas ˆ̃η and ˆ̃ζ are said to be the reasonable values of the players.

Definition 14. Let us consider two sets, VA and VB, as the collection of all reasonable solutions
of Player XA and Player XB, respectively. Suppose η̃∗ and ζ̃∗ are two IIHFEs such that η̃∗ ∈ VA

and ζ̃∗ ∈ VB. If there exist no such ˆ̃η and ˆ̃ζ satisfying ˆ̃η ≥I IHF η̃∗ and ˆ̃ζ ≤I IHF ζ̃∗, then the set
(y∗, z∗, η̃∗, ζ̃∗) is called the optimal solution of the matrix game H̃.
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The strategy y∗ is called the maximin strategy for Player XA, and similarly, z∗ is termed
as the minimax strategy for Player XB. Furthermore, these η̃∗ and ζ̃∗ are called the values
of the game for Players XA and XB, respectively.

Let Player XB choose a pure strategy βq and Player XA pick up the mixed strategy
y ∈ Y, then Player XA’s expected payoff reduces to

Ẽq =
〈[

1 −
m

∏
p=1

(
1 − ϱl

pqµ

)yp
, 1 −

m

∏
p=1

(
1 − ϱu

pqµ

)yp]
;
[ m

∏
p=1

(
ϱl

pqν

)yp
,

m

∏
p=1

(
ϱu

pqν

)yp]〉
.

The minimum of Ẽq is calculated as

Φ̃ =
〈[

ϕl−
µ , ϕu+

µ

]
;
[
ϕl−

ν , ϕu+
ν

]〉
=

〈
min

q

{[
1 −

m

∏
p=1

(
1 − ϱl

pqµ

)yp
, 1 −

m

∏
p=1

(
1 − ϱu

pqµ

)yp]}
; max

q

{[ m

∏
p=1

(
ϱl

pqν

)yp
,

m

∏
p=1

(
ϱu

pqν

)yp]}〉
.

From the aforementioned expression, it is seen that Φ̃ is a function of y. Now Player
XA should opt y∗ ∈ Y to maximize this Φ̃, i.e., to obtain

Φ̃∗ = Φ̃(y∗) =
〈[

ϕ∗l−
µ , ϕ∗u+

µ

]
;
[
ϕ∗l−

ν , ϕ∗u+
ν

]〉
=

〈
max
y∈Y

min
q

{[
1 −

m

∏
p=1

(
1 − ϱl

pqµ

)yp
, 1 −

m

∏
p=1

(
1 − ϱu

pqµ

)yp]}
;

min
y∈Y

max
q

{[ m

∏
p=1

(
ϱl

pqν

)yp
,

m

∏
p=1

(
ϱu

pqν

)yp]}〉
. (5)

By the knowledge of the definition of IIHFE (4) and its mathematical operations (5),
we can say that Φ̃∗ is an IIHFE. Such y∗ is termed as the maximin strategy for Player XA
and Φ̃∗ is said to be the gain floor for Player XA.

Similarly, if Player XA takes pure strategy αp and Player XB chooses z ∈ Z as a mixed
strategy, then Player XB’s expected payoff is transformed into

Ẽp =
〈[

1 −
n

∏
q=1

(
1 − ϱl

pqµ

)zq
, 1 −

n

∏
q=1

(
1 − ϱu

pqµ

)zq]
;
[ n

∏
q=1

(
ϱl

pqν

)zq
,

n

∏
q=1

(
ϱu

pqν

)zq]〉
.(6)

The maximum of Ẽp is calculated as

Ψ̃ =
〈[

ψl−
µ , ψu+

µ

]
;
[
ψl−

ν , ψu+
ν

]〉
=

〈
max

p

{[
1 −

n

∏
q=1

(
1 − ϱl

pqµ

)zq
, 1 −

n

∏
q=1

(
1 − ϱu

pqµ

)zq ]}
; min

p

{[ n

∏
q=1

(
ϱl

pqν

)zq
,

n

∏
q=1

(
ϱu

pqν

)zq ]}〉
.

Obviously, the function Ψ̃ depends only on z. In this scenario, Player XB should choose
z∗ ∈ Z to minimize this Ψ̃, i.e., to obtain

Ψ̃∗ = Ψ̃(z∗) =
〈[

ψ∗l−
µ , ψ∗u+

µ

]
;
[
ψ∗l−

ν , ψ∗u+
ν

]〉
=

〈
min
z∈Z

max
p

{[
1 −

n

∏
q=1

(
1 − ϱl

pqµ

)zq
, 1 −

n

∏
q=1

(
1 − ϱu

pqµ

)zq]}
;

max
z∈Z

min
p

{[ n

∏
q=1

(
ϱl

pqν

)zq
,

n

∏
q=1

(
ϱu

pqν

)zq]}〉
. (7)

Clearly, Ψ̃∗ is an IIHFE. This z∗ is termed as the minimax strategy for Player XB, and
Ψ̃∗ is said to be the loss ceiling for Player XB.
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Theorem 2. If Φ̃∗ is the gain of Player XA and Ψ̃∗ is the loss of Player XB, then Φ̃∗ ≤I IHF Ψ̃∗.

Proof. It is obvious that max
q

{ m
∑

p=1
yp ln

(
1 − ϱl

pqµ

)}
≥

m
∑

p=1
yp ln

(
1 − ϱl

pqµ

)
.

This implies

max
q

{ m

∑
p=1

yp ln
(

1 − ϱl
pqµ

)}
≥

n

∑
q=1

( m

∑
p=1

yp ln
(

1 − ϱl
pqµ

))
zq [as, zq ≥ 0 ∀ q,

n

∑
q=1

zq = 1]

i.e., max
q

{ m

∑
p=1

yp ln
(

1 − ϱl
pqµ

)}
≥

m

∑
p=1

n

∑
q=1

ypzq ln
(

1 − ϱl
pqµ

)
. (8)

Furthermore, we have
n
∑

q=1
zq ln

(
1 − ϱl

pqµ

)
≥ minp

{ n
∑

q=1
zq ln

(
1 − ϱl

pqµ

)}
.

This implies

m

∑
p=1

( n

∑
q=1

zq ln
(

1 − ϱl
pqµ

))
yp ≥ min

p

{ n

∑
q=1

zq ln
(

1 − ϱl
pqµ

)}
[as, yp ≥ 0 ∀ p,

m

∑
p=1

yp = 1]

i.e.,
m

∑
p=1

n

∑
q=1

ypzq ln
(

1 − ϱl
pqµ

)
≥ min

p

{ n

∑
q=1

zq ln
(

1 − ϱl
pqµ

)}
. (9)

Combining Equations (8) and (9), we have

max
q

{ m

∑
p=1

yp ln
(

1 − ϱl
pqµ

)}
≥

m

∑
p=1

n

∑
q=1

ypzq ln
(

1 − ϱl
pqµ

)
≥ min

p

{ n

∑
q=1

zq ln
(

1 − ϱl
pqµ

)}
i.e., max

q

{ m

∑
p=1

yp ln
(

1 − ϱl
pqµ

)}
≥ min

p

{ n

∑
q=1

zq ln
(

1 − ϱl
pqµ

)}
i.e., max

q

{ m

∏
p=1

(
1 − ϱl

pqµ

)yp}
≥ min

p

{ n

∏
q=1

(
1 − ϱl

pqµ

)zq}
Hence, min

y∈Y
max

q

{ m

∏
p=1

(
1 − ϱl

pqµ

)yp}
≥ max

z∈Z
min

p

{ n

∏
q=1

(
1 − ϱl

pqµ

)zq}
.

Thus, max
y∈Y

min
q

{
1 −

m

∏
p=1

(
1 − ϱl

pqµ

)yp}
≥ min

z∈Z
max

p

{
1 −

n

∏
q=1

(
1 − ϱl

pqµ

)zq}
. (10)

Similarly, we can show that

max
y∈Y

min
q

{
1 −

m

∏
p=1

(
1 − ϱu

pqµ

)yp}
≥ min

z∈Z
max

p

{
1 −

n

∏
q=1

(
1 − ϱu

pqµ

)zq}
. (11)

Again, max
q

{ m

∑
p=1

yp ln
(

ϱl
pqν

)}
≥

m

∑
p=1

yp ln
(

ϱl
pqν

)
implies

max
q

{ m

∑
p=1

yp ln
(

ϱl
pqν

)}
≥

n

∑
q=1

( m

∑
p=1

yp ln
(

ϱl
pqν

))
zq [as, zq ≥ 0 ∀ q,

n

∑
q=1

zq = 1]

i.e., max
q

{ m

∑
p=1

yp ln
(

ϱl
pqν

)}
≥

m

∑
p=1

n

∑
q=1

ypzq ln
(

ϱl
pqν

)
. (12)

Furthermore,
n

∑
q=1

zq ln
(

ϱl
pqν

)
≥ min

p

{ n

∑
q=1

zq ln
(

ϱl
pqν

)}
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implies

m

∑
p=1

( n

∑
q=1

zq ln
(

ϱl
pqν

))
yp ≥ min

p

{ n

∑
q=1

zq ln
(

ϱl
pqν

)}
[as, yp ≥ 0 ∀ p,

m

∑
p=1

yp = 1]

i.e.,
m

∑
p=1

n

∑
q=1

ypzq ln
(

ϱl
pqν

)
≥ min

p

{ n

∑
q=1

zq ln
(

ϱl
pqν

)}
. (13)

Combining Equations (12) and (13), we have

max
q

{ m

∑
p=1

yp ln
(

ϱl
pqν

)}
≥

m

∑
p=1

n

∑
q=1

ypzq ln
(

ϱl
pqν

)
≥ min

p

{ n

∑
q=1

zq ln
(

ϱl
pqν

)}
i.e., max

q

{ m

∑
p=1

yp ln
(

ϱl
pqν

)}
≥ min

p

{ n

∑
q=1

zq ln
(

ϱl
pqν

)}
i.e., max

q

{ m

∏
p=1

(
ϱl

pqν

)yp}
≥ min

p

{ n

∏
q=1

(
ϱl

pqν

)zq}
.

Hence, min
z∈Z

max
q

{ m

∏
p=1

(
ϱl

pqν

)yp}
≥ max

z∈Z
min

p

{ n

∏
q=1

(
ϱl

pqν

)zq}
. (14)

By an similar argument, we show the following:

min
z∈Z

max
q

{ m

∏
p=1

(
ϱu

pqν

)yp}
≥ max

z∈Z
min

p

{ n

∏
q=1

(
ϱu

pqν

)zq}
(15)

Thus, from Equations (10), (11), (14), and (15), we may write

{1
2

[
max
y∈Y

min
q

{
1 −

m

∏
p=1

(
1 − ϱl

pqµ

)yp}
+ max

y∈Y
min

q

{
1 −

m

∏
p=1

(
1 − ϱu

pqµ

)yp}]
−

1
2

[
min
y∈Y

max
q

{ m

∏
p=1

(
ϱl

pqν

)yp}
+ min

y∈Y
max

q

{ m

∏
p=1

(
ϱu

pqν

)yp}]}
≤

{1
2

[
min
z∈Z

max
p

{
1 −

n

∏
q=1

(
1 − ϱl

pqµ

)zq}
+ min

z∈Z
max

p

{
1 −

n

∏
q=1

(
1 − ϱu

pqµ

)zq}]
−

1
2

[
max
z∈Z

min
p

{ n

∏
q=1

(
ϱl

pqν

)zq}
+ max

z∈Z
min

p

{ n

∏
q=1

(
ϱu

pqν

)zq}]}
.

This relation implies ScI IHFWMEAO(Φ̃∗) ≤ ScI IHFWMEAO(Ψ̃∗) (by Definition 12). Thus, by
the ranking property of IIHFEs, we have Φ̃∗ ≤I IHF Ψ̃∗, which completes the theorem.

Now, according to Equation (5) and Definitions 13 and 14, to obtain the maximin
strategy y∗ and the gain floor Φ̃∗, we have to solve the following bi-objective interval-
valued intuitionistic hesitant fuzzy programming model (BOIIHFPM):
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max
{[

ϕl−
µ , ϕu+

µ

]}
, min

{[
ϕl−

ν , ϕu+
ν

]}
subject to

[
1 −

m

∏
p=1

(
1 − ϱl

pqµ

)yp
, 1 −

m

∏
p=1

(
1 − ϱu

pqµ

)yp]
≥I IHF

[
ϕl−

µ , ϕu+
µ

]
(q = 1, 2, . . . , n)

[ m

∏
p=1

(
ϱl

pqν

)yp
,

m

∏
p=1

(
ϱl

pqν

)yp]
≤I IHF

[
ϕl−

ν , ϕu+
ν

]
(q = 1, 2, . . . , n)

0 ≤ ϕl−
µ , ϕu+

µ , ϕl−
ν , ϕu+

ν ≤ 1
m

∑
p=1

yp = 1, yp ≥ 0 (p = 1, 2, . . . , m). (16)

Again, according to Equation (7) and Definitions 13 and 14, to calculate the minimax
strategy z∗ and the loss ceiling Ψ̃∗ for Player XB, we have to solve the following BOIIHFPM:

min
{[

ψl−
µ , ψu+

µ

]}
, max

{[
ψl−

ν , ψu+
ν

]}
subject to

[
1 −

n

∏
q=1

(
1 − ϱl

pqµ

)zq
, 1 −

n

∏
q=1

(
1 − ϱu

pqµ

)zq]
≤I IHF

[
ψl−

µ , ψu+
µ

]
(p = 1, 2, . . . , m)

[ n

∏
q=1

(
ϱl

pqν

)zq
,

n

∏
q=1

(
ϱu

pqν

)zq]
≥I IHF

[
ψl−

ν , ψu+
ν

]
(p = 1, 2, . . . , m)

0 ≤ ψl−
µ , ψu+

µ , ψl−
ν , ψu+

ν ≤ 1
n

∑
q=1

zq = 1, zq ≥ 0 (q = 1, 2, . . . , n). (17)

It is not a facile task to evaluate the optimal solutions of the BOIIHFPMs, as depicted
in Problems (16) and (17). Thus, we have to find a way out so that it becomes easier to
calculate the expected result of the problem. Keeping all these in mind, we extend the
methodology proposed by Li [6] for intuitionistic payoffs in hesitant fuzzy scenarios.

For 0 ≤ ϕl−
µ , ϕu+

µ ≤ 1, it is clear that (max{[ϕl−
µ , ϕu+

µ ]}) is equivalent to (min{[1 −
ϕu+

µ , 1− ϕl−
µ ]}). Thus, by the weighted average method, the objective function of Problem (16)

transforms into (min{τ[1 − ϕu+
µ , 1 − ϕl−

µ ] + (1 − τ)[ϕl−
ν , ϕu+

ν ]}). As each interval assigned
here is some IIHFE, this addition must follow the rule of addition of IIHFEs (as defined by
Chen and Xu [41]). Hence, the objective function will be

min
{[

1 −
(

ϕu+
µ

)τ(
ϕl−

ν

)1−τ
, 1 −

(
ϕl−

µ

)τ(
ϕu+

ν

)1−τ]}
(18)

where τ is a weight, which takes values from [0, 1]. This τ stands for the perception
parameters of the player’s choice, which is completely assigned by the players.

Again, [1 − ∏m
p=1(1 − ϱl

pqµ
)yp , 1 − ∏m

p=1(1 − ϱu
pqµ)

yp ] ≥I IHF [ϕl−
µ , ϕu+

µ ] implies

[∏m
p=1(1 − ϱu

pqµ)
yp , ∏m

p=1(1 − ϱl
pqµ

)yp ] ≤I IHF [1 − ϕu+
µ , 1 − ϕl−

µ ] for q = 1, 2, . . . , n, as

0 ≤ 1 − ∏m
p=1(1 − ϱl

pqµ
)yp , 1 − ∏m

p=1(1 − ϱu
pqµ)

yp , ϕl−
µ , ϕu+

µ ≤ 1. Furthermore, we have

[∏m
p=1(ϱ

l
pqν

)yp , ∏m
p=1(ϱ

u
pqν)

yp ] ≤I IHF [ϕl−
ν , ϕu+

ν ] for q = 1, 2, . . . , n. Thus, utilizing the weights,

we can aggregate the constraints of Problem (16) as

τ
[ m

∏
p=1

(
1 − ϱu

pqµ

)yp
,

m

∏
p=1

(
1 − ϱl

pqµ

)yp ]
+ (1 − τ)

[ m

∏
p=1

(
ϱl

pqν

)yp
,

m

∏
p=1

(
ϱu

pqν

)yp ]
≤I IHF

τ
[
1 − ϕu+

µ , 1 − ϕl−
µ

]
+ (1 − τ)

[
ϕl−

ν , ϕu+
ν

]
, q = 1, 2, . . . , n.
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Upon calculation, this gives[
1 −

{ m

∏
p=1

(
1 − ϱu

pqµ

)τyp}{
1 −

m

∏
p=1

(
ϱl

pqν

)yp}1−τ
, 1 −

{ m

∏
p=1

(
1 − ϱl

pqµ

)τyp}{
1 −

m

∏
p=1

(
ϱu

pqν

)yp}1−τ]
≤

[
1 −

(
ϕu+

µ

)τ(
ϕl−

ν

)1−τ
, 1 −

(
ϕl−

µ

)τ(
ϕu+

ν

)1−τ]
, q = 1, 2, . . . , n.

From this, we can say that

1 −
{ m

∏
p=1

(
1 − ϱu

pqµ

)τyp}{
1 −

m

∏
p=1

(
ϱl

pqν

)yp}1−τ
≤ 1 −

(
ϕu+

µ

)τ(
ϕl−

ν

)1−τ
(q = 1, 2, . . . , n)

1 −
{ m

∏
p=1

(
1 − ϱl

pqµ

)τyp}{
1 −

m

∏
p=1

(
ϱu

pqν

)yp}1−τ
≤ 1 −

(
ϕl−

µ

)τ(
ϕu+

ν

)1−τ
(q = 1, 2, . . . , n)

0 ≤ ϕl−
µ , ϕu+

µ , ϕl−
ν , ϕu+

ν ≤ 1
m

∑
p=1

yp = 1, yp ≥ 0 (p = 1, 2, . . . , m). (19)

Combining the objective function (18) with the constraint (19), Problem (16) may be
transformed into the following interval-valued mathematical programming problem:

min
{[

1 −
(

ϕu+
µ

)τ(
ϕl−

ν

)1−τ
, 1 −

(
ϕl−

µ

)τ(
ϕu+

ν

)1−τ]}
subject to 1 −

{ m

∏
p=1

(
1 − ϱu

pqµ

)τyp}{
1 −

m

∏
p=1

(
ϱl

pqν

)yp}1−τ
≤ 1 −

(
ϕu+

µ

)τ(
ϕl−

ν

)1−τ
(q = 1, 2, . . . , n)

1 −
{ m

∏
p=1

(
1 − ϱl

pqµ

)τyp}{
1 −

m

∏
p=1

(
ϱu

pqν

)yp}1−τ
≤ 1 −

(
ϕl−

µ

)τ(
ϕu+

ν

)1−τ
(q = 1, 2, . . . , n)

0 ≤ ϕl−
µ , ϕu+

µ , ϕl−
ν , ϕu+

ν ≤ 1
m

∑
p=1

yp = 1, yp ≥ 0 (p = 1, 2, . . . , m). (20)

Let us take 1− (ϕu+
µ )τ(ϕl−

ν )1−τ = ϕl and 1− (ϕl−
µ )τ(ϕu+

ν )1−τ = ϕu. Clearly, ϕl , ϕu ≥ 0.
Then, rewriting Problem (20), we have

min
{[

ϕl , ϕu
]}

subject to 1 −
{ m

∏
p=1

(
1 − ϱu

pqµ

)τyp}{
1 −

m

∏
p=1

(
ϱl

pqν

)yp}1−τ
≤ ϕl (q = 1, 2, . . . , n)

1 −
{ m

∏
p=1

(
1 − ϱl

pqµ

)τyp}{
1 −

m

∏
p=1

(
ϱu

pqν

)yp}1−τ
≤ ϕu (q = 1, 2, . . . , n)

0 ≤ ϕl , ϕu ≤ 1
m

∑
p=1

yp = 1, yp ≥ 0 (p = 1, 2, . . . , m). (21)

Clearly, Problem (21) is a nonlinear programming problem having an interval ob-
jective function. According to Ishibuchi and Tanaka [43], the objective function of the
aforementioned problem can be resolved as

min
{

ϕu
}

, min
{ϕl + ϕu

2

}
. (22)
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For the sake of the computation of Problem (22), we make use of the following lemma.

Lemma 1 ([6]). Assume that D is the set of constraints, and d1, d2 ∈ D. Then the following
equalities are valid:

min
d1+d2∈D

{d1 + d2} = min
d1∈D

{d1}+ min
d2∈D

{d2} (23)

and, max
d1+d2∈D

{d1 + d2} = max
d1∈D

{d1}+ max
d2∈D

{d2}. (24)

Using Equation (23) of Lemma 1, we may say that the objective function (22) is
equivalent to the following:

min
{

ϕu
}

, min
{ϕl

2

}
+ min

{ϕu

2

}
(25)

which is equivalent to

min
{

ϕl
}

, min
{

ϕu
}

.

(26)

Thus, utilizing the objective function (26), Problem (21) can be rewritten as

min
{

ϕl
}

, min
{

ϕu
}

subject to 1 −
{ m

∏
p=1

(
1 − ϱu

pqµ

)τyp}{
1 −

m

∏
p=1

(
ϱl

pqν

)yp}1−τ
≤ ϕl (q = 1, 2, . . . , n)

1 −
{ m

∏
p=1

(
1 − ϱl

pqµ

)τyp}{
1 −

m

∏
p=1

(
ϱu

pqν

)yp}1−τ
≤ ϕu (q = 1, 2, . . . , n)

0 ≤ ϕl , ϕu ≤ 1
m

∑
p=1

yp = 1, yp ≥ 0 (p = 1, 2, . . . , m). (27)

Motivated by the work of Li [6], we can aggregate this problem as follows:

min
{ϕl + ϕu

2

}
subject to

1
2

[
1 −

{ m

∏
p=1

(
1 − ϱu

pqµ

)τyp}{
1 −

m

∏
p=1

(
ϱl

pqν

)yp}1−τ
+

1 −
{ m

∏
p=1

(
1 − ϱl

pqµ

)τyp}{
1 −

m

∏
p=1

(
ϱu

pqν

)yp}1−τ]
≤ ϕl + ϕu

2
(q = 1, 2, . . . , n)

0 ≤ ϕl , ϕu ≤ 1
m

∑
p=1

yp = 1, yp ≥ 0 (p = 1, 2, . . . , m). (28)

Substituting ϕ in place of
ϕl + ϕu

2
in Problem (28), we obtain
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min
{

ϕ
}

subject to
1
2

[
2 −

{ m

∏
p=1

(
1 − ϱu

pqµ

)τyp}{
1 −

m

∏
p=1

(
ϱl

pqν

)yp}1−τ
−

{ m

∏
p=1

(
1 − ϱl

pqµ

)τyp}{
1 −

m

∏
p=1

(
ϱu

pqν

)yp}1−τ]
≤ ϕ (q = 1, 2, . . . , n)

0 ≤ ϕ ≤ 1
m

∑
p=1

yp = 1, yp ≥ 0 (p = 1, 2, . . . , m). (29)

Now, by solving the NLPP (29), we find out the maximin strategy y∗ and the crisp
equivalent ϕ∗ of Φ̃∗ for the maximizing Player XA.

Next, we consider the BOIIHFPM (17). As 0 ≤ ψl−
µ , ψu+

µ ≤ 1, so we may say that
(min{[ψl−

µ , ψu+
µ ]}) is equivalent to (max{[1 − ψu+

µ , 1 − ψl−
µ ]}). Hence by the weighted

average method, the objective function of the fuzzy programming problem (17) can be
transformed into

max
{[

1 −
(

ψu+
µ

)τ(
ψl−

ν

)1−τ
, 1 −

(
ψl−

µ

)τ(
ψu+

ν

)1−τ]}
(30)

Again, [1 − ∏n
q=1(1 − ϱl

pqµ
)zq , 1 − ∏n

q=1(1 − ϱu
pqµ)

zq ] ≤I IHF [ψl−
µ , ψu+

µ ] implies

[∏n
q=1(1 − ϱu

pqµ)
zq , ∏n

q=1(1 − ϱl
pqµ

)zq ] ≥I IHF [1 − ψu+
µ , 1 − ψl−

µ ] for p = 1, 2, . . . , m, as

0 ≤ 1 − ∏n
q=1(1 − ϱl

pqµ
)zq , 1 − ∏n

q=1(1 − ϱu
pqµ)

zq , ψl−
µ , ψu+

µ ≤ 1. Furthermore, here we have

[∏n
q=1(ϱ

l
pqν

)zq , ∏n
q=1(ϱ

u
pqν)

zq ]≥I IHF [ψl−
ν , ψu+

ν ] for p = 1, 2, . . . , m. Thus, utilizing the weights,

we can aggregate the constraints of Problem (17) as

τ
[ n

∏
q=1

(
1 − ϱu

pqµ

)zq
,

n

∏
q=1

(
1 − ϱl

pqµ

)zq ]
+ (1 − τ)

[ n

∏
q=1

(
ϱl

pqν

)zq
,

n

∏
q=1

(
ϱu

pqν

)zq ]
≥I IHF

τ
[
1 − ψu+

µ , 1 − ψl−
µ

]
+ (1 − τ)

[
ψl−

ν , ψu+
ν

]
, p = 1, 2, . . . , m.

After simplification, we have[
1 −

{ n

∏
q=1

(
1 − ϱu

pqµ

)τzq}{
1 −

n

∏
q=1

(
ϱl

pqν

)zq}1−τ
, 1 −

{ n

∏
q=1

(
1 − ϱl

pqµ

)τzq}{
1 −

n

∏
q=1

(
ϱu

pqν

)zq}1−τ]
≥

[
1 −

(
ψu+

µ

)τ(
ψl−

ν

)1−τ
, 1 −

(
ψl−

µ

)τ(
ψu+

ν

)1−τ]
, p = 1, 2, . . . , m.

From this, we can say

1 −
{ n

∏
q=1

(
1 − ϱu

pqµ

)τzq}{
1 −

n

∏
q=1

(
ϱl

pqν

)zq}1−τ
≥ 1 −

(
ψu+

µ

)τ(
ψl−

ν

)1−τ
(p = 1, 2, . . . , m)

1 −
{ n

∏
q=1

(
1 − ϱl

pqµ

)τzq}{
1 −

n

∏
q=1

(
ϱu

pqν

)zq}1−τ
≥ 1 −

(
ψl−

µ

)τ(
ψu+

ν

)1−τ
(p = 1, 2, . . . , m)

0 ≤ ψl−
µ , ψu+

µ , ψl−
ν , ψu+

ν ≤ 1
n

∑
q=1

zq = 1, zq ≥ 0 (q = 1, 2, . . . , n). (31)

Thus, combining the objective function, depicted in Equation (30), with the constraints
given in (31), Problem (17) can be transformed into Problem (32) as
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max
{[

1 −
(

ψu+
µ

)τ(
ψl−

ν

)1−τ
, 1 −

(
ψl−

µ

)τ(
ψu+

ν

)1−τ]}
subject to 1 −

{ n

∏
q=1

(
1 − ϱu

pqµ

)τzq}{
1 −

n

∏
q=1

(
ϱl

pqν

)zq}1−τ
≥ 1 −

(
ψu+

µ

)τ(
ψl−

ν

)1−τ
(p = 1, 2, . . . , m)

1 −
{ n

∏
q=1

(
1 − ϱl

pqµ

)τzq}{
1 −

n

∏
q=1

(
ϱu

pqν

)zq}1−τ
≥ 1 −

(
ψl−

µ

)τ(
ψu+

ν

)1−τ
(p = 1, 2, . . . , m)

0 ≤ ψl−
µ , ψu+

µ , ψl−
ν , ψu+

ν ≤ 1
n

∑
q=1

zq = 1, zq ≥ 0 (q = 1, 2, . . . , n). (32)

Let us denote 1 − (ψu+
µ )τ(ψl−

ν )1−τ as ψl and 1 − (ψl−
µ )τ(ψu+

ν )1−τ as ψu, respectively.
It is clear that 0 ≤ ψl , ψu ≤ 1. Thus, rewriting Problem (32), we have

max
{[

ψl , ψu
]}

subject to 1 −
{ n

∏
q=1

(
1 − ϱu

pqµ

)τzq}{
1 −

n

∏
q=1

(
ϱl

pqν

)zq}1−τ
≥ ψl (p = 1, 2, . . . , m)

1 −
{ n

∏
q=1

(
1 − ϱl

pqµ

)τzq}{
1 −

n

∏
q=1

(
ϱu

pqν

)zq}1−τ
≥ ψu (p = 1, 2, . . . , m)

0 ≤ ψl , ψu ≤ 1
n

∑
q=1

zq = 1, zq ≥ 0 (q = 1, 2, . . . , n). (33)

Problem (33) is a nonlinear programming problem having an interval-valued objective
function. By a similar argument of the maximization Problem (21), the objective function of
(33) can be written as

max
{

ψl
}

, max
{ψl + ψu

2

}
. (34)

Utilizing Equation (24) of Lemma 1, the objective function (34) can be rewritten as

max
{

ψl
}

, max
{ψl

2

}
+ max

{ψu

2

}
(35)

which is also equivalent to

max
{

ψl
}

, max
{

ψu
}

. (36)

Thus, utilizing the objective function (36), Problem (33) can be rewritten as
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max
{

ψl
}

, max
{

ψu
}

subject to 1 −
{ n

∏
q=1

(
1 − ϱu

pqµ

)τzq}{
1 −

n

∏
q=1

(
ϱl

pqν

)zq}1−τ
≥ ψl (p = 1, 2, . . . , m)

1 −
{ n

∏
q=1

(
1 − ϱl

pqµ

)τzq}{
1 −

n

∏
q=1

(
ϱu

pqν

)zq}1−τ
≥ ψu (p = 1, 2, . . . , m)

0 ≤ ψl , ψu ≤ 1
n

∑
q=1

zq = 1, zq ≥ 0 (q = 1, 2, . . . , n). (37)

This is also a bi-objective programming problem, which can be aggregated as

max
{ψl + ψu

2

}
subject to

1
2

[
1 −

{ n

∏
q=1

(
1 − ϱu

pqµ

)τzq}{
1 −

n

∏
q=1

(
ϱl

pqν

)zq}1−τ
+

1 −
{ n

∏
q=1

(
1 − ϱl

pqµ

)τzq}{
1 −

n

∏
q=1

(
ϱu

pqν

)zq}1−τ]
≥ ψl + ψu

2
(p = 1, 2, . . . , m)

0 ≤ ψl , ψu ≤ 1
n

∑
q=1

zq = 1, zq ≥ 0 (q = 1, 2, . . . , n). (38)

Taking ψ in place of
ψl + ψu

2
in Problem (38), we obtain

max
{

ψ
}

subject to
1
2

[
2 −

{ n

∏
q=1

(
1 − ϱu

pqµ

)τzq}{
1 −

n

∏
q=1

(
ϱl

pqν

)zq}1−τ
−

{ n

∏
q=1

(
1 − ϱl

pqµ

)τzq}{
1 −

n

∏
q=1

(
ϱu

pqν

)zq}1−τ]
≥ ψ (p = 1, 2, . . . , m)

0 ≤ ψ ≤ 1
n

∑
q=1

zq = 1, zq ≥ 0 (q = 1, 2, . . . , n). (39)

Solving Problem (39), we can derive the minimax strategy z∗ and the crisp equivalent
ψ∗ of Ψ̃∗ for the minimizing Player XB.

These solutions (y∗, ϕ∗) and (z∗, ψ∗) are called the optimal solutions of the NLPPs (29)
and (39), respectively.

In order to make the solution of the matrix games with payoffs of IIHFEs, we converted
the BOIIHFPMs into two NLPPs, utilizing the mathematical operations of IIHFEs. Here an
inevitable question arises as to the acceptability of the optimal values, obtained by solving
these two NLPPs for the proposed problem. The following theorem is stated to answer
such a query.

Theorem 3. (y∗, Φ̃∗) and (z∗, Ψ̃∗) are the noninferior solutions of the interval-valued intuitionistic
hesitant fuzzy programming problems (16) and (17), respectively, for 0 ≤ τ ≤ 1, if (y∗, ϕ∗)
and (z∗, ψ∗) are the optimal solutions of the NLPPs (29) and (39), respectively, where Φ̃∗ =
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⟨[ϕ∗l−
µ , ϕ∗u+

µ ]; [ϕ∗l−
ν , ϕ∗u+

ν ]⟩ and Ψ̃∗ = ⟨[ψ∗l−
µ , ψ∗u+

µ ]; [ψ∗l−
ν , ψ∗u+

ν ]⟩, satisfying the following
relations:

ϕ∗ =
1
2
[2 − (ϕ∗u+

µ )τ(ϕ∗l−
ν )1−τ − (ϕ∗l−

µ )τ(ϕ∗u+
ν )1−τ ],

and ψ∗ =
1
2
[2 − (ψ∗u+

µ )τ(ψ∗l−
ν )1−τ − (ψ∗l−

µ )τ(ψ∗u+
ν )1−τ ].

Proof. Let us assume that (y∗, Φ̃∗) (16). Then there must exist a feasible solution (ŷ, ˆ̃Φ),
where ŷ ∈ Y and ˆ̃Φ = ⟨[ϕ̂l−

µ , ϕ̂u+
µ ]; [ϕ̂l−

ν , ϕ̂u+
ν ]⟩, such that

1 −
{ m

∏
p=1

(
1 − ϱl

pqµ

)ŷp}
≥ ϕ̂l−

µ ; 1 −
{ m

∏
p=1

(
1 − ϱu

pqµ

)ŷp}
≥ ϕ̂u+

µ , (q = 1, 2, . . . , n)

m

∏
p=1

(
ϱl

pqν

)ŷp
≤ ϕ̂l−

ν ;
m

∏
p=1

(
ϱu

pqν

)ŷp
≤ ϕ̂u+

ν , (q = 1, 2, . . . , n)

0 ≤ ϕ̂l−
µ , ϕ̂u+

µ , ϕ̂l−
ν , ϕ̂u+

ν ≤ 1
m

∑
p=1

ŷp = 1, ŷp ≥ 0(p = 1, 2, . . . , m). (40)

Furthermore,

ϕ̂l−
µ ≥ ϕ∗l−

µ , ϕ̂u+
µ ≥ ϕ∗u+

µ , ϕ̂l−
ν ≤ ϕ∗l−

ν , ϕ̂u+
ν ≤ ϕ∗u+

ν . (41)

As 0 ≤ τ ≤ 1, so from Problem (40), it is derived that

1
2

[
2 −

{ m

∏
p=1

(
1 − ϱu

pqµ

)τŷp}{
1 −

m

∏
p=1

(
ϱl

pqν

)ŷp}1−τ
−

{ m

∏
p=1

(
1 − ϱl

pqµ

)τŷp}{
1 −

m

∏
p=1

(
ϱu

pqν

)ŷp}1−τ]
≤

1
2

[
2 −

(
ϕ̂u+

µ

)τ(
ϕ̂l−

ν

)1−τ
−

(
ϕ̂l−

µ

)τ(
ϕ̂u+

ν

)1−τ]
, (q = 1, 2, . . . , n)

0 ≤ ϕ̂l−
µ , ϕ̂u+

µ , ϕ̂l−
ν , ϕ̂u+

ν ≤ 1
m

∑
p=1

ŷp = 1, ŷp ≥ 0 (p = 1, 2, . . . , m). (42)

and

1
2

[
2 −

(
ϕ∗u+

µ

)τ(
ϕ∗l−

ν

)1−τ
−

(
ϕ∗l−

µ

)τ(
ϕ∗u+

ν

)1−τ]
<

1
2

[
2 −

(
ϕ̂u+

µ

)τ(
ϕ̂l−

ν

)1−τ
−

(
ϕ̂l−

µ

)τ(
ϕ̂u+

ν

)1−τ]
. (43)

Let us take ϕ̂ = 1
2 [2 − (ϕ̂u+

µ )τ(ϕ̂l−
ν )1−τ − (ϕ̂l−

µ )τ(ϕ̂u+
ν )1−τ ]. Thus, Problem (42) can be

written as

1
2

[
2 −

{ m

∏
p=1

(
1 − ϱu

pqµ

)τŷp}{
1 −

m

∏
p=1

(
ϱl

pqν

)ŷp}1−τ
−

{ m

∏
p=1

(
1 − ϱl

pqµ

)τŷp}{
1 −

m

∏
p=1

(
ϱu

pqν

)ŷp}1−τ]
≤ ϕ̂,

(q = 1, 2, . . . , n)

0 ≤ ϕ̂l−
µ , ϕ̂u+

µ , ϕ̂l−
ν , ϕ̂u+

ν ≤ 1
m

∑
p=1

ŷp = 1, ŷp ≥ 0 (p = 1, 2, . . . , m). (44)

Now, Problem (40) shows that (ŷ, ϕ̂) is a feasible solution of Problem (29). Furthermore,
from Equation (41), we have ϕ̂ < ϕ∗, which makes a contradiction to the fact that (y∗, ϕ∗)



Symmetry 2024, 16, 573 19 of 30

is the optimal solution of (29). Thus, our assumption was wrong and thereafter, we may
conclude that if (y∗, ϕ∗) is the optimal solution of the NLPP (29), then (y∗, Φ̃∗) is the
noninferior solution of the interval-valued hesitant fuzzy programming problem (16) for
0 ≤ τ ≤ 1.

Similarly, assume that (z∗, Ψ̃∗) is not a noninferior solution of the BOIIHFPM (17).
Then there exists a feasible solution (ẑ, ˆ̃Ψ), where ẑ ∈ Z and ˆ̃Ψ = ⟨[ψ̂l−

µ , ψ̂u+
µ ]; [ψ̂l−

ν , ψ̂u+
ν ]⟩,

such that

1 −
{ n

∏
q=1

(
1 − ϱl

pqµ

)ẑq}
≤ ψ̂l−

µ ; 1 −
{ n

∏
q=1

(
1 − ϱu

pqµ

)ẑq}
≤ ψ̂u+

µ , (p = 1, 2, . . . , m)

n

∏
q=1

(
ϱl

pqν

)ẑq
≥ ψ̂l−

ν ;
n

∏
q=1

(
ϱu

pqν

)ẑq
≥ ψ̂u+

ν , (p = 1, 2, . . . , m)

0 ≤ ψ̂l−
µ , ψ̂u+

µ , ψ̂l−
ν , ψ̂u+

ν ≤ 1
n

∑
q=1

ẑq = 1, ẑq ≥ 0(q = 1, 2, . . . , n). (45)

Furthermore,

ψ̂l−
µ ≤ ϕ∗l−

µ , ψ̂u+
µ ≤ ϕ∗u+

µ , ψ̂l−
ν ≥ ϕ∗l−

ν , ψ̂u+
ν ≥ ϕ∗u+

ν . (46)

Since 0 ≤ τ ≤ 1, from Problem (45), it is therefore derived that

1
2

[
2 −

{ n

∏
q=1

(
1 − ϱu

pqµ

)τẑq}{
1 −

n

∏
q=1

(
ϱl

pqν

)ẑq}1−τ
−

{ n

∏
q=1

(
1 − ϱl

pqµ

)τẑq}{
1 −

n

∏
q=1

(
ϱu

pqν

)ẑq}1−τ]
≥

1
2

[
2 −

(
ψ̂u+

µ

)τ(
ψ̂l−

ν

)1−τ
−

(
ψ̂l−

µ

)τ(
ψ̂u+

ν

)1−τ]
, (p = 1, 2, . . . , m)

0 ≤ ψ̂l−
µ , ψ̂u+

µ , ψ̂l−
ν , ψ̂u+

ν ≤ 1
n

∑
q=1

ẑq = 1, ẑq ≥ 0 (q = 1, 2, . . . , n). (47)

and

1
2

[
2 −

(
ψ∗u+

µ

)τ(
ψ∗l−

ν

)1−τ
−

(
ψ∗l−

µ

)τ(
ψ∗u+

ν

)1−τ]
>

1
2

[
2 −

(
ψ̂u+

µ

)τ(
ψ̂l−

ν

)1−τ
−

(
ψ̂l−

µ

)τ(
ψ̂u+

ν

)1−τ]
. (48)

Let us take ψ̂ = 1
2 [2 − (ψ̂u+

µ )τ(ψ̂l−
ν )1−τ − (ψ̂l−

µ )τ(ψ̂u+
ν )1−τ ]. Thus, Problem (47) can be

written as

1
2

[
2 −

{ n

∏
q=1

(
1 − ϱu

pqµ

)τẑq}{
1 −

n

∏
q=1

(
ϱl

pqν

)ẑq}1−τ
−

{ n

∏
q=1

(
1 − ϱl

pqµ

)τẑq}{
1 −

n

∏
q=1

(
ϱu

pqν

)ẑq}1−τ]
≥ ψ̂,

(p = 1, 2, . . . , m)

0 ≤ ψ̂l−
µ , ψ̂u+

µ , ψ̂l−
ν , ψ̂u+

ν ≤ 1
n

∑
q=1

ẑq = 1, ẑq ≥ 0 (q = 1, 2, . . . , n). (49)

Hence, we can infer that (ẑ, ψ̂) is a feasible solution of Problem (39). Furthermore,
from Equation (46), we have ψ̂ < ψ∗, which contradicts the fact that (z∗, ψ∗) is the optimal
solution of Problem (39). Thus, our assumption is wrong, and hence, we may conclude that
if (z∗, ψ∗) is the optimal solution of the NLPP (39), then (z∗, Ψ̃∗) is the noninferior solution
of the interval-valued hesitant fuzzy programming problem (17) for 0 ≤ τ ≤ 1.
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Now, we can summarize the rendered methodology for solving matrix games with
payoffs of IIHFEs in the form of a solution algorithm in the subsequent subsection.

Algorithm

Step 1: Consider a matrix game Γ̃ whose payoffs are taken as IIHFEs, say, ϱ̃pq, where
p = 1, 2, . . . , m and q = 1, 2, . . . , n.

Step 2: To solve the game, we have to derive two BOIIHFPMs, as depicted in Problems
(16) and (17).

Step 3: To handle the situation, the fuzzy programming problems are converted into two
nonlinear programming Problems (29) and (39), respectively, by using the mathemati-
cal operations of IIHFEs.

Step 4: To obtain the optimal strategies y∗ for Player XA and z∗ for Player XB, the NLPPs
(29) and (39) are solved using WOLFRAM MATHEMATICA 9.0 software.

Step 5: Utilizing the optimal strategies y∗ and z∗ in Equation (4), we can find the aggre-
gated expected payoff of Player XA.

To justify the proposed methodology we present the subsequent section.

5. Numerical Application

In reality, decision makers (DMs) have to rely on different sources of information.
In most cases, DMs collect secondary data. So, DMs have to face several ambiguities about
the accuracy of the information. In addition, occasionally DMs are provided with various
asymmetric information in terms of some possible intervals. An IIHFE is the appropriate
tool to assess these types of data sets. To validate the proposed methodology, this section
discusses a real-life problem.

Application to Preventing Cybercrime

Nowadays, fraudulent email, theft of financial and corporate data, cyber-extortion,
etc., are familiar words to everyone. These all are included in cybercrime. Cybercrime
represents criminal activities that always target a networked device to hack information.
In most cases, it is carried out by some well-managed organizations. They use highly
advanced technologies to damage the network. According to the report of the NCRB [44],
in the first half of the year 2020 only, almost 4.83 million cyber-attacks were reported
globally. That means the number stands at 18 per minute. In India alone, the report of
cybercrime in 2020 is nine times of the total from 2013. So, it has become a heightened
threat to the safety of the citizen’s life. Figure 1 depicts the state-wise reported number of
cybercrimes in the last three years in India.

Figure 1. State-wise reported number of cybercrimes in last three years.
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Here, both the hackers and the defenders act intelligently and anticipate every move
of the opponent. We can portray such a relationship of the hackers and the defenders in
the context of the theory of matrix games. Suppose the defenders are chosen as Player
XA and the hackers are chosen as Player XB. The aim of the defenders, i.e., Player XA,
is to maximize the protection of all kinds of networked devices. For that they take two
strategies:

α1: Installing a powerful firewall.

α2: Using updated software.

Meanwhile, the hackers, or Player XB, use the following strategies:

β1: Breaking the security password.

β2: Sending suspicious links.

Suppose the crime control branch makes an annual report on cybercrime. For that,
they recruit three persons (DMs) to gather asymmetric information. Studying the recent
cases, the DMs assess their decisions (here, the payoff matrices) against the activities of the
players (here, the defenders and the hackers). Since all of the activities are controlled by
the human mind, the decisions are imprecise. So, capturing the hesitancy of the hackers’
and the defenders’ minds in terms of the degree of acceptance and rejection of a decision,
we portray the matrix game under an IIHF environment. The payoff matrices assessed by
three DMs are listed in Tables 1–3.

Table 1. Payoff matrix assigned by DM 1.

Strategies β1 β2

α1 d̃1
11 =

〈
[0.70, 0.80], [0.75, 0.90], [0.70, 0.85]; d̃1

12 =
〈
[0.65, 0.80], [0.65, 0.85]; [0.70, 0.85]

〉
[0.50, 0.60], [0.50, 0.65]

〉
α2 d̃1

21 =
〈
[0.35, 0.40], [0.35, 0.50], [0.30, 0.40]; d̃1

22 =
〈
[0.65, 0.70]; [0.35, 0.45], [0.35, 0.50]

〉
[0.50, 0.60], [0.45, 0.60]

〉

Table 2. Payoff matrix assigned by DM 2.

Strategies β1 β2

α1 d̃2
11 =

〈
[0.70, 0.80], [0.75, 0.95]; [0.50, 0.60] d̃2

12 =
〈
[0.65, 0.70], [0.60, 0.75]; [0.60, 0.65],

[0.50, 0.70]
〉

[0.50, 0.65]
〉

α2 d̃2
21 =

〈
[0.30, 0.50]; [0.40, 0.55]

〉
d̃2

22 =
〈
[0.60, 0.70], [0.65, 0.75]; [0.35, 0.40]

〉

Table 3. Payoff matrix assigned by DM 3.

Strategies β1 β2

α1 d̃3
11 =

〈
[0.65, 0.75]; [0.55, 0.70]

〉 d̃3
12 =

〈
[0.52, 0.60], [0.50, 0.60]; [0.35, 0.40],

[0.30, 0.45]
〉

α2 d̃3
21 =

〈
[0.35, 0.45]; [0.50, 0.65], [0.50, 0.70]

〉 d̃3
22 =

〈
[0.60, 0.75], [0.60, 0.70], [0.65, 0.75];

[0.30, 0.50]
〉

We can signify the decisions as follows. Suppose Player XA chooses strategy α1 and
Player XB chooses strategy β1. Then according to the second DM, the initiative to prevent
cybercrime is effective with a belief of 70–80% and with a disbelief of 50–60%. Here,
the whole process is controlled by the human mind. So some circumstantial conditions
may bring changes in the effectiveness of the strategies. Depending upon the situation,
the second DM states that the strategies might be effective with a belief of 75–95% and
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disbelief of 50–70%. Therefore, the decision of the second DM can be assessed in the form of
an IIHFE as d̃2

11 =
〈
[0.70, 0.80], [0.75, 0.95]; [0.50, 0.60], [0.50, 0.70]

〉
. Actually, d̃2

11 measures
the damage prevention in terms of uncertainty. We can describe the other payoffs in a
similar manner.

Suppose, the weights of the DMs are assigned as 0.3, 0.4, and 0.3, respectively. Thus,
the aggregated payoff matrix M̃ with IIHFE entries can be written as

β1 β2

M̃ =
α1
α2

(
ϱ̃11 ϱ̃12
ϱ̃21 ϱ̃22

)
.

where ϱ̃pq is aggregated as ϱ̃pq = 0.3 d̃1
pq + 0.4 d̃2

pq + 0.3 d̃3
pq, p = 1, 2; q = 1, 2.

Applying the aggregation rule as defined in Definition 11, we can obtain each ϱ̃pq as
an IIHFE. The expressions of ϱ̃pq(p = 1, 2; q = 1, 2) are given in Table 4.

Table 4. Aggregated value of the decisions.

ϱ̃pq Aggregated IIHFEs
(p = 1, 2; q = 1, 2)

ϱ̃11

〈
[0.6858,0.7861],[0.7079,0.8771],[0.7025,0.8263],[0.7234,0.9002],[0.6858,0.8038],

[0.7079,0.8873];[0.5145,0.6284],[0.5145,0.6684],[0.5145,0.6437],[0.5145,0.6846]
〉

ϱ̃12

〈
[0.4608,0.7358],[0.6104,0.7358],[0.5941,0.7544],[0.5891,0.7544],[0.4608,0.7576],

[0.6104,0.7576],[0.5941,0.7747],[0.5941,0.7747];[0.5365,0.6089],[0.5123,0.7309],

[0.4969,0.6089],[0.4745,0.7309]
〉

ϱ̃21

〈
[0.3304,0.4565],[0.3304,0.4854],[0.3154,0.4565];[0.4573,0.5936],[0.4573,0.6069],

[0.4431,0.5936],[0.4431,0.6069]
〉

ϱ̃22

〈
[0.6157,0.7160],[0.6157,0.7000],[0.6309,0.7160],[0.6356,0.7359],[0.6356,0.7211],

[0.6500,0.7359];[0.3342,0.4437],[0.3342,0.4573]
〉

Now, our objective is to find the optimal strategies for both players, as well as the
expected aggregated payoff of Player XA.

According to Problems (29) and (39), we construct Problems (50) and (51) to find the
optimal strategies.

min
{

ϕ
}

s.t.
1
2

[
2 −

{
0.0998y10.5146y2

}τ{
1 − 0.5145y10.4431y2

}1−τ
−

{
0.3142y10.6846y2

}τ{
1 − 0.6846y10.6069y2

}1−τ]
≤ ϕ

1
2

[
2 −

{
0.2253y10.2641y2

}τ{
1 − 0.4745y10.3342y2

}1−τ
−

{
0.5392y10.3843y2

}τ{
1 − 0.7309y10.4573y2

}1−τ]
≤ ϕ

0 ≤ ϕ ≤ 1
y1 + y2 = 1, yp ≥ 0 (p = 1, 2)

(50)

and

max
{

ψ
}

s.t.
1
2

[
2 −

{
0.0998z10.2253z2

}τ{
1 − 0.5145z1 0.4745z2

}1−τ
−

{
0.3142z10.5392z2

}τ{
1 − 0.6846z10.7309z2

}1−τ]
≥ ψ

1
2

[
2 −

{
0.5146z10.2641z2

}τ{
1 − 0.4431z1 0.3342z2

}1−τ
−

{
0.6846z10.3843z2

}τ{
1 − 0.6069z10.4573z2

}1−τ]
≥ ψ

0 ≤ ψ ≤ 1
z1 + z2 = 1, zq ≥ 0 (q = 1, 2).

(51)

Here, τ is considered as the perception parameter of the players’ choice. We solve
NLPPs (50) and (51) using MATHEMATICA 9.0 software and obtain optimal strategies
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y∗, z∗, the crisp equivalents of ϕ∗, and ψ∗ for different values of the perception parame-
ters. Furthermore, substituting the values of y∗, z∗, ϕ∗, ψ∗ in Equation (4), the aggregated
expected payoff Ẽs(y, z) for Player XA is obtained.

The results obtained for different values of the perception parameter τ ∈ [0, 1] are
listed in Table 5.

Table 5. Result table.

τ y∗ ϕ∗ z∗ ψ∗ Ẽs(y, z) Sc(Ẽs)

0 (0,1) 0.5063 (1,0) 0.5063
〈
[0.3154, 0.4854]; [0.4431, 0.6069]

〉
0.2492

0.2 (0,1) 0.5250 (1,0) 0.5250
〈
[0.3154, 0.4854]; [0.4431, 0.6069]

〉
0.2492

0.4 (0,1) 0.5337 (0,1) 0.5337
〈
[0.6157, 0.7359]; [0.3342, 0.4573]

〉
0.5601

0.6 (0,1) 0.5883 (0,1) 0.5883
〈
[0.6157, 0.7359]; [0.3342, 0.4573]

〉
0.5601

0.8 (0.4518,0.5482) 0.6301 (0.0096,0.9904) 0.6339
〈
[0.5518, 0.7542]; [0.3920, 0.5659]

〉
0.3481

1 (0.4898,0.5102) 0.6510 (0.1336,0.8664) 0.6682
〈
[0.4315, 0.5861]; [0.5314, 0.6536]

〉
0.1494

The changes of score values of the expected payoffs for different values of the percep-
tion parameter τ for Player XA are depicted in Figure 2.

Figure 2. Change of expected payoffs with respect to the perception parameter τ.

From Table 5 and Figure 2, the following comments are listed:

1. Table 5 shows that for τ = 0.8, we obtain the optimal strategies for the players as
y∗ = (0.4518, 0.5482) and z∗ = (0.0096, 0.9904). Furthermore, Player XA’s aggregated
expected payoff is obtained as ⟨[0.5518, 0.7542]; [0.3920, 0.5659]⟩. In other words, we
may say that if Player XA’s, i.e., the defenders’, control strategies are α1 with a proba-
bility of 0.4518 and α2 with a probability of 0.5482 while Player XB’s, i.e., the hackers’,
governing strategies are β1 with a probability of 0.0096 and β2 with a probability of
0.9904, and also, Player XA is very much optimistic toward the information, then the
DMs come to an inference that the damage will be reduced with a surety from 55.18%
to 75.42% and with a disbelief from 39.20% to 56.59%.

2. Table 5 shows that ϕ∗ ≤ ψ∗ for all the values of the perception parameter τ. This
symbolizes that the crisp equivalent of the amount of gain of Player XA does not
exceed the crisp equivalent amount of loss of Player XB.

3. Actually, the perception parameter captures the behavior of the players. From Table 5,
we can see the crisp equivalent gain of Player XA and the crisp equivalent loss of
Player XB both are gradually increased with the increment of the perception parameter
chosen by the players. That indicates the gain value of Player XA is maximum when
he/she is optimistic enough.

4. The score values of expected payoff for Player XA are increased for τ ∈ [0, 0.5] and are
decreased for τ ∈ [0.5, 1]. This indicates that we can achieve the expected payoff for
Player XA at the maximum level when the players are neutral in nature. This shows
the importance of the role of the perception parameter in our proposed model.
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5. From Table 5, it is observed that the optimal strategies of the players change signifi-
cantly with the changes in the perception parameter τ. Both of the players use pure
strategies only when the perception parameter τ lies in the interval [0, 0.6]. Otherwise,
the players use mixed strategies with some probabilities. For example, when τ = 0.8,
Player XA uses strategies α1 and α2 with probabilities 0.4518 and 0.5482, respectively,
while Player XB uses strategies β1 and β2 with probabilities 0.0096 and 0.9904, respec-
tively. Therefore, the players have the freedom to change their strategies with the
changes in τ to optimize their expected payoffs.

6. Comparative Analysis and Discussion

Sections 6.1 and 6.2 justify the superiority of the rendered model in comparison with
the presented methods of Bhaumik and Roy [39] and Xue et al. [45].

6.1. Comparison with Bhaumik and Roy [39]

In 2019, Bhaumik and Roy [39] introduced a special form of IIHFE in the literature
along with a new aggregation operator. Aiming to consider the hesitancy of the players in
terms of both their acceptance and rejection of the possible range of asymmetric information,
they applied the notion of IIHFEs in matrix games. To make the solution to this problem,
Bhaumik and Roy derived two interval-valued intuitionistic hesitant fuzzy programming
models as follows:

max
〈⋃

∆

[
V l

µ, Vu
µ

]
;
⋃
∆

[
V l

ν, Vu
ν

]〉
subject to

m

∑
p=1

〈⋃
∆

[
ϱl

pqµ, ϱu
pqµ

]
;
⋃
∆

[
ϱl

pqν, ϱu
pqν

]〉
yp ≥I IHF

〈⋃
∆

[
V l

µ, Vu
µ

]
;
⋃
∆

[
V l

ν, Vu
ν

]〉
m

∑
p=1

yp = 1; yp ≥ 0 for p = 1, 2, . . . , m. (52)

and

min
〈⋃

∆

[
W l

µ, Wu
µ

]
;
⋃
∆

[
W l

ν, Wu
ν

]〉
subject to

n

∑
q=1

〈⋃
∆

[
ϱl

pqµ, ϱu
pqµ

]
;
⋃
∆

[
ϱl

pqν, ϱu
pqν

]〉
zq ≤I IHF

〈⋃
∆

[
W l

µ, Wu
µ

]
;
⋃
∆

[
W l

ν, Wu
ν

]〉
n

∑
q=1

zq = 1; zq ≥ 0 for q = 1, 2, . . . , n. (53)

where ⟨∪∆[V l
µ, Vu

µ ];∪∆[V l
ν, Vu

ν ]⟩ = Ṽ and ⟨∪∆[W l
µ, Wu

µ ];∪∆[W l
ν, Wu

ν ]⟩ = W̃ are Player XA’s
gain floor and Player XB’s loss ceiling, , respectively.

Taking the defined ranking approach (assigned by Bhaumik and Roy [39]), these two
problems are converted into the following linear programming models:

max
1
2

[(
V l

µ + Vu
µ

)
−

(
V l

ν + Vu
ν

)]
subject to

m

∑
p=1

[
ϱl

pqµ
, ϱu

pqµ

]
yp ≥

[
V l

µ, Vu
µ

]
;

m

∑
p=1

[
ϱl

pqν
, ϱu

pqν

]
yp ≤

[
V l

ν, Vu
ν

]
V l

µ ≤ Vu
µ; V l

ν ≤ Vu
ν ; 0 ≤ Vu

µ + Vu
ν ≤ 1

m

∑
p=1

yp = 1; yp ≥ 0 for p = 1, 2, . . . , m. (54)

and
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max
1
2

[(
W l

µ + Wu
µ

)
−

(
W l

ν + Wu
ν

)]
subject to

n

∑
q=1

[
ϱl

pqµ
, ϱu

pqµ

]
zq ≤

[
W l

µ, Wu
µ

]
;

n

∑
q=1

[
ϱl

pqν
, ϱu

pqν

]
zq ≥

[
W l

ν, Wu
ν

]
W l

µ ≤ Wu
µ; W l

ν ≤ Wu
ν ; 0 ≤ Wu

µ + Wu
ν ≤ 1

n

∑
q=1

zq = 1; zq ≥ 0 for q = 1, 2, . . . , n. (55)

where ⟨[V l
µ, Vu

µ]; [V
l
ν, Vu

ν ]⟩, ⟨[W l
µ, Wu

µ]; [W
l
ν, Wu

ν ]⟩, and ⟨[ϱl
pqµ

, ϱu
pqµ]; [ϱ

l
pqν

, ϱu
pqν]⟩ are the ag-

gregated form of the preassigned gain floor, loss ceiling, and payoffs, respectively.
Now, for the matrix M̃, the LP problems according to Problems (54) and (55) are

constructed as

max
1
2

[(
V l

µ + Vu
µ

)
−

(
V l

ν + Vu
ν

)]
subject to 0.3142y1 + 0.6846y2 ≥ V l

µ; 0.5392y1 + 0.3843y2 ≥ V l
µ

0.0998y1 + 0.5146y2 ≥ Vu
µ; 0.2253y1 + 0.2641y2 ≥ Vu

µ

0.5145y1 + 0.4431y2 ≤ V l
ν; 0.4745y1 + 0.3342y2 ≤ V l

ν

0.6846y1 + 0.6069y2 ≤ V l
ν; 0.7309y1 + 0.4573y2 ≤ V l

ν

V l
µ ≤ Vu

µ; V l
ν ≤ Vu

ν ; 0 ≤ Vu
µ + Vu

ν ≤ 1

y1 + y2 = 1; yp ≥ 0 for p = 1, 2. (56)

and

max
1
2

[(
W l

µ + Wu
µ

)
−

(
W l

ν + Wu
ν

)]
subject to 0.3142z1 + 0.5392z2 ≤ W l

µ; 0.6846z1 + 0.3843z2 ≤ W l
µ

0.0998z1 + 0.2253z2 ≤ Wu
µ; 0.5146z1 + 0.2641z2 ≤ Wu

µ

0.5145z1 + 0.4745z2 ≥ W l
ν; 0.4431z1 + 0.3342z2 ≥ W l

ν

0.6846z1 + 0.7309z2 ≥ W l
ν; 0.6069y1 + 0.4573y2 ≥ W l

ν

W l
µ ≤ Wu

µ; W l
ν ≤ Wu

ν ; 0 ≤ Wu
µ + Wu

ν ≤ 1

z1 + z2 = 1; zq ≥ 0 for q = 1, 2. (57)

The computational results, obtained by solving Problems (56) and (57), are listed in
Table 6.

Table 6. Results obtained by Bhaumik and Roy’s [39] method.

y∗ Ṽ∗ Sc(Ṽ∗) z∗ W̃∗ Sc(W̃∗) Ẽb(y, z) Sc(Ẽb)

(0,1) ⟨[0.2641, 0.2850]; 0.5009 (0.2949,0.7051) ⟨[0.4728, 0.4830]; 0.0881 ⟨[0.2529, 0.3446]; 0.1482
[0.4431, 0.6069]⟩ [0.3663, 0.5014]⟩ [0.3706, 0.3751]⟩

Analyzing the computed results portrayed in Tables 5 and 6, the following observations
are made:

(i) In our proposed method, the perception parameter plays a significant role. Table 5
shows that Player XA’s gain-floor, Player XB’s loss ceiling, and Player X′

As expected
payoff are changed with the changes in the perception parameter τ. It is observed
that when the players are optimistic toward the information, i.e., when τ lies in
[0.5, 1], players have better gain values. Hence, the players have the option to
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choose different parameter values to obtain better gains. However, in Bhaumik
and Roy’s [39] methodology, there is no such parameter that can improve the gain
of the player.

(ii) In classical game theory, there is a most celebrated result that the gain floor of the
winning player never exceeds the loss ceiling of the defeated player. In Theorem 2,
we showed that this endures also in the IIHF environment. However, if we solve the
same problem by Bhaumik and Roy’s [39] approach, we have Sc(Ṽ∗) > Sc(W̃∗).
Table 6 shows that the gain floor Ṽ∗ is greater than the loss ceiling W̃∗, which
contradicts the statement of Theorem 2.

(iii) Comparing Tables 5 and 6, we have Sc(Ẽb) < Sc(Ẽs). This implies Ẽb <I IHF Ẽs
for all values of τ, the perception parameter. This implies that our proposed
methodology gives better results as compared to Bhaumik and Roy’s [39] approach.

(iv) Furthermore, it is worth noting that we need to preserve the hesitant character of
IIHFEs. However, to preserve the character, if we apply mathematical operations
for IIHFEs in the interval-valued intuitionistic hesitant fuzzy programming models,
it yields two NLPP models instead of LP models. This phenomenon raises an
essential question on the validation of Bhaumik and Roy’s [39] approach.

So, considering all these aspects, we can claim that our proposed model is superior to
the existing model.

6.2. Comparison with Xue et al. [45]

This subsection provides a comparison with the celebrated methodology of matrix
games discussed by Xue et al. [45]. Xue et al. [45] used hesitant fuzzy elements as the
payoffs of a matrix game. To make a comparison, we promote the hesitant fuzzy payoffs
assessed by Xue et al. [45] into suitable interval-valued hesitant fuzzy payoffs. The newly
promoted payoff matrix H̃∗ is assigned in Table 7.

Table 7. Payoff matrix H̃∗ in tabular form.

Strategy ρ1 ρ2 ρ3 ρ4

ρ1 ⟨[0.17, 0.22], [0.28, 0.32]⟩ ⟨[0.56, 0.62], [0.68, 0.72], ⟨[0.48, 0.52], [0.56, 0.62]⟩ ⟨[0.35, 0.43], [0.56, 0.62]⟩
[0.75, 0.82]⟩

ρ2 ⟨[0.45, 0.55], [0.65, 0.72]⟩ ⟨[0.17, 0.22], [0.28, 0.32]⟩ ⟨[0.36, 0.42], [0.56, 0.62]⟩ ⟨[0.38, 0.44], [0.47, 0.53]⟩

ρ3 ⟨[0.36, 0.42], [0.48, 0.54]⟩ ⟨[0.67, 0.72], [0.75, 0.82]⟩ ⟨[0.05, 0.12], [0.15, 0.22], ⟨[0.35, 0.43], [0.54, 0.63]⟩
[0.27, 0.32]⟩

ρ4
⟨[0.48, 0.52], [0.56, 0.62], ⟨[0.78, 0.82], [0.85, 0.95]⟩ ⟨[0.77, 0.82], [0.85, 0.92]⟩ ⟨[0.28, 0.32], [0.35, 0.45]⟩

[0.75, 0.82]⟩

Now, to solve this matrix game, here, we use Problems (29) and (39). Problems (29)
and (39) are two NLPPs that contain both membership and nonmembership values (i.e.,
the acceptance and nonacceptance of the players toward the information) of the aggregated
payoffs. However, the payoffs described in Table 7 only contain the membership values.
So, we switch off all nonmembership functions in Problems (29) and (39). Next, to reach
the optimal values, we have to solve NLPPs (58) and (59).
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min ϕ

subject to
1
2

[
2 − 0.68y10.28y20.46y3 0.18y4 − 0.83y10.55y20.64y30.52y4

]
≤ ϕ

1
2

[
2 − 0.18y10.68y20.18y3 0.05y4 − 0.44y10.83y20.33y30.22y4

]
≤ ϕ

1
2

[
2 − 0.38y10.38y20.68y3 0.08y4 − 0.52y10.64y20.95y30.23y4

]
≤ ϕ

1
2

[
2 − 0.38y10.47y20.37y3 0.55y4 − 0.65y10.62y20.65y30.72y4

]
≤ ϕ (58)

and
max ψ

subject to
1
2

[
2 − 0.68y10.18y20.38y30.38y4 − 0.83y10.44y20.52y3 0.65y4

]
≤ ψ

1
2

[
2 − 0.28y10.68y20.38y30.47y4 − 0.55y10.83y20.64y3 0.62y4

]
≤ ψ

1
2

[
2 − 0.46y10.18y20.68y30.37y4 − 0.64y10.33y20.95y3 0.65y4

]
≤ ψ

1
2

[
2 − 0.18y10.05y20.08y30.55y4 − 0.52y10.22y20.23y3 0.72y4

]
≤ ψ (59)

By solving Problems (58) and (59), we obtain the optimal strategies for Players XA
and XB along with their game values. In Table 8, we list both the results obtained by the
proposed method and Xue et al.’s [45] method.

Table 8. Comparative results of proposed method and Xue et al.’s [45] method.

Outcomes Proposed Method Xue et al.’s [45] Method

y∗ (0.3147, 0.5946, 0.0907, 0) (0.5, 0.5, 0, 0)
z∗ (0.4442, 0.2498, 0.3060, 0) (0.1243, 0, 0.1014, 0.7743)
ϕ∗ 0.4890 0.1455
ψ∗ 0.9778 0.9354

The following observations are recorded:

(i) Table 8 shows that we can obtain better optimal values for both players if we
choose our rendered model. Thus, it is clear that the proposed model is superior to
the model explored by Xue et al. [45].

(ii) Using the optimal strategies y∗ and z∗ for Players XA and XB, respectively, if we
calculate the expected payoff for Player XA, we have E∗ = [0.3718, 0.6063]. The
score function of this expected payoff is Sc(E∗) = 0.4891, which gives a better
value than the existing one [45].

(iii) Moreover, Xue et al. [45] considered only the hesitancy of decision makers to
portray the matrix game problem. However, occasionally in practical problems,
DMs fail to judge the asymmetric information scenario properly. As a result, they
cannot assign any precise value. Consequently, they have to choose some interval
values to assign the payoffs. In that sense, delineating a matrix game problem in
an intuitionistic interval-valued hesitant fuzzy environment is more realistic in the
literature.

7. Conclusions

In reality, occasionally we fail to gather accurate information about an event, and we
have to rely on a possible range of information. Consequently, decision makers have some
hesitancy about the asymmetric information. To deal with such a situation, we actualize a
matrix game problem with interval-valued intuitionistic hesitant fuzzy entries. To solve
this, we derive two bi-objective interval-valued intuitionistic hesitant fuzzy programming
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models. It is difficult to handle such programming models traditionally. To establish the
model, we define a new aggregation operator, viz., the min-max enclosure aggregation
operator, for IIHFEs. Based on this operator, the ranking order of the IIHFEs is assigned.
To obtain the optimal values, two interval-valued intuitionistic hesitant fuzzy programming
problems are derived, which are converted into two nonlinear programming models with
the perception parameters of the players.

In classical game theory, there is a most celebrated result that the gain floor of the
maximizing player is always less than or equal to the loss ceiling of the minimizing player.
In our discussion, we showed that this result is also valid in the IIHF environment. Here,
we have explained that the perception parameter of the players plays an important role in
this model. Depending on this parameter, the value of the game and the expected payoff of
the conquering player are changed. To solve this problem, we have to change the fuzzy
programming problem to a nonlinear programming problem. However, we were able
to show that the solution obtained from the BOIIHFPMs is a noninferior solution to the
solution obtained from the derived NLPPs. With a valid comparison, we showed that
our executed model is superior to the existing methodologies proposed by Bhaumik and
Roy [39] and Xue et al. [45].

To check the cogency of the proposed methodology, we presented an imprecise and
asymmetric information scenario of hackers and of the defenders attempting to prevent
cybercrime. Here, it is observed that both the gain of the winning player and the loss of the
defeated player increase with the increment of the perception parameter of the player.

Besides several advantages, the proposed methodology has some limitations. One
of the major limitations is that we failed to calculate the gains and losses of the players
in terms of IIHFEs. Another limitation is that we generated the solution procedure by
presuming the existence of a solution for matrix games in the IIHF environment. However,
we cannot establish any theorems about it. Therefore, further investigation is needed in the
future, which can be considered a future study of the rendered methodology.

This methodology can be applied to various decision-making problems in an IIHF
environment. Moreover, in various conflicting situations, portraying the situation in terms
of a possible range of acceptance and nonacceptance by the players, along with the degree
of hesitancy of the players towards the information, such as various management issues,
war science, psychological issues, etc., can be resolved by our proposed methodology.
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