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The Laplace transform can be interpreted as a method of converting a function from
the time domain to the complex domain. This is primarily effective in investigating and
analyzing initial value problems and the dynamic characteristics of linear systems. When
it is difficult to find a solution to a given differential equation in a certain space, we think
of transforming it to another space and then finding the solution. Currently, integral trans‑
form uses integration. If you transform￡1 to equation A and then inversely transform it,
you obtain A. Similarly, transforming￡2 to this equation and then inversely transforming
it also yields A. Therefore, the choice of transform makes no significant difference; only
the transformed space varies. To ensure convergence in these transforms, it is necessary
to bind the kernel. Therefore, it is common to set the kernel to ekt (k < 0) on a positive
interval. Achieving a bound kernel using differential transform or logarithm function is
challenging. For instance, expressing the generalized Laplace transform as a logarithm
function results in

s−α
∫ ∞

1
f (ln x) x−s−1 dx

Binding this function is not easy. On the other hand, as observed with Fourier trans‑
form or Laplace transform, integral transform calculations are not inherently straightfor‑
ward. Considering computational simplicity, differential transforms with appropriately
limited domains are also worth studying. We must study, in greater depth, the theory of
the study of￡( f g), which is closely related to integral theory. The calculation of￡( f )￡(g)
can be conducted through convolution, where it is commonly known that￡( f g) ̸=￡( f )￡
(g ). Although researching this is challenging due to the nature of integration, finding a
space where

∫
f g =

∫
f
∫

g can lead to significant advancements. In traditional theory,
further research should be conducted on integral transforms in ODEs with variable coeffi‑
cients and PDEs.

Now, let us look at the aspects related to AI. The concept of convolution in integral
transform is connected to the convolution concept in convolutional neural networks (CNN)
used in image processing or analysis. The connected tool is the trace of ABT , where A
and B are input images and BT is the transpose of B. This concept of convolution can be
interpreted as a weight for a given input. AI updates these weights to find an optimal solu‑
tion that approximates the desired solution. Since CNN’s convolution operation requires
a massive amount of computation, heat generation becomes a significant issue. Similarly,
AI semiconductor devices perform enormous computations, leading to high electricity con‑
sumption and heat generation problems. Consequently, an immense amount of coolant is
used for cooling purposes. For instance, the estimated water usage as a coolant for Google
and Microsoft in 2022 amounted to 2.9 billion liters [1].

This presents a compelling research idea: developing a new algorithm to accelerate
processes can help mitigate heating issues, ultimately reducing coolant usage. The contri‑
butions are listed in List of Contributions.

Contribution 1 introduces the concept of (p, q)‑calculus to establish the (p, q)‑analog
of Laplace‑type integral transforms. They delve into its unique characteristics and apply
it to solve some (p, q)‑differential equations. Contribution 2 employs weighting functions
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and real analysis techniques to establish equivalence conditions for Hardy‑type integral
inequalities with inhomogeneous kernels. Contribution 3 presents generalizations of the
three classical summation formulas 2F1.

Studies related to the Sumudu transform are Contribution 4 and Contribution 5. Con‑
tribution 4 introduces the Sumudu–generalized Laplace transform decompositionmethod
for solving linear and nonlinear non‑homogeneous dispersive Korteweg–de Vries‑type
equations. Contribution 5 establishes a technique using the double Sumudu transform in
combination with a new generalized Laplace transform decomposition method. This tech‑
nique, called the double Sumudu‑generalized Laplace transform decomposition method,
is applied to solve general two‑dimensional singular pseudo‑hyperbolic equations sub‑
ject to the initial conditions. Contributions 6 and 7 utilize the Laplace transform. Contri‑
bution 6 investigates stability in a Volterra integrodifferential equation using the Laplace
transform. Contribution 7 develops a numerical method based on the Laplace transform
for modeling fractional‑order differential equations. Contribution 8 uses G‑transform to
provide precise solutions for both homogeneous and non‑homogeneous coupled Burgers’
equations. Contributions 9 and 10 focus on the application of integral transform. Contribu‑
tion 9 uses the Laplace transformmethod to analyze soft soil foundation deformations and
proposes an improved quantum genetic algorithm. Contribution 10 explores the relation‑
ship between the unified Mittag–Leffler function and known special functions, deriving
integral transforms of the unified Mittag–Leffler function in terms of Wright generalized
functions.

A transformative new approach that simplifies complex calculations would be a wel‑
come advancement. Many thanks to all the authors for their contributions to this Special
Issue and to the editorial team for their hard work.
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