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Abstract: Nowadays, most image steganographic schemes embed secret messages by minimizing
a well-designed distortion cost function for the corresponding domain, i.e., the spatial domain for
spatial image steganography or the JPEG (Joint Photographic Experts Group) domain for JPEG
image steganography. In this paper, we break the boundary between these two types of schemes
by establishing a theoretical link between the distortion costs in the spatial domain and those in
the JPEG domain and thus propose a scheme for domain transformations of distortion costs for
efficient JPEG steganography with symmetric embedding, which can directly convert the spatial
distortion cost into its JPEG counterpart. Specifically, by formulating the distortion cost function
for JPEG images in the decompressed spatial domain, a closed-form expression for a distortion cost
cross-domain transformation is derived theoretically, which precisely characterizes the conversion
from the distortion costs obtained by existing spatial steganographic schemes to those applied in
JPEG steganography. Experimental results demonstrate that the proposed method outperforms other
advanced JPEG steganographic schemes, e.g., JUNIWARD (JPEG steganography with Universal
Wavelet Relative Distortion), JMiPOD (JPEG steganography by Minimizing the Power of the Optimal
Detector), and DCDT (Distortion Cost Domain Transformation), in resisting the detection of various
advanced steganalyzers.

Keywords: steganography with symmetric embedding; JPEG image; distortion cost function; domain
transformation

1. Introduction

Image steganography is the science and art of covert communication, which embeds
secret messages into cover images to generate the corresponding stego images that can
be transmitted through open channels without drawing suspicion [1–6]. By using the
advantages of steganography, people can achieve secure communication without being
detected by network monitors, and it is worth noting that the steganography is not the same
as but is supplementary to cryptography, because the former emphasizes the undetectability
of communication while the latter emphasizes the secrecy of data. In the past decade,
the most common image steganographic scheme has been the distortion minimization
framework [7], since the stego image can be statistically indistinguishable from the cover
image by minimizing the embedding distortion in this framework.

The distortion minimization framework consists of two components: (1) the design of
the distortion cost function and (2) the method of steganographic coding. Steganographic
coding aims to minimize the distortion cost function for a given embedding payload,
and state-of-the-art coding methods, e.g., STCs (syndrome trellis codes) [8] and SPCs
(steganographic polar codes) [9], have already approached the theoretical limit of coding
efficiency. Therefore, researchers have focused on improving the design of the distortion
cost function, which can properly quantify the distortion cost of modifying each element
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of the cover image. The following equation demonstrates the general construction of this
framework:

Emb(X, m) = arg min
Y∈C(m)

D(X, Y)

H · Y = m
(1)

where X, Y and m represent the cover image, stego image and the secret messages, re-
spectively. Emb(·) denotes the embedding conducted by the steganographic codes, D(·)
represents the distortion of transferring the cover into a stego image, and H refers to the
parity-check matrix of code C, while C(m) is the coset corresponding to syndrome m.

At present, various steganographic schemes have been proposed for designing dis-
tortion cost functions with symmetric embedding, which can be mainly categorized into
three groups: (1) heuristically designed schemes, such as WOWs (Wavelet-Obtained
Weights) [10], UNIWARD (Universal Wavelet Relative Distortion) [11], HiLL (High-pass,
Low-pass, and Low-pass) [12], QMP (Quaternion Magnitude-Phase) [13], UERD (Uni-
form Embedding Revisited Distortion) [14] and GUED (Generalized Uniform Embedding
Distortion) [15]; (2) statistical-model-based schemes, such as MG (Multivariate Gaus-
sian) [16], MiPOD (Minimizing the Power of the Optimal Detector) [17] and JMiPOD (JPEG
steganography by MiPOD) [18]; and (3) deep-learning-based schemes, such as UT-GAN
(U-net and double-Tanh framework using Generative Adversarial Network) [19], SPAR-
RL (Steganographic Pixel-wise Actions and Rewards with Reinforcement Learning) [20],
PICO-RL (Payload-Independent Cost learning framework using RL) [21], JS-GAN (JPEG
Steganography using a GAN) [22] and JEC-RL (JPEG Embedding Cost with RL) [23]. It is
worth noting that each of these designs can only be implemented on a specific type of image
format, either spatial or JPEG; e.g., HiLL is specifically designed for spatial images and
cannot be used for JPEG images. Furthermore, there are only a limited number of research
works that have investigated the relationship between spatial and JPEG steganography,
such as BET (Block Entropy Transformation) [24] and DCDT (Distortion Cost Domain
Transformation) [25]. BET utilizes the block embedding entropy as the proxy for connecting
the spatial and JPEG domains, and achieves a satisfactory security performance of JPEG
distortion designed from spatial distortion. However, it suffers from a high computational
complexity and lacks a precise theoretical deduction regarding the mapping between em-
bedding entropy in different domains. Although DCDTs could be implemented much
faster than BETs, they are still heuristically designed and lack theoretical guarantees.

Considering that JPEG images are more widely used on the internet than spatial
images, the development of effective JPEG distortion cost functions is crucial for practical
steganographic applications. In this regard, a distortion cost transformation strategy, such
as DCDT, has practical significance as it can construct novel JPEG distortion designs by
exploiting well-established spatial steganographic schemes. Typically, this strategy offers
two key advantages for enhancing the security of JPEG steganography: (1) The availability
of diverse and effective JPEG distortion cost functions increases the difficulty of detection
for steganalyzers, thereby enhancing steganographic security. (2) The utilization of well-
designed spatial steganographic schemes helps to improve security by reducing the spatial
artifacts introduced by the embedding modifications in the JPEG domain, considering that
the accurate detection of JPEG steganography is mostly achieved with steganalysis features
that are extracted from the spatial domain [26–28] rather than from the JPEG domain [29].

In order to establish the relationship between the spatial and JPEG steganography,
this paper conducts a theoretical investigation into the transformation of distortion costs
from the spatial to the JPEG domain. Specifically, via the design of the distortion cost
function for JPEG steganography in the decompressed spatial domain, a closed-form
expression for the distortion cost cross-domain transformation is derived theoretically
through simple yet efficient arithmetic operations. This expression allows for the direct
conversion of the distortion costs computed by existing spatial steganographic schemes,
e.g., HiLL, MiPOD, and SUNIWARD [11], into the distortion costs for the JPEG domain.
Furthermore, the transformation expression is executed in a block-wise manner, ensuring
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computational efficiency. Finally, experiments are carried out to validate the effectiveness
of the proposed method in terms of both security and computational complexity using the
BOSSBase [30] dataset. The results demonstrate that the proposed JPEG steganographic
scheme is computationally efficient and outperforms the competing one, i.e., DCDT, and
other advanced JPEG approaches, i.e., JMiPOD and JUNIWARD [11], for resisting the
detection of various modern steganalyzers.

The contributions of this paper are summarized as follows:

• A deep investigation into the transformation of distortion costs from the spatial to the
JPEG domain is conducted.

• A simple yet efficient closed-form expression for the distortion cost cross-domain
transformation is developed.

• The transformation expression is executed in a block-wise manner, ensuring computa-
tional efficiency.

• Comprehensive experiments validate the effectiveness of the proposed scheme in
terms of both steganographic security and computational complexity.

The rest of this paper is organized as follows. In Section 2, the common notations and
preliminaries on JPEG steganography are introduced. Then, the proposed distortion cost
cross-domain transformation method for JPEG steganography is elaborated in Section 3.
Subsequently, we present the experimental results and analysis in Section 4. Finally, the
paper is concluded in Section 5.

2. Preliminaries
2.1. Notations and Basic Concepts

Throughout this paper, boldface symbols are used to represent matrices and italic font
with indices denotes the elements within a matrix. The notation [Z] is reserved for the
Iverson bracket, where [Z] = 1 when Z is true and otherwise [Z] = 0.

Specifically, JPEG grayscale cover and stego images are denoted as X =
(

xm,n
k,l

)n1×n2
and

Y =
(

ym,n
k,l

)n1×n2
, respectively, where n1 and n2 are the height and width of the image and

are both assumed to be multiples of eight for a simpler technical description. In addition,
the range of indices is 1 ≤ m ≤ n1/8, 1 ≤ n ≤ n2/8, 0 ≤ k, l ≤ 7. Note that xm,n

k,l (or ym,n
k,l ) is

the (8 × (m − 1) + k + 1, 8 × (n − 1) + l + 1)-th element in X (or Y), which corresponds to
the DCT (Discrete Cosine Transform) coefficient in the (k, l)-th DCT mode of the (m, n)-th
DCT block.

The (k, l)-th DCT basis [31], 0 ≤ k, l ≤ 7, is an 8× 8 matrix fk,l =
(

f k,l
i,j

)8×8
, 0 ≤ i, j ≤ 7,

and defined as

f k,l
i,j =

wkwl
4

cos
πk(2i + 1)

16
cos

πl(2j + 1)
16

, (2)

where w0 = 1/
√

2, wk = 1 for k > 0.
By decompressing the DCT coefficients in the (m, n)-th block of X, a corresponding

spatial block of 8 × 8 pixels is obtained [31], in which pixel x̂m,n
i,j is calculated by

x̂m,n
i,j =

7

∑
k=0

7

∑
l=0

f k,l
i,j qk,l xm,n

k,l , (3)

where qk,l is the quantization step in the JPEG luminance quantization matrix. After
decompressing all DCT blocks in X, we can obtain a spatial (decompressed JPEG) image,

denoted as X̂ =
(

x̂m,n
i,j

)n1×n2
.
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2.2. Distortion Measure

Under the distortion minimization framework [32], the primary objective of JPEG
image steganography is to design a distortion cost function, which is denoted as D(X, Y)
and can be calculated as

D(X, Y) =
n1/8

∑
m=1

n2/8

∑
n=1

7

∑
k=0

7

∑
l=0

ρ
(

tm,n
k,l

)[
xm,n

k,l ̸= ym,n
k,l

]
, (4)

where ρ
(

tm,n
k,l

)
is the additive distortion cost that evaluates the impact of modifying the

DCT coefficient xm,n
k,l to ym,n

k,l = xm,n
k,l + tm,n

k,l , and the modification tm,n
k,l attains values in

{−1, 0,+1} for ternary embedding. Generally, the modification impacts are considered
to exhibit symmetry, i.e., ρ

(
tm,n
k,l = +1

)
= ρ

(
tm,n
k,l = −1

)
= ρm,n

k,l , and ρ
(

tm,n
k,l = 0

)
= 0

signifies that no distortion cost is incurred when the DCT coefficient remains unmodified.
We note that ternary symmetric embedding is adopted in this paper for its universality.
Therefore, D(X, Y) in Equation (4) can also be expressed as

D(X, Y) =
n1/8

∑
m=1

n2/8

∑
n=1

7

∑
k=0

7

∑
l=0

ρm,n
k,l

∣∣∣ym,n
k,l − xm,n

k,l

∣∣∣. (5)

For a given message with length L, minimizing the average embedding distortion can
be formulated as the following optimization problem with a payload constraint [7]:

min
β

Eβ(D) =
n1/8

∑
m=1

n2/8

∑
n=1

7

∑
k=0

7

∑
l=0

ρm,n
k,l βm,n

k,l , (6)

subject to
n1/8

∑
m=1

n2/8

∑
n=1

7

∑
k=0

7

∑
l=0

H
(

βm,n
k,l

)
= L, (7)

where βm,n
k,l ∈ β is the embedding modification probability of modifying xm,n

k,l to ym,n
k,l =

xm,n
k,l + 1 or ym,n

k,l = xm,n
k,l − 1, and H(x) = −2x log x − (1 − 2x) log(1 − 2x) is the entropy

function for ternary symmetric embedding. Following the maximum entropy criterion,

when βm,n
k,l =

1
3

, H(βm,n
k,l ) reaches its maximum value, i.e., log2 3 bits. Consequently, for

a JPEG image of size n1 × n2, the maximum embedding capacity is n1 × n2 × log2 3 bits.
With the optimal β derived by Equations (6) and (7), an optimal embedding simulator [33]
can be exploited to execute embedding and test the security of a steganographic method.

3. The Proposed Distortion Cost Cross-Domain Transformation Method

For JPEG image steganography, this paper proposes an efficient distortion cost cross-
domain transformation method, which is designed to directly convert the distortion costs
obtained by spatial steganographic schemes to those used in the JPEG domain. In this
section, the motivation and feasibility of the proposed method are first presented. Then,
by formulating the distortion cost function for JPEG images in the decompressed spatial
domain, a closed-form expression can be derived accordingly, which is the core of the
distortion cost cross-domain transformation and will be described in detail.

3.1. Motivation and Feasibility

Currently, most steganographic schemes for digital images are content-adaptive,
whether established in the spatial domain or in the JPEG domain. They are essentially de-
signed to restrict the embedding modifications to regions of the cover image with complex
content by assigning low distortion costs to these complex regions, which are difficult for
steganalyzers to model accurately. This content-adaptive property inspires us to explore
the underlying relationship between the spatial distortion costs and the JPEG ones for
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expanding the applicability of existing steganographic schemes and simultaneously im-
proving the steganographic security. As mentioned in Section 1, considering that the JPEG
distortion cost functions have more practical value in steganographic applications than the
spatial ones, this paper focuses on the transformation of distortion cost from the spatial
to the JPEG domain. Unlike the heuristic design of DCDT, this paper concentrates on the
construction of the distortion cost cross-domain transformation in a theoretical derivation.

As we know, the DCT transform in the JPEG compression is performed in non-
overlapping 8 × 8 image blocks, meaning that each DCT block contains the same content
information as its corresponding decompressed block. Based on the content adaptivity of
the distortion cost, it should be feasible to convert the distortion cost in the decompressed
spatial domain into its JPEG counterpart and efficient to implement the conversion in a
block-wise manner. To derive the cross-domain transformation of the distortion cost, it is
natural to investigate the distortion cost function in different domains as a starting point.
In accordance with Section 2.2, the objective of image steganography within the minimal
distortion paradigm [7] is to minimize the average embedding distortion under a given
payload size constraint, so it is important to properly design the distortion cost function.
Referring to Equation (5), the distortion cost function for JPEG images is composed of
the distortion costs for the DCT coefficients and the absolute value of the embedding
modifications in the JPEG domain. Note that the corresponding embedding changes in
the decompressed spatial domain incurred by the embedding modifications in the JPEG
domain can easily be obtained due to the linearity of the inverse DCT. Accordingly, the
spatial distortion cost for each pixel of the decompressed JPEG image can be evaluated with
existing spatial steganographic schemes. By combining the spatial embedding changes
and the spatial distortion costs, the distortion cost function for JPEG images can be formu-
lated in the decompressed spatial domain, which enables the possibility of establishing a
distortion cost transformation from the spatial to the JPEG domain.

3.2. Expression for the Distortion Cost Cross-Domain Transformation

As mentioned in the above subsection, in order to derive the cross-domain transforma-
tion from the spatial distortion cost to the JPEG distortion cost, we propose formulating a
JPEG distortion cost function in the decompressed spatial domain. Following the distortion
cost function paradigm in Equation (5), the distortion cost function for JPEG images in the
decompressed spatial domain, namely D̂(X, Y), can be defined as follows:

D̂(X, Y) =
n1/8

∑
m=1

n2/8

∑
n=1

7

∑
i=0

7

∑
j=0

ρ̂m,n
i,j

∣∣∣ŷm,n
i,j − x̂m,n

i,j

∣∣∣, (8)

where ρ̂ =
(

ρ̂m,n
i,j

)n1×n2
are the spatial distortion costs and can be obtained by apply-

ing existing efficient spatial steganographic schemes to the decompressed JPEG image
X̂, e.g., SUNIWARD, HiLL, MiPOD, etc.

∣∣∣ŷm,n
i,j − x̂m,n

i,j

∣∣∣ represents the absolute value of
the difference between the pixel values in the decompressed stego and cover images,
which is incurred by the embedding modifications tm,n

k,l in the JPEG domain. Referring to
Equation (3), we have:

dm,n
i,j = ŷm,n

i,j − x̂m,n
i,j =

7

∑
k=0

7

∑
l=0

f k,l
i,j qk,l ym,n

k,l −
7

∑
k=0

7

∑
l=0

f k,l
i,j qk,l xm,n

k,l

=
7

∑
k=0

7

∑
l=0

f k,l
i,j qk,l tm,n

k,l .

(9)



Symmetry 2024, 16, 575 6 of 14

after substituting Equation (9) into (8). Therefore, the average embedding distortion E(D̂)
corresponding to Eβ(D) in Equation (6) can be given by

E(D̂) =
n1/8

∑
m=1

n2/8

∑
n=1

7

∑
i=0

7

∑
j=0

ρ̂m,n
i,j E

(∣∣∣dm,n
i,j

∣∣∣). (10)

It is obvious to observe that from Equation (10), to tackle E(D̂), we need to calculate
the expected value of

∣∣∣dm,n
i,j

∣∣∣. Unfortunately, E
(∣∣∣dm,n

i,j

∣∣∣) cannot be computed analytically. To

significantly reduce the complexity of computing E
(∣∣∣dm,n

i,j

∣∣∣), we switch to an upper bound

of
∣∣∣dm,n

i,j

∣∣∣: ∣∣∣dm,n
i,j

∣∣∣ ≤ 7

∑
k=0

7

∑
l=0

∣∣∣ f k,l
i,j

∣∣∣ · qk,l ·
∣∣∣tm,n

k,l

∣∣∣. (11)

Recalling that the embedding modifications tm,n
k,l attain values in {−1, 0,+1} with

probabilities {βm,n
k,l , 1 − 2βm,n

k,l , βm,n
k,l } for ternary symmetric embedding, we thus have:

E
(∣∣∣tm,n

k,l

∣∣∣) = βm,n
k,l · |−1|+ βm,n

k,l · |+1| = 2βm,n
k,l . (12)

According to Equations (11) and (12), E
(∣∣∣dm,n

i,j

∣∣∣) can be bounded by

E
(∣∣∣dm,n

i,j

∣∣∣) ≤
7

∑
k=0

7

∑
l=0

∣∣∣ f k,l
i,j

∣∣∣ qk,l E
(∣∣∣tm,n

k,l

∣∣∣) =
7

∑
k=0

7

∑
l=0

2
∣∣∣ f k,l

i,j

∣∣∣ qk,l βm,n
k,l . (13)

Hence, using Equation (13), E(D̂) in Equation (10) can be bounded as follows:

E(D̂) ≤
n1/8

∑
m=1

n2/8

∑
n=1

7

∑
i=0

7

∑
j=0

7

∑
k=0

7

∑
l=0

2
∣∣∣ f k,l

i,j

∣∣∣ qk,l ρ̂m,n
i,j βm,n

k,l = Sβ(D̂), (14)

where Sβ(D̂) is used for convenience to denote the upper bound of the average embedding
distortion of JPEG steganography in the decompressed spatial domain.

Obviously, by comparing Eβ(D) in Equation (6) and Sβ(D̂) in Equation (14), a closed-

form expression for converting the spatial distortion costs ρ̂ =
(

ρ̂m,n
i,j

)n1×n2
to the JPEG

distortion costs ρ =
(

ρm,n
k,l

)n1×n2
can be derived as

ρm,n
k,l =

7

∑
i=0

7

∑
j=0

2
∣∣∣ f k,l

i,j

∣∣∣ qk,l ρ̂m,n
i,j , (15)

where f k,l
i,j is obtained by Equation (2), qk,l is the quantization step of (k, l)-th DCT mode,

and ρ̂ can be directly acquired by using spatial steganographic schemes. It can be observed
that Equation (15) has a similar form to Equation (3), which indicates that the proposed
transformation method can be efficiently executed in a block-wise manner (this is the same
computational demand as decompressing a JPEG image). Once the JPEG distortion costs ρ
are computed by Equation (15), the message embedding process can be executed with the
near-optimal steganographic codes STCs [33] or SPCs [9]. In summary, the procedure of the
proposed distortion cost cross-domain transformation method is presented in Algorithm 1.
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Algorithm 1: Distortion cost cross-domain transformation

Input: A JPEG image X =
(

xm,n
k,l

)n1×n2

Output: The JPEG distortion costs ρ =
(

ρm,n
k,l

)n1×n2
for X

1 Decompress the JPEG image X into the spatial domain using Equation (3), and

denote the spatial (decompressed JPEG) image by X̂ =
(

x̂m,n
i,j

)n1×n2
;

2 Apply an existing spatial steganographic scheme to X̂, e.g., SUNIWARD or HiLL,

and denote the obtained spatial distortion costs by ρ̂ =
(

ρ̂m,n
i,j

)n1×n2
;

3 Compute the JPEG distortion costs ρ using Equation (15),

ρm,n
k,l =

7
∑

i=0

7
∑

j=0
2
∣∣∣ f k,l

i,j

∣∣∣ qk,l ρ̂m,n
i,j for all non-overlapping 8 × 8 blocks (m, n).

Additionally, the process of applying the proposed distortion cost cross-domain trans-
formation method in JPEG steganography is shown in Figure 1. In the following sections
of this paper, the JPEG steganographic scheme realized by Equation (15) is referred to as
JC-A (JPEG distortion costs converted from the spatial distortion costs that are calculated
by the spatial steganographic scheme “A”). In specific, JC-SUNI, JC-HiLL, and JC-MiPOD
adopt the spatial steganographic schemes SUNIWARD, HiLL, and MiPOD, respectively.

Decompressed 

image

(spatial)

Input cover image

(JPEG)

Spatial distortion 

cost

IDCT
Spatial steganographic 

schemes

   

MiPOD

JPEG distortion 

cost

distortion cost cross-

domain conversion

Steganographic 

codes

Output stego image

(JPEG)

Message

e.g.,  HiLL,  S-UNIWARD,

Figure 1. The diagram of the proposed JPEG steganographic scheme (IDCT is the Inverse Discrete
Cosine Transform).

4. Experimental Results
4.1. Experimental Settings
4.1.1. Image Datasets

In this paper, experiments were conducted on the widely used image database BOSS-
Base v1.01 [30] for image steganography, which consists of 10,000 512 × 512 × 8-bit grayscale
images. To facilitate the evaluation and comparison of algorithm performance, we first
resized the images in BOSSBase to a size of 256 × 256 using the Matlab function “imresize”
with the Bicubic Kernel and then compressed them into the JPEG domain with QF (Quality
Factor) = 75 and QF = 95. After that, two JPEG image datasets were available, namely
BOSSQ75 and BOSSQ95, which will be used in the following tests.

4.1.2. Steganographic Schemes

To evaluate the security performance of the proposed JC-A scheme, advanced JPEG
steganographic schemes, e.g., UERD [14], JUNIWARD [11] and JMiPOD [18], were in-
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cluded in a comparison. In addition, the heuristically designed Distortion Cost Domain
Transformation scheme, DCDT, is also involved. Since all tested schemes are only differ-
ent in the distortion cost function, the experiments were simulated at the corresponding
payload–distortion bound [33] under a given relative payload α ∈ {0.1, 0.2, 0.3, 0.4, 0.5}
bpnzAC (bits per non-zero alternating current DCT coefficient).

4.1.3. Steganalyzers

Four advanced steganalysis feature sets were adopted to evaluate the security of
involved steganographic schemes at different relative payloads and QFs, namely the CC-
JRM (Cartesian-Calibrated JPEG-Rich Model) [29], the PHARM (Phase Aware Projection
Model) [27], GFRs (Gabor Filter Residuals) [28], and SCA-GFRs (Selection Channel Aware
GFRs) [34]. The CC-JRM is derived from DCT coefficients to detect steganographic embed-
ding modifications in the JPEG domain, PHARM and GFR are constructed based on noise
residuals in the decompressed spatial domain, and SCA-GFRs are the selection-channel-
aware version of GFRs that incorporate the knowledge of the embedding modification
probabilities to provide a substantial detection gain. After extracting the feature sets from
both cover and stego images, the detectors were trained as binary classifiers implemented
by using the FLD (Fisher Linear Discriminant) ensemble [35] with default settings. The
security performance is quantified by the average classification error probability PE of the
FLD ensemble classifier over ten iterations of random testing, where a larger PE means a
higher steganographic security. The split ratio of cover/stego pairs for training and testing
is 1:1.

4.2. Comparison with Prior Work

After determining the experimental setup, we then proceeded to compare the security
performance of the proposed scheme, JC-A, with the competing approach, DCDT, in which
the widely acknowledged spatial steganographic schemes SUNIWARD, HiLL, and MiPOD
were used for the acquisition of spatial distortion costs. Additionally, the advanced JPEG
schemes UERD, JUNIWARD and JMiPOD were also included for comparison. The average
classification error probability PE (in %) of the tested steganographic schemes for various
relative payloads under the detection of CC-JRM, PHARM, GFR and SCA-GFR on both
datasets BOSSQ75 and BOSSQ95 is summarized in Tables 1–4, respectively. Bold numbers
in the tables indicate the best security performance for the given settings. Overall, it can
be observed that the proposed scheme is effective in resisting the detection of involved
steganalysis features, as described in the following analysis.

Table 1. Average classification error probability PE (in %) of the involved JPEG steganographic
schemes under the detection of CC-JRM versus different relative payloads on BOSSQ75 and BOSSQ95.

Scheme
QF = 75 QF = 95

0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5

UERD 48.14 44.41 39.77 34.46 28.78 49.73 48.57 46.08 42.84 38.76
JUNIWARD 48.51 45.65 41.47 36.61 31.43 49.55 49.08 48.11 45.83 42.75

JMiPOD 48.21 45.13 41.09 36.02 30.85 49.72 49.31 48.14 45.94 43.08

DCDT-SUNI 48.31 44.28 39.32 33.23 27.18 49.72 49.19 47.82 45.43 41.57
DCDT-MiPOD 48.01 44.32 38.15 32.61 25.43 49.67 49.11 47.13 44.26 40.35

DCDT-HiLL 48.13 44.54 40.02 34.52 28.71 49.74 49.25 48.03 45.91 42.21

JC-SUNI 48.63 45.74 41.63 37.26 31.59 49.86 49.62 48.31 46.63 43.15
JC-MiPOD 48.55 45.46 41.51 36.31 30.52 49.83 49.41 48.06 45.57 41.78

JC-HiLL 48.57 45.21 40.48 35.12 28.14 49.84 49.58 48.15 46.31 42.36
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Table 2. Average classification error probability PE (in %) of the involved JPEG steganographic schemes
under the detection of PHARM versus different relative payloads on BOSSQ75 and BOSSQ95.

Scheme
QF = 75 QF = 95

0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5

UERD 45.63 38.68 31.16 24.02 18.28 48.61 45.35 41.13 35.74 30.52
JUNIWARD 46.39 39.75 32.16 24.37 17.59 49.15 47.16 43.84 39.42 33.86

JMiPOD 45.91 40.21 33.39 26.45 20.34 49.16 47.35 44.91 41.43 36.94

DCDT-SUNI 45.55 38.92 30.42 23.33 16.83 49.31 47.48 44.63 40.25 35.82
DCDT-MiPOD 45.42 38.51 30.52 23.13 17.32 49.44 47.36 44.51 40.13 35.17

DCDT-HiLL 45.73 38.77 31.27 24.05 17.69 49.32 47.51 44.83 41.12 36.86

JC-SUNI 46.95 41.23 34.62 28.57 22.13 49.38 47.73 45.18 41.74 37.51
JC-MiPOD 46.71 41.04 34.47 27.88 22.06 49.48 47.51 44.98 41.04 36.05

JC-HiLL 46.71 41.12 34.29 28.15 22.04 49.55 47.66 45.19 41.84 38.08

Table 3. Average classification error probability PE (in %) of the involved JPEG steganographic
schemes under the detection of GFR versus different relative payloads on BOSSQ75 and BOSSQ95.

Scheme
QF = 75 QF = 95

0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5

UERD 44.64 36.91 29.32 21.91 15.82 47.74 44.12 39.11 33.61 27.63
JUNIWARD 45.29 37.87 29.41 21.51 15.07 48.98 46.14 41.89 36.55 30.62

JMiPOD 45.21 38.67 31.56 24.43 18.06 48.86 46.52 43.16 38.78 34.03

DCDT-SUNI 44.56 36.69 28.55 20.72 14.83 48.85 46.27 42.75 37.68 32.39
DCDT-MiPOD 44.21 35.87 27.02 19.63 13.71 48.77 46.23 42.01 37.44 31.86

DCDT-HiLL 44.74 37.38 29.53 22.13 15.87 48.94 46.49 43.02 38.47 33.39

JC-SUNI 46.14 39.51 32.77 25.23 18.45 49.14 46.87 43.38 39.22 34.14
JC-MiPOD 45.53 39.23 31.58 24.16 17.63 48.91 46.64 43.08 38.93 33.09

JC-HiLL 45.96 38.95 31.26 24.08 17.47 49.11 46.73 43.45 39.15 34.33

Table 4. Average classification error probability PE (in %) of the involved JPEG steganographic schemes
under the detection of SCA-GFR versus different relative payloads on BOSSQ75 and BOSSQ95.

Scheme
QF = 75 QF = 95

0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5

UERD 38.18 28.36 20.84 15.19 10.96 44.73 38.81 33.23 27.62 22.49
JUNIWARD 42.11 33.39 25.23 18.22 12.91 48.28 44.82 40.42 35.36 29.74

JMiPOD 43.26 34.73 26.69 20.23 14.51 48.06 44.87 41.02 36.37 31.51

DCDT-SUNI 41.67 32.87 24.69 17.99 12.94 47.73 44.43 40.35 35.68 30.91
DCDT-MiPOD 40.39 31.22 23.96 17.59 12.91 47.51 43.97 39.75 35.32 30.79

DCDT-HiLL 42.37 33.68 25.65 18.84 13.54 48.05 44.81 40.96 36.25 31.18

JC-SUNI 42.76 34.45 26.74 20.34 14.67 48.42 45.06 41.15 36.87 31.68
JC-MiPOD 41.74 33.91 26.23 20.18 14.63 48.36 45.43 41.37 37.06 31.96

JC-HiLL 40.89 31.81 23.83 17.74 11.76 48.56 45.18 40.94 36.21 31.07
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Referring to the results in Tables 1–4, we can observe that compared with DCDT, our
scheme achieves an overall superior security performance in resisting the detection of
CC-JRM, PHARM, and GFR, especially on the BOSSQ75 dataset. Specifically, in Table 1, the
proposed scheme slightly outperforms other JPEG schemes in resisting the detection of the
CC-JRM, which is attributed to the fact that our scheme is designed from the perspective
of minimizing the impact of the embedding in the spatial domain, whereas the CC-JRM
specifically captures the statistical variations in the JPEG domain. In the cases of resisting
the detection of PHARM and GFR, as shown in Tables 2 and 3, the proposed scheme
can outperform DCDT by a clear margin when using the same spatial steganographic
scheme, which reflects that the JPEG distortion costs computed by our theoretically derived
scheme are more accurate and effective than those computed by the heuristically designed
DCDT. For example, compared with DCDT-SUNI, the maximal security improvements
for JC-SUNI in resisting the detection of PHARM and GFR on the BOSSQ75 dataset are
5.30% and 4.51%, respectively, and the maximal improvements for JC-SUNI in resisting the
detection of PHARM and GFR on the BOSSQ95 dataset are 1.69% and 1.54%, respectively.
The security performance gains of our scheme degrade when resisting the detection of SCA-
GFR, which is assumed to have the knowledge of the selection channel (i.e., the embedding
modification probabilities) from the steganographic scheme. Nevertheless, identifying the
selection channel is too difficult to achieve, because this knowledge is usually unavailable
to steganalyzers in practical scenarios.

In contrast to the advanced JPEG steganographic schemes on security performance,
according to the results in Tables 1–4, it can be observed that our schemes JC-SUNI, JC-HiLL,
and JC-MiPOD not only outperform the heuristic-based schemes UERD and JUNIWARD,
but also rival the state-of-the-art statistical model-based scheme JMiPOD. In order to clearly
demonstrate that the security performance has been improved, some representative results
are selected from Tables 1–4, and shown in Figures 2 and 3. Overall, the proposed JC-
SUNI exhibits the best security performance among the schemes involved. For instance,
compared with UERD, the maximal security improvements of JC-SUNI in resisting the
detection of CC-JRM, PHARM, GFR, and SCA-GFR on the BOSSQ75 dataset can reach
2.81%, 4.55%, 3.45%, and 6.09%, respectively, and the maximal improvements of JC-SUNI
in resisting the detection of CC-JRM, PHARM, GFR, and SCA-GFR on the BOSSQ95 dataset
can even reach 4.39%, 6.99%, 6.51% and 9.25%, respectively. When compared with the state-
of-the-art scheme JMiPOD, our JC-SUNI demonstrates maximal security improvements of
1.24%, 2.12%, 1.21% and 0.16% in resisting the detection of CC-JRM, PHARM, GFR, and
SCA-GFR on the BOSSQ75 dataset, respectively, and maximal improvements of 0.69%,
0.57%, 0.44% and 0.50% in resisting the detection of CC-JRM, PHARM, GFR, and SCA-GFR
on the BOSSQ95 dataset, respectively. The observed security improvements in the proposed
scheme validate the effectiveness of our theoretically derived expression for converting the
distortion costs computed by existing spatial steganographic schemes to those applied in
JPEG steganography. Furthermore, as shown in Tables 1–4, our JC-SUNI, JC-HiLL, and JC-
MiPOD schemes exhibit a similar level of security in most cases, indicating the applicability
of the proposed distortion cost cross-domain transformation method to different spatial
steganographic schemes. In practical applications, there is a general consensus that any
steganographic scheme with PE ≥ 40% is considered to be secure. The experimental results
show that compared with other competitors, our scheme has an overall superior security
performance, and PE can be larger than 40% under a certain embedding payload. In this
regard, we can more flexibly adjust the embedding payload in the proposed scheme to
achieve secure steganography.
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Figure 2. Average classification error probability PE (in %) for different JPEG steganographic schemes
when steganalyzing with (a) CC-JRM, (b) PHARM, (c) GFR, and (d) SCA-GFR on BOSSQ75. The
curves correspond to the results given in Tables 1–4.
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Figure 3. Average classification error probability PE (in %) for different JPEG steganographic schemes
when steganalyzing with (a) CC-JRM, (b) PHARM, (c) GFR, and (d) SCA-GFR on BOSSQ95. The
curves correspond to the results given in Tables 1–4.
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4.3. Practical Evaluation of Computational Complexity

In this part, we further evaluate the computational complexity of our proposed
schemes JC-SUNI, JC-HiLL, and JC-MiPOD compared with other advanced steganographic
schemes, e.g., UERD, JUNIWARD, JMiPOD, and DCDT, in terms of time consumption.
Considering that the involved schemes are mainly different in the distortion cost function,
it is reasonable to evaluate their computational complexity by comparing the practical time
consumption in the calculation of distortion costs. In specific, we compare the average time
consumption in calculating the distortion costs for the involved schemes over 1000 JPEG
images randomly selected from the BOSSQ75 and BOSSQ95 datasets, respectively. This
experiment was implemented in Matlab 2015b on a 3.2 GHz Intel CPU Xeon E-2836 with
64 GB memory under a computer running a 64-bit Windows 10 system. The numerical
results are summarized in Table 5. It can be observed that: (1) The average time consump-
tion of the proposed scheme is consistently less than that of DCDT when using the same
spatial steganographic scheme for distortion cost cross-domain transformations. (2) The
proposed JC-HiLL and JC-SUNI are computationally efficient, at about 75 and 43 times
faster, respectively, than JUNIWARD in the calculation of distortion costs. (3) For prac-
tical steganographic applications, both JC-HiLL and JC-SUNI can be implemented in an
acceptable time for UERD.

Table 5. Average time consumption over 1000 JPEG images of 256 × 256 × 8 bits under QF = 75
and QF = 95 in the calculation of distortion costs for UERD, JUNIWARD, JMiPOD, DCDT-HiLL,
DCDT-MiPOD, DCDT-SUNI, JC-HiLL, JC-MiPOD, and JC-SUNI. The unit of time is milliseconds (ms).

QF
Average Time Consumption (ms)

UERD JUNIWARD JMiPOD

75 9.8 1848.3 159.8

95 10.3 1881.4 144.3

QF
Average Time Consumption (ms)

DCDT-HiLL DCDT-MiPOD DCDT-SUNI

75 26.2 240.6 49.6

95 29.5 243.8 45.8

QF
Average Time Consumption (ms)

JC-HiLL JC-MiPOD JC-SUNI

75 24.1 236.4 42.6

95 25.4 234.3 43.2

5. Conclusions

In this paper, we propose an efficient distortion cost cross-domain transformation
method for JPEG steganography, the core of which is a closed-form expression for con-
verting the distortion costs obtained by existing spatial steganographic schemes to those
used in the JPEG images. This transformation method not only guarantees computational
efficiency, but also improves the security performance of JPEG steganography in resisting
the mainstream steganalysis features which are extracted in the spatial domain. More-
over, a variety of effective JPEG distortion costs can be generated by taking advantage
of the well-designed spatial steganographic schemes, providing more options for prac-
tical steganographic applications. Finally, experimental results show that the proposed
scheme, when adopting different spatial steganographic schemes for the distortion cost
transformation, can achieve comparable or superior security performances compared to
other advanced JPEG steganographic schemes in resisting the detection of various steganal-
ysis features.
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