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Abstract: The aim of this paper is to define the linear operator based on the generalized Mittag-Leffler
function and the Lambert series. By using this operator, we introduce a new subclass of β-uniformly
starlike functions TJ(αi). Further, we obtain coefficient estimates, convex linear combinations, and
radii of close-to-convexity, starlikeness, and convexity for functions f ∈ TJ(αi). In addition, we
investigate the inclusion conditions of the Hadamard product and the integral transform. Finally, we
determine the second Hankel inequality for functions belonging to this subclass.
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1. Introduction

The term “symmetry” on the open unit disk D := {z ∈ C : |z| < 1} can relate to
rotational, reflection, or inversion symmetry, among other kinds of symmetry. The charac-
teristic known as “inversion symmetry” describes how an open unit disk appears when
it is inverted with respect to a certain point. When any complex number z in the disk is
inverted with respect to the origin, it yields the complex number −z whose inversion is
also in the disk, indicating that the open unit disk has inversion symmetry with regard to
its center (the origin). The open unit disk, in general, contains a rich set of symmetries that
are helpful in several geometric and mathematical situations. Our goal was to investigate
other geometric characteristics inside this symmetry area.

If a function maps a disk in the complex plane onto a shape that, with relation to a
fixed point on the disk, is star-shaped, it is said to be starlike. Stated differently, a function
is said to be starlike if, when subjected to appropriate scaling and rotation, its image is
contained inside a star-shaped domain. This domain is created by joining the fixed point to
every other point in the domain using straight-line segments. While starlike functions are
utilized in geometric function theory and mathematical physics to simulate phenomena like
electrostatics [1,2] and fluid flow [3,4], univalent functions are frequently used in geometric
function theory to explore conformal mappings and the Riemann mapping theorem.

The one-parameter Mittag-Leffler function Eα(z) for α ∈ C, with R (α) > 0 (see [5,6])
is defined as

Eα(z) :=
∞

∑
n=0

zn

Γ(αn + 1)
, z ∈ C

Further extension of the Mittag-Leffler function in two-parameters was studied by
Wiman [7]. For all α, β ∈ C, with R (α, β > 0), the two-parameters function Eα,β(z) is
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defined as

Eα,β(z) :=
∞

∑
n=0

zn

Γ(αn + β)
, z ∈ C.

In fact, many researchers have worked on the generalization of the Mittag-Leffler
function (see [8]). In this study, we confine our attention to the generalization given by
Salah and Darus [9], as follows:

qFθ,k
α, β =

∞

∑
n=0

q

∏
j=1

(
θj
)

kjn(
β j
)

αjn

· zn

n!
(1)

Note that (θ)v denotes the familiar Pochhammer symbol, which is defined as

(θ)v :=
Γ(θ + v)

Γ(θ)
=

{
1, i f v = 0, θ ∈ C\{0}

θ(θ + 1) . . . (θ + n − 1), i f v = n ∈ N, θ ∈ C,

(1)n = n!, n ∈ N0, N0 = N ∪ {0}, N = {1, 2, 3, . . .},

and(
q ∈ N, j = 1, 2, 3, . . . q; R

{
θj, βj

}
> 0, and R

(
αj
)
> max

{
0, R

(
k j
)
− 1; R

(
k j
)}

; R
(

k j
)
> 0

)
·

In number theory, (see [10–13]), the Lambert series is used for certain problems due to
its connection to the well-known arithmetic functions such as

∞

∑
n=1

σ0(n)xn =
∞

∑
n=1

xn

1 − xn , (2)

where σ0(n) = d(n) is the number of positive divisors of n·

l(z) =
∞

∑
n=1

σα(n)xn =
∞

∑
n=1

nαxn

1 − xn , (3)

where σα(n) is the higher-order sum of divisors function of n·
We restrict our attention to the series given by (3). In particular, when α = 1, we

write σ1(n) = σ(n)· Here, σ(n) is the sum of divisors function that appears in one of the
elementary equivalent statements to the well-known Riemann hypothesis.

We distinguish at the outset between the Lambert series and the Lambert W func-
tion, which appears naturally in the solution of a wide range of problems in science and
engineering [14].

In 1984, Guy Robin [15] proved that

σ(n) < eγnlog log n +
0.6483n
log log n

, n ≥ 3 (4)

Moreover, he proved that the Riemann hypothesis is equivalent to

σ(n) < eγnlog log n, n > 5040, (5)

where γ = 0.7721 · · · , is the Euler–Mascheroni constant.
This article makes no attempt to prove or refute the Robin’s inequality (5) or the

Riemann hypothesis. For more details, we refer interested readers to the articles listed in
the references [16–21].
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2. Preliminaries

Let A denote the class of analytic functions of the form

f (z) = z +
∞
∑

n=2
anzn, z ∈ D := {z ∈ C : |z| < 1}, (6)

and S be the subclass of A consisting of univalent (or one-to-one) functions on D. Let T be
the subclass of S consisting of functions of the form

f (z) = z −
∞

∑
n=2

anzn, an ≥ 0. (7)

The importance of the coefficients given by the power series in (6) emerged in the early
stages of the theory of univalent functions.

The focus of this research is to introduce a linear operator to define a new subclass
of analytic functions of order α such that 0 ≤ α < 1· First, it is necessary to recall the two
well-known subclasses of starlike and convex functions of order α, as given below:

ST(α) =

{
f ∈ S : R

(
z f ′(z)

f (z)

)
> α, z ∈ D

}
and

C(α) =

{
f ∈ S : R

(
1 +

z f ′′(z)
f ′(z)

)
> α, z ∈ D

}
.

Selectively, when α = 0, the above classes are reduced to their standard definition and
are simply called the starlike and convex functions.

Definition 1. A function f ∈ A of the form (6) is starlike with respect to symmetrical points if

R
{

2z f ′(z)
f (z)− f (−z)

}
≥ 0, z ∈ D.

We denote by STS the class of all such functions.

Definition 2. A function f ∈ A of the form (6) is β-uniformly starlike of order α, if

R
{

z f ′(z)
f (z) − α

}
≥ β

∣∣∣ z f ′(z)
f (z) − 1

∣∣∣, (0 ≤ α < 1, β ≥ 0; z ∈ D).

We denote by UST(α, β)the class of all such functions.

Definition 3. A function f ∈ A of the form (6) isβ-uniformly convex of order α, if

R
{

1 + z f ′′(z)
f ′(z) − α

}
≥ β

∣∣∣ z f ′′(z)
f ′(z)

∣∣∣, (0 ≤ α < 1, β ≥ 0; z ∈ D).

We denote by CU(α, β), the class of all such functions.

In particular, the classes UCV := UCV(1, 0), UST := UST(1, 0), β −UCV :=
UCV(β, 0), and β −UST := UST(β, 0) are introduced by Goodman [22,23] (see also,
William Ma and David Minda [24] and Kanas and Wisniowska [25]). Furthermore,
UST(1, 0) ⊂ STS· In other words, every uniformly starlike function is starlike with
respect to symmetrical points.

Note that f (z) ∈ UCV(α, β) ⇐⇒ z f ’(z) ∈ UST(α, β) .
The class of β-starlike functions of order α is an extension of the relatively more-well-

known class of β-starlike functions investigated by Kanas et al. [26,27] (for further details,
refer to Refs. [28–30]).

New subclasses of analytic functions have been introduced for various applications,
such as fractional calculus and quantum calculus, by involving some special functions,
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such as the Mittag-Leffler and Faber polynomial functions [31–33]. The most common
concern in such studies is the inclusion conditions. Alternatively, it means that for a given
new subclass, H, we seek a set of useful conditions on the sequence {an} that are both
necessary and sufficient for f (z) to be a member of H.

By following the same pattern, this study attempts to apply the Lambert series which
has not been so yet considered in the theory of univalent functions. Consequently, this
may lead to relevant studies if one considers extending the Lambert series, whose the
coefficients are the sum of divisors function to other subclasses of analytic functions.
Hence, we can investigate various topics such as Hankel determinants, subordination
properties, and Fekete–Szegö inequalities. Furthermore, these results can be extended to
multivalent functions and meromorphic functions. In addition, by using the two Robin’s
inequalities, one of which is analogous to the Riemann hypothesis, we can extend the
resulting conclusions of some parts of this work and derive further findings. We can also
obtain additional forms of the Mittag-Leffler function, including the exponential function,
if we take into account certain values of the parameters in the generalized Mittag-Leffler
function given by (1) and then study various special cases.

Here, we recall the definition of the Hadamard product (convolution): For a given
function f ∈ A of the form (6) and g ∈ A of the form

g(z) = z +
∞

∑
n=2

bnzn, z ∈ D, (8)

the convolution (∗) of the two functions f and g is obtained as follows:

( f ∗ g)(z) := z +
∞

∑
n=2

anbnzn, z ∈ D. (9)

Subsequently, we utilize the Lambert series L(z), whose coefficients are the sum of
divisors function σ(n). The mathematical form is

L(z) =
∞

∑
n=1

n zn

1 − zn =
∞

∑
n=1

σ(n)zn = z +
∞

∑
n=2

σ(n)zn, ∈ D.

In addition, since qFθ,k
α, β does not belong to the class A, we consider some normalization

by introducing

qFθ,k
α, β =

q

∏
j=1

(
β j
)

αj(
αj
)

kj

(
qFθ,k

α, β − 1
)
= z +

∞

∑
n=2

q

∏
j=1

(
β j
)

αj(
αj
)

kj

(
θj
)

kjn(
β j
)

αjn

· zn

n!
(10)

For a function f ∈ A of the form (7), we define the linear operator J(L, f )(z) : A −→ A

as follows:

J(L,F )(z) := (F ∗L)(z) = z +
∞

∑
n=2

q

∏
j=1

(
β j
)

αj(
αj
)

kj

(
θj
)

kjn(
β j
)

αjn

· σ(n)
n!

anzn, ∈ D.

The above linear operator leads us to propose a definition in the following manner:

Definition 4. A function f ∈ A of the form (6) is said to be in the class USTJ(α) if the function
f satisfies the following condition:

R

{
z(J(L,F )(z))′

J(L,F)(z) − α

}
≥
∣∣∣∣∣ z(J(L,F)(z))′

J(L,F)(z) − 1

∣∣∣∣∣, 0 ≤ α < 1, z ∈ D. (11)
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Finally, we consider functions with negative coefficients f ∈ T, similarly to the condi-
tion (11), and simply write: TJ(α) = USTJ(α)

⋂
T· Based on Definition 3 and the subclass

TJ(α), the analytic characterization of the function f reduces to the following definition.

Definition 5. A function f ∈ A of the form (7) is said to be in the class TJ(α) if the function
f satisfies the condition (11).

3. Characterization Property

In this section, we discuss the characterization properties of the members that be-
long to the new family of analytic functions. The characterization properties include a
couple of theorems related to the inclusion of functions, consequent corollaries, and a
closure theorem.

Theorem 1. A function f ∈ A of the form (7) is said to be in the class TJ(α) if and only if

∞
∑

n=2
τ(n)

(
2n−1−α

1−α

)
|an| ≤ 1, (12)

where

τ(n) =
q

∏
j=1

(
β j
)

αj(
αj
)

kj

(
θj
)

kjn(
β j
)

αjn

· σ(n)
n!

.

The result is sharp.

Proof. To prove the assertion in (12), it is sufficient to show that∣∣∣∣∣ z(J(L,F)(z))′

J(L,F)(z) − 1

∣∣∣∣∣ ≤ R

{
z(J(L,F)(z))′

J(L,F)(z) − α

}
.

After adding and subtracting 1 from the right-hand side, we obtain∣∣∣∣∣ z(J(L,F)(z))′

J(L,F)(z) − 1

∣∣∣∣∣ ≤ R

{
z(J(L,F)(z))′

J(L,F)(z) − 1

}
+ (1 − α),

that is ∣∣∣ z(J(L,F)(z))′
J(L,F)(z) − 1

∣∣∣−R
{

z(J(L,F)(z))′
J(L,F)(z) − 1

}
≤ 2

∣∣∣∣ z(J(L,F)(z))
′

J(L,F)(z) − 1
∣∣∣∣

≤
∞
∑

n=2
(n−1)τ(n)|an |

1−
∞
∑

n=2
τ(n)|an |

.

The above expression is bounded by (1 − α), thus proving our assertion.
Conversely, let us assume that f ∈ TJ(α), then (12) yields

1 −
∞
∑

n=2
nτ(n)|an|zn−1

1 −
∞
∑

n=2
τ(n)|an|zn−1

− α ≥
1 −

∞
∑

n=2
(n − 1)τ(n)|an|zn−1

1 −
∞
∑

n=2
τ(n)|an|zn−1

.

Letting z → 1 along the real axis results in the inequality

∞

∑
n=2

(2n − 1 − α)τ(n)|an| ≤ 1 − α.
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Finally, the result is sharp with extremal function f given by

f (z) = z − 1 − α

τ(n)(2n − 1 − α)
zn

□

Corollary 1. Let a function f defined by (7) belong to the class TJ(α), then,

|an| ≤
1

τ(n)
· 1 − α

2n − 1 − α
, n ≥ 2.

Next, we obtain lower bounds for the coefficients an using Robin’s inequalities in (4)
and (5), the latter of which we simply refer to as the Riemann hypothesis.

Corollary 2. Let a function f defined by (7) belong to the class TJ(α). If

|an| =
1

τ(n)
· 1 − α

2n − 1 − α
,

then,

|an| >
1 − α

2n − 1 − α
· (n − 1)! log log n

eγ(log log n)2 + 0.6483
·

q

∏
j=1

(
β j
)

αjn(
θj
)

kjn

(
αj
)

kj(
β j
)

αj

, n ≥ 3.

Proof. The proof follows from Corollary 1 and inequality (4). □

Corollary 3. Let a function f defined by (7) belong to the class TJ(α) . Assuming that the Riemann
hypothesis is true, and

|an| =
1

τ(n)
· 1 − α

2n − 1 − α
,

then,

|an| >
1 − α

2n − 1 − α
· (n − 1)!

eγlog log n
·

q

∏
j=1

(
β j
)

αjn(
θj
)

kjn

(
αj
)

kj(
β j
)

αj

, n > 5040.

Proof. The proof follows from Corollary 1 and inequality (5). □

Example 1. This is a special case; if q = θ1 = β1 = α1 = k1 = 1, then

qFθ,k
α, β = 1F1,1

1,1 =
∞

∑
n=0

zn

n!
= exp (z),

and we obtain the following special cases of the previous results:

1. The condition of Theorem 1 reduces to
∞
∑

n=2

(
2n−1−α

1−α

)
σ(n)

n! |an| ≤ 1;

2. The coefficients bound in a Corollary 1 become |an| ≤ n!
σ(n) ·

1−α
2n−1−α , n ≥ 2;

3. If p is a prime number, then
∣∣ap
∣∣ ≤ p!

p+1 ·
1−α

2p−1−α ;

4. If m is a perfect number, then |am| ≤ m!
2m · 1−α

2m−1−α ;
5. The extremal function f is given by f (z) = z − 1−α

2n−1−α ·
n!

σ(n) zn.

Similarly, the lower bounds in Corollaries 2 and 3, respectively, will be given by
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Example 2. If q = θ1 = β1 = α1 = k1 = 1, and

|an| =
n!

σ(n)
· 1 − α

2n − 1 − α
,

then,

|an| >
1 − α

2n − 1 − α
· (n − 1)! log log n

eγ(log log n)2 + 0.6483
, n ≥ 3.

Example 3. Under the same conditions of Example 2, assuming the Riemann hypothesis yields

|an| >
1 − α

2n − 1 − α
· (n − 1)!
eγloglogn

, n > 5040.

Theorem 2. Let a function f defined by (7) and g(z) = z −
∞
∑

n=2
bnzn be in the class TJ(α), then,

the function h states that

h(z) = (1 − β) f (z) + βg(z) = z −
∞
∑

n=2
cnzn , (13)

where cn = (1 − β)an + βbn, 0 ≤ β ≤ 1 also belongs to the class TJ(α).

Proof. The result follows easily upon using (12) and (13). □

Next, we define the following functions fi(z), (i = 1, 2, 3, . . . , m) of the form

fi(z) = z −
∞

∑
n=2

an,izn, an,i ≥ 0, z ∈ D. (14)

Theorem 3. Let the functions fi(z), (i = 1, 2, 3, . . . , m) defined by (14) be in the classes TJ(αi),
then, the function h defined by

h(Z) = Z − 1
m

∞

∑
n=2

(
m

∑
i=1

an,i

)
zn

belongs to the class TJ(α) for α = min
1≤i≤m

{αi}, with 0 ≤ αi < 1.

Proof. Since fi ∈ TJ(αi), (i = 1, 2, 3, . . . , m), by applying Theorem 1, we observe that

∞

∑
n=2

τ(n)(2n − 1 − α)

(
1
m

m

∑
i=1

an,i

)
=

1
m

m

∑
i=1

(
∞

∑
n=2

τ(n)(2n − 1 − α)an,i

)
.

□

Theorem 1. Again entails thathis a member of TJ(α).

4. Results Involving Convolution

This section discusses the convolutional results of two functions, f1(z) ∈ TJ(α)
and f2(z) ∈ TJ(β). Apart from presenting several theorems, some useful corollaries are
also deduced.

Theorem 4. For two functions fi(z) , (i = 1, 2) defined by (14), let f1(z) ∈ TJ(α) and f2(z) ∈
TJ(β). Then, f1 ∗ f2 ∈ TJ(ξ), where

ξ ≤ 1 − 2(n−1)(1−α)(1−β)
(2n−1−α)(2n−1−β)τ(n)−(1−α)(1−β)

, n ≥ 2. (15)
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Proof. In view of Theorem 1, it suffices to prove that

∞

∑
n=2

2n − 1 − ξ

1 − ξ
τ(n)an,1an,2 ≤ 1. n ≥ 2

It follows from Theorem 1 and the Cauchy–Schwarz inequality that

∞
∑

n=2

√
2n−1−α·

√
2n−1−β√

(1−α)(1−β)

√
τ(n)

√an,1an,2 ≤ 1. (16)

Thus, it suffices to find ξ such that

∞

∑
n=2

2n − 1 − ξ

1 − ξ
√

τ(n)an,1an,2 ≤
∞

∑
n=2

√
2n − 1 − α·

√
2n − 1 − β√

(1 − α)(1 − β)

√
τ(n)

√
an,1an,2 ≤ 1,

or
√

an,1an,2 ≤
√

2n − 1 − α·
√

2n − 1 − β√
(1 − α)(1 − β)

· 1 − ξ

2n − 1 − ξ
.

By virtue of (12), it suffices to find ξ such that√
(1 − α)(1 − β)√

2n − 1 − α
√

2n − 1 − β
√

τ(n)
≤

√
2n − 1 − α

√
2n − 1 − β√

(1 − α)(1 − β)
· 1 − ξ

2n − 1 − ξ
,

which concedes the assertion of our theorem. □

Again, by using the inequalities (4) and (5), we establish the next two results. For
brevity, we use ϕ(n) and Φ(n) in the forthcoming results, as indicated below.

ϕ(n) =
q

∏
j=1

(
β j
)

αj(
αj
)

kj

(
θj
)

kjn(
β j
)

αjn

· 1
(n − 1)!

(
eγlog log n+

0.6483
log log n

)
,

Φ(n) =
q

∏
j=1

(
β j
)

αj(
αj
)

kj

(
θj
)

kjn(
β j
)

αjn

· e
γlog log n
(n − 1)!

.

Corollary 4. For two functions fi(z), (i = 1, 2) defined by (14), let f1(z) ∈ TJ(α) and f2(z) ∈
TJ(β). Then, f1 ∗ f2 ∈ TJ(ξ), where

ξ ≤ 1 − 2(n−1)(1−α)(1−β)
(2n−1−α)(2n−1−β)ϕ(n)−(1−α)(1−β)

, n ≥ 3 .

Corollary 5. For two functions fi(z), (i = 1, 2) defined by (14), let f1(z) ∈ TJ(α) and f2(z) ∈
TJ(β). If the Riemann hypothesis holds true, then, f1 ∗ f2 ∈ TJ(ξ), where

ξ ≤ 1 − 2(n−1)(1−α)(1−β)
(2n−1−α)(2n−1−β)Φ(n)−(1−α)(1−β)

, n > 5040.

Corollary 6. Let the functions f j(z), (j = 1, 2) defined by (14) belong to the class TJ(α). Then,
( f1 ∗ f2)(z) ∈ TJ(δ), where

δ ≤ 1 − 2(n − 1)(1 − α)2

(2n − 1 − α)2ϕ(n)− (1 − α)2 , n ≥ 2.

Proof. The result is established if we replace β = α in Theorem 4. □
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Similarly, by using (4) and (5), we deduce two more corollaries, as shown below.

Corollary 7. Let the functions f j(z), (j = 1, 2) defined by (13) belong to the class TJ(α). Then,
( f1 ∗ f2)(z) ∈ TJ(δ), where

δ ≤ 1 − 2(n − 1)(1 − α)2

(2n − 1 − α)2ϕ(n)− (1 − α)2 , n ≥ 3.

Corollary 8. Let the functions f j(z), (j = 1, 2) defined by (13) belong to the class TJ(α), assuming
that the Riemann hypothesis is true, then, ( f1 ∗ f2)(z) ∈ TJ(δ), where

δ ≤ 1 − 2(n − 1)(1 − α)2

(2n − 1 − α)2Φ(n)− (1 − α)2 , n > 5040.

Theorem 5. Let the function f defined by (7) belong to the class TJ(α), and let g(z) = z −
∞
∑

n=2
bnzn, for |bn| ≤ 1. Then, ( f ∗ g)(z) ∈ TJ(α).

Proof. Using the convolution property and the concept defined by the left-hand side of
(12), we construct the following relation:

∞
∑

n=2
τ(n)(2n − 1 − α)|anbn| =

∞
∑

n=2
τ(n)(2n − 1 − α)|an||bn|

≤
∞
∑

n=2
τ(n)(2n − 1 − α)|an| ≤ 1 − α.

Hence, it follows that ( f ∗ g)(z) ∈ TJ(α). □

Corollary 9. Let the function f defined by (7) belong to the class TJ(α). Furthermore, let

g(z) = z −
∞
∑

n=2
bnzn for 0 ≤ bn ≤ 1, then, ( f ∗ g)(z) ∈ TJ(α).

Now, we consider the following:

Theorem 6. Let the functions f j(z), (j = 1, 2) defined by (14) belong to the class TJ(α). Then, the

function h, defined by h(z) = z −
∞
∑

n=2

(
a2

n,1 + a2
n,2

)
zn, belongs to the class TJ(µ), where

µ ≤ 1 − 4(1 − α)2

(2n − 1 − α)2τ(n)− 2(1 − α)2 , n ≥ 2. (17)

Proof. In view of Theorem 1, it suffices to show that

∞

∑
n=2

τ(n)
2n − 1 − µ

1 − µ

(
a2

n,1 + a2
n,2

)
≤ 1. (18)

From (11) and Theorem 1, we find that

∞

∑
n=2

[
τ(n)

2n − 1 − α

1 − α

]2
a2

n,j ≤
[

∞

∑
n=2

τ(n)
2n − 1 − α

1 − α
an,j

]2

, (19)

which yields
∞
∑

n=2

1
2

[
τ(n) 2n−1−α

1−α

]2(
a2

n,1 + a2
n,2

)
≤ 1 . (20)
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Upon comparing the inequalities (19) and (20), it is evident that the inequality (17) is
satisfied if

τ(n)
2n − 1 − µ

1 − µ
≤ 1

2

[
τ(n)

2n − 1 − α

1 − α

]2
, n ≥ 2,

that is, if

µ ≤ 1 − 4(1 − α)2

(2n − 1 − α)2τ(n)− 2(1 − α)2 .

This completes the proof. □

Using (4) and (5), respectively, we can readily prove the next two inequalities.

Corollary 10. Let the functions f j(z), (j = 1, 2) defined by (14) belong to the class TJ(α). Then,

the function h defined by h(z) = z −
∞
∑

n=2

(
a2

n,1 + a2
n,2

)
zn belongs to the class TJ(µ), where

µ ≤ 1 − 4(1−α)2

(2n−1−α)2ϕ(n)−2(1−α)2 , n ≥ 3.

Corollary 11. Let the functions f j(z), (j = 1, 2) defined by (14) belong to the class TJ(α) and
let us assume the Riemann hypothesis is true, then, the function h defined by h(z) = z −

∞
∑

n=2

(
a2

n,1 + a2
n,2

)
zn belongs to the class TJ(µ), where

µ ≤ 1 − 4(1−α)2

(2n−1−α)2Φ(n)−2(1−α)2 , n > 5040.

5. The Integral Transform of Class TJ(α)

To convert class TJ(α) into integral form, we define the following integral transform:

Vµ( f )(z) =
∫ 1

0
µ(t)

f (tz)
t

dt,

where µ(t) is a real valued, non-negative, and normalized weight function such that∫ 1
0 µ(t)dt = 1.

The special case of µ(t) is µ(t) = (c+1)δ

µ(δ)
tc
(

log 1
t

)δ−1
, c > −1, δ ≥ 0, which yields the

Komatu operator.

Theorem 7. Let f ∈ TJ(α), then, Vµ( f ) ∈ TJ(α).

Proof. By definition, we have,

Vµ( f ) =
(c + 1)δ

µ(δ)

∫ 1

0
(−1)δ−1tc(logt)δ−1

(
z −

∞

∑
n=2

anzntn−1

)
dt

=
(−1)δ−1(c + 1)δ

µ(δ)
lim

r→0+

[∫ 1

r
tc(logt)δ−1

(
z −

∞

∑
n=2

anzntn−1

)
dt

]
.

By applying basic mathematical principles, we derive the following expression:

Vµ( f )(z) = z −
∞

∑
n=2

(
c + 1
c + n

)δ

anzn.
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We need to prove that

∞
∑

n=2
τ(n)· 2n−1−α

1−α

(
c+1
c+n

)δ
|an| ≤ 1. (21)

Conversely, f ∈ TJ(α) if and only if,

∞

∑
n=2

τ(n)·2n − 1 − α

1 − α
|an| ≤ 1.

This shows that c+1
c+n < 1, and, hence, Equation (21) holds. Thus, the proof is evident.

□

Next, we derive the radii of starlikeness and convexity of Vµ( f )

Theorem 8. Let f ∈ TJ(α), then, Vµ( f ) is starlike of order 0 ≤ ξ < 1 in |z| < R1, where

R1 = inf
n

[(
c + n
c + 1

)δ

· (1 − ξ)(2n − 1 − α)

(n − ξ)(1 − α)
τ(n)

] 1
n−1

.

The result is sharp with extremal function f (z) given in the proof of Theorem 1.

Proof. It is sufficiently fair to confirm that
∣∣∣∣ z(Vµ( f )(z))

′

Vµ( f )(z) − 1
∣∣∣∣ < 1 − ξ .

Considering the left-hand side of the above inequality, we write

∣∣∣∣ z(Vµ( f )(z))
′

Vµ( f )(z) − 1
∣∣∣∣ =

∣∣∣∣∣∣
∞
∑

n=2
(1−n)( c+1

c+n )
δ |an |zn−1

1−
∞
∑

n=2
( c+1

c+n )
δ |an |zn−1

∣∣∣∣∣∣
≤

∞
∑

n=2
(n−1)( c+1

c+n )
δ |an ||z|n−1

1−
∞
∑

n=2
( c+1

c+n )
δ |an ||z|n−1

.

The last expression is less than 1 − ξ as

|z|n−1 <

(
c + n
c + 1

)δ (1 − ξ)(2n − 1 − α)

(n − ξ)(1 − α)
τ(n).

This completes the proof. □

Utilizing inequalities (4) and (5) again, we receive the following

Corollary 12. Let f ∈ TJ(α). Then, Vµ( f ) is starlike of order 0 ≤ ξ < 1 in |z| < R1, where

R1 = inf
n

[(
c + n
c + 1

)δ

· (1 − ξ)(2n − 1 − α)

(n − ξ)(1 − α)
ϕ(n)

] 1
n−1

, n ≥ 3.

Corollary 13. Let f ∈ TJ(α) and let us assume that the Riemann hypothesis is true. Then,
Vµ( f ) is starlike of order 0 ≤ ξ < 1 in |z| < R1, where

R1 = inf
n

[(
c + n
c + 1

)δ

· (1 − ξ)(2n − 1 − α)

(n − ξ)(1 − α)
Φ(n)

] 1
n−1

, n > 5040.
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Finally, for this section, we have:

Theorem 9. If f ∈ TJ(α) , then, Vµ( f ) is convex of order 0 ≤ γ < 1, in |z| < R2, where

R2 = inf
n

[(
c + n
c + 1

)δ (1 − γ)(2n − 1 − α)

n(n − γ)(1 − α)
τ(n)

] 1
n−1

.

The result is sharp with extremal function f (z) given in the proof of Theorem 1.

Proof. The proof is evident from the fact that f (z) is convex if and only if z f ′(z) is starlike.
□

Corollary 14. If f ∈ TJ(α),then, Vµ( f )is convex of order 0 ≤ ξ < 1, in |z| < R2, where

R2 = inf
n

[(
c + n
c + 1

)δ (1 − ξ)(2n − 1 − α)

n(n − ξ)(1 − α)
ϕ(n)

] 1
n−1

, n ≥ 3.

Corollary 15. If f ∈ TJ(α) and if the Riemann hypothesis is true, then, Vµ( f ) is convex of order
0 ≤ ξ < 1, in |z| < R2, where

R2 = inf
n

[(
c + n
c + 1

)δ (1 − ξ)(2n − 1 − α)

n(n − ξ)(1 − α)
Φ(n)

] 1
n−1

, n > 5040.

6. Second Hankel Determinant

We derive the second Hankel determinant inequality for a function f ∈ TJ(α). First,
we recall the definition of the Hankel determinant of a locally univalent analytic function
f (z) for s ≥ 1, n ≥ 1, (See [34])

Hs(n) =

∣∣∣∣∣∣∣∣∣
an an+1 . . . an+s−1

an+1 an+2 . . . an+s
...

...
...

...
an+s−1 an+s . . . an+2s−2

∣∣∣∣∣∣∣∣∣.
Here, we consider the second Hankel determinant of f the case when q = 2 and n = 2,

i.e., H2(2) = a2a4 − a2
3.

Lemma 1. ([35]). Let P (Carathѐodory class of functions) be the class of all analytic functions
p(z) of the form

p(z) = 1 +
∞

∑
n=1

Cnzn, (22)

satisfying R(p(z)) > 0(z ∈ D) and p(0) = 1. Then,

|Cn| ≤ 2(n = 1, 2, 3, . . .).

This inequality is sharp for each n. In particular, equality holds for all n for the function

p(z) =
1 + z
1 − z

= 1 +
∞

∑
n=1

2zn

Lemma 2. ([36]). If the function p ∈ P, then

2C2 = C2
1 +

(
4 − C2

1
)
x

4C3 = C3
1 + 2C1x

(
4 − C2

1
)
− C1x2(4 − C2

1
)
+ 2
(
4 − C2

1
)(

1−
∣∣x|2)z

for some x, z with |x|≤ 1 and |z|≤ 1 .
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Theorem 10. Let f (z) given by (7) be in the class TJ(α).
(1) If

M + 3P2
1 τ(3)2 −

(
2P1S− 9

4 P2
1
)
τ(2)τ(4) ≤ 0,

N +M + τ(3)2P2
1 +

(
13
4 P2

1 −S2 − 2P1S
)
≤ 0,

then the second Hankel determinant satisfies the inequality;

∣∣∣a2a4 − a2
3

∣∣∣ ≤ P2
1

4τ(3)2 .

(2) If
M + 3P2

1 τ(3)2 −
(
2P1S− 9

4 P2
1
)
τ(2)τ(4) ≥ 0,[

2N −M − 7τ(3)2P2
1 + 2

×
(

P2
1 −S2 + P1S− 9

8 P2
1
)
τ(2)τ(4)

]
≥ 0

or the conditions

M + 3P2
1 τ(3)2 −

(
2P1S− 9

4 P2
1
)
τ(2)τ(4) ≤ 0,

N +M + τ(3)2P2
1 +

[
13
4 P2

1 −S2 − 2P1S
]
≥ 0.

Then the second Hankel determinant satisfies the inequality

∣∣∣a2a4 − a2
3

∣∣∣ ≤ N +M + τ(3)2P2
1 +

( 7
2 P2

1 −S2 − 2P1S
)
τ(2)τ(4)

τ(2)τ(4)τ(3)2 .

(3) If
M + 3P2

1 τ(3)2 −
(
2P1S− 9

4 P2
1
)
τ(2)τ(4) > 0,[

2N −M − 7ϕ2
3P2

1 + 2
×
(

P2
1 −S2 + P1S− 9

8 P2
1
)
τ(2)τ(4)

]
≤ 0,

then the second Hankel determinant satisfies the inequality∣∣a2a4 − a2
3

∣∣ ≤ 1
16τ(2)τ(4)τ(3)2

[
4τ(2)τ(4)P2

1

− [4M+12P2
1 τ(3)2−(8P1S−9P2

1 )τ(2)τ(4)]
2

[N−2τ(3)2P2
1+(P2

1−S2)τ(2)τ(4)]

]
,

whereN, M, and S are given by

N = P1τ(3)2[P3
1 + (P3 − 2P2 + P1) + (P2 − P1)P1

]
,

M = P1τ(3)2[P2
1 + 2(P2 − P1)

]
S = P2

1 + (P2 − P1).
(23)

The result is sharp with extremal function f (z) given in the proof of Theorem 1.

Proof. By using the properties of Carathѐodory functions, we can rewrite the definition of
TJ(α). Setting

p(z) =
z(J(L,F )(z))′

J(L,F )(z)
,

and we write
R(p(z)) > β|p(z)− 1|+ α, z ∈ D,
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or, p(z) ≺ pβ,α, where
pβ, α = 1 + P1z + P2z2 + . . .

is a function with positive real part, which maps the unit disk onto a domain Ωβ,α described
by the inequality R(w) > β|w − 1|+ α.

Let TJ(α), then there exists a Schwarz function w, w(0) = 1, |w(z)|< 1 for z ∈ D,
such that

z(J(L,F )(z))′

J(L,F )(z)
= pβ,α(w(z))

Further, let

p0(z) =
1 + w(z)
1 − w(z)

= 1 + C1z + C2z2 + · · · (24)

or, equivalently

w(z) =
p0(z)− 1
p0(z) + 1

=
1
2

[
C1z +

(
C2 −

C2
1

2

)
z2 + · · ·

]

where the function p0 is analytic in the unit disk and has a positive real part, by using the
Taylor expansion of pβ,α and w, we obtain

pβ,α(w(z)) = 1 + P1C1
2 z +

(
P1C2

2 +
(P2−P1)C2

1
4

)
z2

+

(
P1C3+(P2−P1)C1C2

2 +
(P1+P3)C3

1
8 − P2C3

1
4

)
z3 + · · · .

(25)

Now, we have

z(J(L,F )(z))′

J(L,F )(z)
= 1 + τ(2)a2z +

(
2τ(3)a3 − τ(2)2a2

2

)
z2+

(
3τ(4)a4 − 3τ(2)a2τ(3)a3 + τ(2)2a2

2

)
z3 (26)

By equating the last two Equations (25) and (26), we get

a2 =
P1C1

2τ(2)
(27)

a3 =
1

4τ(3)

[
P2

1 C2
1 + 2P1C2 + C2

1(P2 − P1)
]

(28)

a4 =
C3

1 [P
3
1+(P3−2P2+P1)+(P2−P1)P1]

8τ(4)

+
2C1C2[P2

1+2(P2−P1)]
8τ(4) + 4P1C3

8τ(4)

(29)

Therefore,

H2(2) = a2a4 − a2
3 =

C4N + 2C2C2M + 4C3CP2
1 τ(3)3

−τ(2)τ(4)
[
2C2P1 + C2S

]2
16τ(2)τ(4)τ(3)2

where C = C1 > 0 and N, M, S are given by (23). Now by applying Lemma 2, we obtain

H2(2) =
C4[N+M+τ(3)2P2

1−τ(2)τ(4)P2
1−τ(2)τ(4)S2−2τ(2)τ(4)P1S]

16 τ(2)τ(4)τ(3)2

+
τC2(4−C2)[M+2P2

1 τ(3)2−2τ(2)τ(4)P1S−2τ(2)τ(4)P2
1 ]

16τ(2)τ(4)τ(3)2

+
τ2(4−C2)[C2P2

1 τ(3)2+τ(2)τ(4)P2
1 ]

16 τ(2)τ(4)τ(3)2

+
2C(4−C2)ϕ2

3 P2
1 (1−|τ|2)S

16τ(2)τ(4)τ(3)2

(30)
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Now, we may assume, without restriction, that C ∈ [0, 2]. Since p(z) ∈ P, so |C1| ≤ 2.
We set ρ =|τ|, where −1 ≤ ρ ≤ 1 and applying triangle inequality on H2(2) for all |z|≤ 1 ,
we obtain

|H2(2)| ≤ Y(ρ, C) = v
(

t1ρ2 + t2ρ + t3

)
, (31)

where
t1 =

(
4 − C2){C2P2

1 τ(3)2 + τ(2)τ(4)P2
1 − 2Cτ(3)2P2

1

}
=
(
4 − C2)P2

1

[
τ(3)2C(C − 2)τ(2)τ(4)

] (32)

t2 = C2
(

4 − C2
)∣∣∣M + 2P2

1 τ(3)2 − 2τ(2)τ(4)P1S− 2τ(2)τ(4)P2
1

∣∣∣ (33)

t3 = C4
∣∣∣N +M + τ(3)2P2

1 − τ(2)τ(4)P2
1 − τ(2)τ(4)S2 − 2τ(2)τ(4)P1S

∣∣∣+ 2C
(

4 − C2
)

τ(3)2P2
1 (34)

v =
1

16τ(2)τ(4)τ(3)2

Differentiating (32) with respect to ρ we get

∂Y(ρ, C)
∂ρ

= v(2t1ρ + t2)

The inequality t2 ≥ 0 is obvious; t1 ≥ 0 such that

t1 =
(

4 − C2
)

P2
1

[
τ(3)2C(C − 2) + τ(2)τ(4)

]
.

One can simply show that ∂Y(ρ,C)
∂ρ > 0 for ρ > 0, hence, Y(ρ, C) is an increasing

function and, thus, the upper bound for Y(ρ, C) corresponds to ρ = 1 and

maxY(ρ) = Y(1, C) = G(C),

C4
[
N +M + τ(3)2P2

1 − τ(2)τ(4)P2
1

G(C) =
−τ(2)τ(4)S2−2τ(2)τ(4)P1S]

16τ(2)τ(4)τ(3)2

C2(4 − C2)[M + 2P2
1 τ(3)2 − 2τ(2)τ(4)P1S

+ −2τ(2)τ(4)]
16τ(2)τ(4)τ(3)2

+
[C2(4−C2)P2

1 τ(3)2+(4−C2)τ(2)τ(4)P2
1 ]

16τ(2)τ(4)τ(3)2 .

(35)

We simplify as

G(C) =
C4[N−2τ(3)2P2

1+(P2
1−S2)τ(2)τ(4)]

16τ(2)τ(4)τ(3)2

+
C2[4M+12P2

1 τ(3)2−(8P1S−9P2
1 )τ(2)τ(4)]

16τ(2)τ(4)τ(3)2

+
[4τ(2)τ(4)P2

1 ]
16τ(2)τ(4)τ(3)2 ,

(36)

with the first and second derivatives given, respectively:

G′(C) =
4C3[N−2τ(3)2P2

1+(P2
1−S2)τ(2)τ(4)]

16τ(2)τ(4)τ(3)2

+
2C[4M+12P2

1 τ(3)2−(8P1S−9P2
1 )τ(2)τ(4)]

16τ(2)τ(4)τ(3)2
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G′′(C) =
12C2[N−2τ(3)2P2

1+(P2
1−S2)τ(2)τ(4)]

16τ(2)τ(4)τ(3)2

+
2[4M+12P2

1 τ(3)2−(8P1S−9P2
1 )τ(2)τ(4)]

16τ(2)τ(4)τ(3)2

Solving G′(C) = 0 shows that the maxG(C) occurs at C = 0.
Using (36) we write

G(C) =
1
v

(
l1τ2 + l2τ + l3

)
where

l1 = N − 2τ(3)2P2
1 +

(
P2

1 −S2)τ(2)τ(4),
l2 = 4M + 12P2

1 τ(3)2 −
(
8P1S− 9P2

1
)
τ(2)τ(4),

l3 = 4τ(2)τ(4)P2
1

and C2 = τ. Since

max
0≤τ≤4

(
l1τ2 + l2τ + l3

)
=


l3, l2 ≥ 0, l1 ≥ − l2

8 (or) l2 ≤ 0,l1 ≥ − l2
4 ,

16l1 + 4l2 + l3,l2 > 0,l1 ≤ − l2
8

4l1l3−l2
2

4l1

max
0≤τ≤4

(
l1τ2 + l2τ + l3

)
l2 ≤ 0, l1 ≤ − l2

4

=


l3, l2 ≤ 0, l1 ≤ − l2

4 ,
16l1 + 4l2 + l3, l2 ≥ 0,l1 ≥ − l2

8 or l2 ≤ 0, l1 ≥ − l2
4 ,

4l1l3−l2
2

4l1
, l2 > 0,l1 ≤ − l2

8 ,

Finally, we have

∣∣∣a2a4 − a2
3

∣∣∣ ≤ 1

16τ(2)τ(4)τ(3)2 ×


l3, l2 ≤ 0, l1 ≤ − l2

4 ,
16l1 + 4l2 + l3, l2 ≥ 0,l1 ≥ − l2

8 or l2 ≤ 0, l1 ≥ − l2
4 .

4l1l3−l2
2

4l1
, l2 > 0,l1 ≤ − l2

8 ,

Which, after simple calculations completes the proof of Theorem 10. □

7. Conclusions

In this article, we introduce a new subclass of uniformly starlike functions by utilizing
the Lambert series, with coefficients derived from the arithmetic function σ(n). Conse-
quently, we explore the characteristics of the proposed subclass. Furthermore, we discuss
several relevant topics, including the Hadamard product, integral transform, and radii
of starlikeness and convexity. In addition, we extended some findings by incorporating
Robin’s inequalities and the Riemann hypothesis. Thus, applying the Lambert series to
additional subclasses of analytic functions may lead to significant research outcomes. Con-
sequently, we can conduct research on various subjects, including Fekete–Szegö inequalities
and subordination characteristics. Furthermore, multivalent functions and meromorphic
functions can be included in the scope of these conclusions.

Generally, if we apply the same methodology as this study and take into account the
Lambert series, whose coefficients are the higher-order sum of divisors function σα(n), and
if we investigate various special cases of the Mittag-Leffler function, we can also get more
intriguing results.
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