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Abstract: The study of dynamic singularity formation in spacetime, focusing on scalar field collapse
models, is analyzed. We revisit key findings regarding open spatial topologies, concentrating on
minimal conditions necessary for singularity and apparent horizon formation. Moreover, we examine
the stability of initial data in the dynamical system governed by Einstein’s equations, considering
variations in parameters that influence naked singularity formation. We illustrate how these results
apply to a family of scalar field models, concluding with a discussion on the concept of genericity in
singularity studies.

Keywords: dynamic singularity formation; scalar field collapse; genericity of singularity; horizon
formation

1. Introduction

From the middle of the last century, Hawking and Penrose’s theorems on geodesic
incompleteness and the emergence of black hole candidates sparked interest in dynamic
singularity formation. As interest in spacetime dynamics grew, it became evident that
Schwarzschild or Kerr spacetimes could merely represent an asymptotic state, necessi-
tating the consideration of richer solutions to understand relativistic collapse. Because
of their more manageable geometry, researchers turned to spherically symmetric models,
particularly focusing on collapse in dust clouds, radiation, and scalar fields.

Research on the collapse of scalar fields began in the late 1960s, and the mathematical
problem was approached in a variety of ways, notably in a renowned series of papers by D.
Christodoulou [1–4]. Christodoulou’s work laid the foundation for the theories by proving
conditions leading to trapped surfaces and addressing instability with respect to initial
data, which advanced the understanding of scalar field collapse and cosmic censorship.

Several years later, a new avenue emerged, spurred by connections to extended gravity
theories and string theory. Interest grew in self-interacting models with a potential: indeed,
the works cited above dealt at that point only with the free massless case, and refinements
where potentials come into play were largely limited to the analysis of non-central singular-
ities [5]. On the other hand, the new line of research, often within a cosmological context,
studies homogeneous models with a Robertson–Walker (RW) spacetime background, which
simplifies equations into an ODE system.

A wide array of potentials V(ϕ) has been explored, investigating conditions leading
to future singularities in a finite amount of RW time. One of the first and probably most im-
portant results in this realm is the work by Scott Foster [6], which introduced methods and
techniques that influenced all the following advances on this topic. For further discussion,
see [7–9] and references therein, including those in the present paper.

At the same time, the picture emerged where, under suitable conditions, the formation
of the apparent horizon in this spacetime is such that one can build a model by gluing an
RW interior with an external spherical metric. In this way, one obtains a global model where,
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starting from regular initial data, the apparent horizon does not form. In analogy to the
example shown in [3] for non-homogeneous collapse, this example of naked singularity was
examined to understand its genericity in terms of tunable parameters. By genericity, here,
we mean the stability with respect to small perturbations of the parameters leading to a
certain feature, e.g., the appearance of a naked singularity in the modality described above.
This research intersected with efforts to identify quantum mechanisms for preventing
singularity formation (see, e.g., the review [10]).

In this paper, we revisit the main results concerning open spatial topologies (specifi-
cally, when κ = 0 or κ = −1) with the goal of employing the minimal necessary assump-
tions on the potential function V(ϕ). While our focus is on elucidating the arguments
underpinning their proofs, it is important to note that our scope does not encompass the
vast literature on the subject. For instance, refs. [11–13] delve into potentials V(ϕ) taking
negative values on non-compact subsets of R. Conditions on V(ϕ) leading to generic
singularity formation and to the generic formation of the apparent horizon will be derived.

The genericity results presented here refer to the stability with respect to the choice
of the initial data for the dynamical system ruling these models, essentially derived from
Einstein’s field equations where gravity is coupled with the scalar field self-interacting
with V(ϕ). In fact, one can imagine an analysis of these models where a varying parameter
affects the functional dependence of a physical quantity, e.g., the energy density, on the
scale factor of RW spacetime. In this way, an alternative and different notion of genericity is
obtained, which can lead to a completely different interpretation; in [14–16], such situations
are shown, where naked singularity formation is stable with respect to the choice of the
parameter. The effect of altering this parameter is to simultaneously modify both the
function V(ϕ) and the initial data, thus obtaining a family of scalar field star models
collapsing to a naked singularity. The theory we are discussing naturally applies to each
member of this family, whose naked singularity formation is unstable to a perturbation
of the initial data if the potential is held fixed. Noticeably enough, however, these naked
singularities have been proved with numerical methods to be gravitationally strong [17].

The paper is organized as follows. Section 2 presents the interior RW metric and
the equations ruling its dynamics. The asymptotic behavior of the variables in the open
topologies κ = 0 and κ = −1 are studied in Sections 3 and 4, respectively. The construction
of the global model is then given in Section 5, together with the main theorems on the
genericity of singularity and horizon formation. The different notions of genericity, sketched
above, are analyzed in full detail in Section 6, referencing the above-cited examples from
the literature. Section 7 is devoted to the conclusions.

2. The Scalar Field Collapsing Model

First of all, let us work in normalized units in such a way that the Einstein field
equation will read as follows:

G + Λg = T.

In order to build a global model, we will consider an interior matter where the energy–
momentum tensor is given by

Tµν = ϕ,µϕ,ν −
(

1
2

gαβϕ,αϕ,β + V(ϕ)

)
gµν, (1)

where V(ϕ) is a given potential that depends on a scalar field ϕ, a function defined on
the spacetime interior manifold. We immediately observe that the potential V(ϕ) can also
embody the contribution of the cosmological constant Λ, via its redefinition V −→ V + Λ.

We suppose that the gradient of this function is timelike, allowing us to choose a
comoving gauge such that the metric is given by a homogeneous and spherical RW model:

g = −dt2 + a2(t)
[

dr2

1 − κr2 + r2dΩ2
]

, (2)
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where dΩ2 is the line element of S2 embedded in the Euclidean space R3, a(t) is the scale
factor of the homogeneous interior, and κ is a parameter related to the (constant) curvature
of the spatial part. As is well known, relevant cases are given by κ = −1, 0,+1. The Einstein
field equations then become:

G0
0 = T0

0 =⇒ − 3(κ + ȧ2(t))
a2(t)

= −
(

1
2

ϕ̇2(t) + V(ϕ(t))
)

, (3)

Gi
i = Ti

i =⇒ − κ + ȧ2(t) + 2a(t)ä(t)
a2(t)

=
1
2

ϕ̇2(t)− V(ϕ(t)), (4)

which implies the Bianchi identity Tµν
;ν = 0, now expressed as follows:

ϕ̇(t)
(

ϕ̈(t) + V′(ϕ(t)) + 3
ȧ(t)
a(t)

ϕ̇(t)
)
= 0. (5)

By (3), solutions such that ϕ̇(t) ≡ 0 correspond to an energy–momentum tensor given by
Tµ

ν = −V(ϕ0)δ
µ
ν , hence to vacuum solutions with cosmological constant Λ = V(ϕ0), i.e., to

(anti-) de Sitter solutions. Apart from this particular case, the scalar field ϕ is a solution to
the Klein–Gordon equation:

□ϕ + V′(ϕ) = ϕ̈(t) + V′(ϕ(t)) + 3
ȧ(t)
a(t)

ϕ̇(t) = 0, (6)

where □ is the D’Alambert operator induced by g.

Remark 1. To gain further insight into the interplay between (3), (4) and (6), let us introduce the
Hubble function

h(t) =
ȧ(t)
a(t)

,

and consider the function

W(t) := h2(t) +
κ

a2(t)
− 1

3

(
1
2

ϕ̇2(t) + V(ϕ(t))
)

. (7)

Of course, W(t) = 0 is precisely (3). But observe that, using (4) and (6), we have

Ẇ(t) = −3h(t)W(t), (8)

i.e., W(t) = W0a−3(t), so that, assuming (4) and (6), together with a choice of initial data such
that W0 = 0, then W(t) = 0 for all t.

Remark 2. Using (6) along with (3) and (4), we derive

ḣ(t) =
κ

a2(t)
− 1

2
ϕ̇2(t), (9)

and, therefore, in the case of open spatial topologies, i.e., κ = 0 and κ = −1, we can conclude that
h(t) is a decreasing function throughout the evolution. This fact motivates the interest, in this paper,
for spherical models with κ = 0 or κ = −1. As a consequence, since we are interested in collapsing
solutions, we choose the initial state such that ȧ(0) < 0, which implies h(t) < 0 for all t ≥ 0.

Using the above remark, we will employ a normalization scheme widely used in the
literature, introducing the new variables x, w and z defined as follows:

x = − 1√
3 h

, w = − ϕ̇√
6 h

, z = − 1
ha

(
= −1

ȧ

)
. (10)
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Moreover, we employ a normalized line τ:

dτ = −
√

6 h dt. (11)

Using (4), (6) and (9) we obtain the system:

dϕ

dτ
= w, (12)

dx
dτ

= − x√
6

(
3w2 − κz2

)
, (13)

dw
dτ

=

√
3
2

w
(

1 − w2 +
κ

3
z2
)
− 1

2
V′(ϕ)x2, (14)

dz
dτ

=
z√
6

(
1 − 3w2 + κz2

)
. (15)

As a matter of fact, the above system is not free since, as we have seen in Remark 2,
we have to take into account condition (3), which is guaranteed if we select the initial
data satisfying it. This condition, when applied to the new set of unknowns, takes the
following form,

V(ϕ)x2 + w2 − κz2 = 1, (16)

which allows x to be decoupled from the other unknowns in the system, assuming V(ϕ) ̸= 0.
This point will be further explored in subsequent discussions.

If x(0) > 0 and κ = 0,−1, then (13) implies that x(τ) is a decreasing and positive
function, hence bounded for every τ ≥ 0. Postulating that V(ϕ) is bounded from below,
and as actually stipulated by Assumption 1, we deduce from (16) that w and z will also be
bounded for every τ ≥ 0. The only unknown that can (and indeed does) attain unbounded
values is ϕ(τ). To control the behavior at infinity of the scalar field, we introduce a new
variable s, related to ϕ by

s = f (ϕ),

where f : R → (−1, 1) is a strictly increasing function of class C2 such that the following
two conditions hold:

lim
ϕ→−∞

f ′′(ϕ)
f ′(ϕ)

= λ− > 0, lim
ϕ→+∞

f ′′(ϕ)
f ′(ϕ)

= λ+ < 0. (17)

In other words, we “compactify” the variable ϕ, casting it into the set (−1, 1). With this
new variable, the system reads as follows:

ds
dτ

= f ′( f−1(s))w, (18)

dx
dτ

= − x√
6

(
3w2 − κz2

)
, (19)

dw
dτ

=

√
3
2

w
(

1 − w2 +
κ

3
z2
)
− 1

2
V′( f−1(s))x2, (20)

dz
dτ

=
z√
6

(
1 − 3w2 + κz2

)
, (21)

where now the constraint takes the form:

V( f−1(s))x2 + w2 − κz2 = 1. (22)

The main drawback of this formulation is that it cannot be extended by continuity
in s = ±1, due to the term V′( f−1(s)) in (20). Indeed, while f ′( f−1(s)) can be extended
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by continuity at s = ±1 by setting its value to zero, V′( f−1(s)) may possibly diverge. To
overcome this issue, we define the function u : (−1, 1) → R as follows:

u(s) =
V′( f−1(s))√
6 V( f−1(s))

. (23)

Exploiting the constraint (22), which is invariant by the flow of (18)–(21), we obtain
the following dynamical system:

ds
dτ

= f ′( f−1(s))w, (24)

dx
dτ

= − x√
6
(3w2 − κz2), (25)

dw
dτ

=

√
3
2

[
w
(

1 − w2 +
κ

3
z2
)
− u(s)(1 − w2 + κz2)

]
, (26)

dz
dτ

=
z√
6

(
1 − 3w2 + κz2

)
. (27)

To extend the meaning of this system also at infinity and, in general, to obtain the
main results of this paper, we introduce the following assumption.

Assumption 1. We assume V : R → R is a function of class C2 such that:

1. V(ϕ) eventually positive and V′(ϕ) eventually negative (resp. positive) for ϕ → −∞ (resp.:
ϕ → +∞);

2. the two limits lims→−1 u(s) and lims→1 u(s) exist and are finite.

Observe that the hypotheses made on V(ϕ) allow the dynamical system (24)–(27) to
be extended by continuity at s = ±1. Also observe that u(s) is not well defined on the
zeroes of the potential V, which, however, are contained in a compact subset of (−1, 1).

3. The Flat Case κ = 0

In this section, we revisit the case where κ = 0, which was analyzed in [18], now
employing the compactification scheme we previously introduced. This approach mirrors
the methodology applied in [19] to the study of homogeneous perfect fluid collapse within
f (R) theories.

First, let us rewrite the system (24)–(27) in this particular case:

ds
dτ

= f ′( f−1(s))w, (28)

dx
dτ

= −
√

3
2

xw2, (29)

dw
dτ

=

√
3
2
(
w − u(s)

)
(1 − w2), (30)

dz
dτ

=
z√
6

(
1 − 3w2

)
, (31)

where (22) now reads as follows:

V( f−1(s)) x2 + w2 = 1. (32)

Since (28)–(30) and (32) do not involve the unknown z, only the first three equations
of the system should be considered. Moreover, (28) and (30) are independent from (29).
However, it is important to notice that the described system is applicable only when u(s) is
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well-defined, hence when we are sufficiently distant from the zeroes of V( f−1(s)). Should
this not be the case, (30) must be replaced with the following equation:

dw
dτ

=

√
3
2

w
(

1 − w2
)
− 1

2
V′( f−1(s)) x2. (33)

To overcome this problem, let us fix δ > 0 such that

V( f−1(s)) > 0 and V′( f−1(s)) ̸= 0, ∀s ∈ (−1,−1 + δ) ∪ (1 − δ, 1), (34)

whose existence is granted by Assumption 1. As a consequence, (30) is well-defined
whenever |s| ∈ (1 − δ, 1). Let us choose a smooth function ψ(s) : [−1, 1] → [0, 1] such that
ψ(s) = 1 if |s| ≤ 1− δ and ψ(s) = 0 if |s| ∈ (1− δ/2, 1]. In particular, we have that ψ(s) = 0
in a right neighborhood of s = −1 and in a left neighborhood of s = 1, hence where u(s)
is well-defined, thanks to Assumption 1. Setting θ1(s, w) and θ2(s, x, w) the right-hand
sides of (30) and (33) respectively, we have that both (30) and (33) can be substituted by the
following equation:

dw
dτ

= (1 − ψ(s))θ1(s, w) + ψ(s)θ2(s, x, w), (35)

which, with a slight abuse of notation, is always well-defined.

Definition 1. A collapsing scalar field in the flat case (κ = 0) is a solution of (28), (29) and (35)
with initial data satisfying (32), x(0) > 0, and V satisfying Assumption 1.

Since we are interested in the asymptotic behavior of the system, we give the following
result, recalling that “generically” refers to small perturbations of initial data.

Theorem 1. Let x̄ > 0 be fixed and let Ω (see Figure 1) be defined as the following subset of R3:

Ω =
{
(s, x, w) ∈ R3 : s ∈ (−1, 1), x ∈ (0, x̄], V( f−1(s))x2 + w2 = 1

}
. (36)

Assume that V satisfies Assumption 1. Then, a collapsing scalar field in the flat case, with initial
data in Ω, remains in Ω for all τ ≥ 0, and generically approaches the set M0 ⊆ Ω \ Ω defined by:

M0 := Ω ∩
(
{|s| = 1} ∪ {|w| = 1}

)
∩ {x = 0}. (37)

In particular, we have generically that

lim
τ→∞

x(τ) = 0+. (38)
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(a) (b)

(c) (d)

(e) (f)

Figure 1. The subset Ω (36) in (b,d,f) for several choices ((a), (c), (e) respectively) of the potential
V(ϕ). The orange region corresponds to the set where ψ(s) = 1, see (34) and the ensuing discussion.

Proof. The results are consequences of applying the LaSalle theorem (see, e.g., [20]). We
divide the proof into several steps, verifying the hypotheses of that theorem.
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Step 1. Let us prove that Ω is a bounded set. By Assumption 1, V is bounded from
below and, by (29), x(τ) is a decreasing function, hence x(τ) ∈ [0, x̄] for all τ ≥ 0 if
x(0) ∈ [0, x̄]. Then, the constraint (32) implies that w(τ) is also bounded for all τ ≥ 0.

Step 2. Let us now determine the closure Ω, which is a compact set. Limit points
(s, x, w) for Ω that are outside Ω may be of the following forms:

• s = ±1. If
V+

∞ := lim
ϕ→+∞

V(ϕ) = +∞,

then (1, 0, w) for any w ∈ [−1, 1] is a limit point for sequences in Ω. On the contrary,
if V+

∞ ∈ R, then all the points (1, x, w) such that V+
∞ x2 + w2 = 1 and x ≥ 0 are limit

points. Analogous considerations hold for V−
∞ := limϕ→−∞ V(ϕ).

• x = 0. Besides the situations already considered before, there are also the points
(s, 0,±1) with s ∈ (−1, 1).

Summarizing, the closure Ω is obtained by adding the set{
(±1, x, w) ∈ R3 : x ∈ [0, x̄], V±

∞ x2 + w2 = 1
}
∪
{
(s, 0,±1) ∈ R3 : s ∈ (−1, 1)

}
to Ω, where, with abuse of notation, we are considering the case w ∈ [−1, 1], x = 0 as a
degenerate case (V±

∞ = ∞) of the half-ellipse V±
∞ x2 + w2 = 1, x ≥ 0.

Step 3. Now we prove that Ω is positively invariant. This can be achieved simply by
considering when the initial condition is either in Ω or not. In the first case, we already
know that the constraint (32) is satisfied and x(τ) is decreasing, so the solution curve will
remain in Ω. Hence, it suffices to see what happens when the curve starts from Ω \ Ω.

If s(0) = +1, since f ′( f−1(1)) = 0 then s(τ) = 1 for all τ ≥ 0. If V+
∞ ∈ R then

u(1) = 0 and it can be seen that the following identity holds.

d
dτ

(V+
∞ x2 + w2) = −

√
6w2(V+

∞ x2 + w2 − 1) = 0.

Hence, the constraint is conserved along the flow and the solution remains in Ω. Otherwise,
if V+

∞ = ∞ then x(0) = 0, so x(τ) = 0 for every τ ≥ 0. Therefore, (30) implies that
w(τ) ∈ [−1, 1] for all τ ≥ 0. Analogous arguments hold for s = −1.

If the solution starts from a point (s, 0,±1) with s ∈ (−1, 1), then x(τ) = 0 and
w(τ) = ±1 for all τ ≥ 0, while (28) implies that s(τ) will be always in (−1, 1). This
completes the proof of the positive invariance of Ω.

Step 4. In view of the application of the LaSalle theorem, let us notice that the
projection on x is a Lyapunov function on Ω, so we need to determine the subset E of Ω
where dx/dτ = 0. Recalling (29), E is the set of points where w or x vanish, and it consists
of the following subsets:

• E1 =
{
(s, 1/

√
V( f−1(s)), 0) : s ∈ (−1, 1)

}
, and the limit case at infinity when V±

∞ ∈ R,
hence E2 =

{
(±1, 1/

√
V±

∞ , 0)
}

;
• E3 =

{
(±1, 0, w) : w ∈ [−1, 1]

}
, when V±

∞ = ∞;
• E4 =

{
(s, 0,±1) : s ∈ [−1, 1]

}
.

Step 5. We need to characterize the largest invariant subset of E. We observe that E3
and E4 above both belong to this set: indeed, if x(0) = 0 then x(τ) = 0 for all τ ≥ 0.

Now, let us examine the subset E1. When s0 ∈ (−1, 1), then the solution with this
initial condition will remain in E1 if w(τ) = 0 for all τ ≥ 0. This implies s(τ) = s0 and
x(τ) = 1/

√
V( f−1(s0). Since w(τ) = 0 for every τ ≥ 0, by (33), or by (30), we deduce that

V′( f−1(s0)) = 0; hence, s0 corresponds to a critical point of the potential V with positive
critical value.

By considering the subset E2, if s0 = ±1 and V±
∞ ∈ R, we have a critical point “at

infinity” for V(ϕ). Since f ′( f−1(±1)) = 0 by assumption, then s(τ) = s0 for every τ ≥ 0.
Moreover, since u is always well-defined in a neighborhood of the extreme points s = ±1,
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and in this case u(±1) = V′(±∞)/(
√

6V±
∞ ) = 0, we can use (30) to deduce that w(τ) = 0

for all τ ≥ 0.
Summarizing, the largest invariant subset of E is made by the subsets E3 and E4, which

together constitute the set M0 defined by (37), plus the subset of E1 ∪ E2 for which f−1(s)
is a critical point for V with positive critical value, possibly including the case of critical
points “at infinity” s = ±1, hence

E0 =
{
(s, 1/

√
V( f−1(s)), 0) : s ∈ [−1, 1], V′( f−1(s)) = 0

}
.

Step 6. Application of the LaSalle invariance theorem says that the solution the system
approaches at infinity is the set determined in the step above. To complete the proof,
we have to show that the points in E0, which are all critical points for the system, are
unstable. Let us consider the case when s = ±1 and V±

∞ ∈ R. In this case, since we are
in a neighborhood of an extreme point, we can decouple the system, considering just (28)
and (30). The linearized system at the point (±1, 0) is characterized by the following matrix:[

0 0

−
√

3
2 u′(±1)

√
3
2

]
,

which always admits a positive eigenvalue. Therefore, these points are unstable. When a
point in E0 is such that s ̸= ±1, then we have to work with the system (28), (29) and (33)
in (s, x, w). Nevertheless, a similar linearization procedure shows the instability of such a
point, since there always exists an eigenvalue with a positive real part.

Then, solutions must generically approach the set M0 defined by (37) and (38) holds.

According to the above theorem, generically, the study of limit points of trajectories
within the set M0 identifies the candidates for ω-limit points of the system that we are
considering. First, let us notice that all the points in M0 such that s ̸= ±1 are not equi-
librium points. Indeed, these points should have |w| = 1; hence, (28) implies that s(τ)
is not constant. Hence, we can reduce our analysis on the neighborhoods of the extreme
points where |s| = 1, and we can work with (30). By reducing once again to the planar
system given by (28) and (30), the linearization of the system at a point (s, w) gives the
following matrix:  w

f ′′( f (−1)(s))
f ′( f (−1)(s))

f ′
(

f (−1)(s)
)

√
3
2
(
w2 − 1

)
u′(s)

√
3
2
(
2u(s)w − 3w2 + 1

)
. (39)

Let us explore the possible cases corresponding to the equilibrium points of (28)
and (30):

1. s = ±1, with u(1) = 0 or u(−1) = 0 and w = 0. The eigenvalues are 0 and
√

3/2,
hence these points are unstable;

2. s = ±1 and w = ±1. We can limit to the two cases where w and s have the same sign
since they are the physically relevant ones (ϕ and ϕ̇ have the same sign). Considering,
for instance, s = w = 1, the hypothesis (17) made on f gives the two eigenvalues
λ+ < 0 and

√
6(u(1)− 1). Therefore, u(1) < 1 is a sufficient condition for stability.

The same argument applies to s = w = −1, where u(−1) > −1 is needed to have a
stable equilibrium point.

3. s = ±1 and w = u(±1). Observe that, due to Assumption 1 made on V(ϕ), the
constraint (32) implies u(±1)2 ≤ 1. Considering the positive case s = 1, the two
eigenvalues are given by λ+u(1) < 0 and −

√
3/2

(
u(1)2 − 1

)
, then if u(1) < 1 the

equilibrium is unstable. Similarly, if u(−1) > −1, then the point (−1, u(−1)) is
unstable.

We summarize the above considerations in the following result.
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Proposition 1. If u(−1) > −1 or u(1) < 1, then the scalar field generically diverges to infinity,
i.e., s2 → 1, with a velocity such that w2 → 1.

Example 1. We can observe that when both u(−1) < −1 and u(1) > 1, the above system lacks
stable equilibrium points. In this case, it can be shown that the solution approaches the set M as a
limit cycle. As an example, let us consider the following potential:

V(ϕ) = cosh
(

α
√

6ϕ
)

,

where α is a positive parameter. In this situation, we choose the function

s = f (ϕ) = tanh
(

α
√

6ϕ
)

,

in such a way that u(s) becomes simply u(s) = αs, and the system given by (28) and (30) takes the
following the form:

ds
dτ

= α
√

6
(

1 − s2
)

w,
dw
dτ

=

√
3
2

(
1 − w2

)
(w − αs). (40)

Therefore, when α < 1, we have (s, w) = (1, 1) and (s, w) = (−1,−1) as stable equilibria,
but when α > 1, the only equilibria are the origin and the vertices of the square [−1, 1]× [−1, 1],
and none of them is stable (see Figure 2).

(a) α = 1
2 (b) α = 3

2

Figure 2. The flow of the vector field (40) in Example 1 for two values of α. When α ≥ 1, the point
(1, 1) (and (−1,−1) as well) becomes unstable equilibria.

The case when α = 1 proves more delicate to analyze, given that (−1,−1) and (1, 1) represent
semi-hyperbolic equilibria. In this scenario, it is possible to demonstrate that integral curves
with initial conditions inside the square [−1, 1]× [−1, 1] never converge to these equilibria (see,
e.g., (Theorem 2.19(iii) [21]) for more details). Nevertheless, in all the above cases, the integral
curves must approach the boundary of the square, as one can also infer by calculation of the function
x2(τ), which we know to be decreasing. In this case, it reads as follows:

x2(τ) =
√

1 − s2
(

1 − w2
)

.

Since the integral curves of (40) with the initial condition inside the square approaches its boundary,
the scalar field oscillates infinitely many times with wider and wider amplitudes around ϕ = 0.
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4. The Open Spatial Topology κ = −1

For the reader’s convenience, we report here the system in its complete form, with
κ = −1:

ds
dτ

= f ′( f−1(s))w, (41)

dx
dτ

= − x√
6
(3w2 + z2), (42)

dw
dτ

=

√
3
2

[
w
(

1 − w2 − 1
3

z2
)
− u(s)(1 − w2 − z2)

]
, (43)

dz
dτ

=
z√
6

(
1 − 3w2 − z2

)
, (44)

where the constraint (invariant with respect to the flow of the system) reads as follows:

V( f−1(s))x2 + w2 + z2 = 1. (45)

As for the case κ = 0, near the zeros of the potential (43) should be replaced by

dw
dτ

=

√
3
2

w
(

1 − w2 − 1
3

z2
)
− 1

2
V′( f−1(s))x2. (46)

Setting θ1(s, w, z) and θ2(s, x, w, z) as the right-hand sides of (43) and (46), respectively,
we can repeat the construction leading to Definition 1. For this case, we give the following
definition.

Definition 2. A collapsing scalar field in the case κ = −1 is a solution of (41) and (42),

dw
dτ

= (1 − ψ(s))θ1(s, w, z) + ψ(s)θ2(s, x, w, z), (47)

and (44) with initial data satisfying (45), x(0) > 0, and V satisfying Assumption 1.

We can now provide the counterpart of Theorem 1.

Theorem 2. Let x̄ > 0 be fixed and let Ω be the following subset of R4:

Ω =
{
(s, x, w, z) ∈ R4 : s ∈ (−1, 1), x ∈ (0, x̄], V( f−1(s))x2 + w2 + z2 = 1

}
. (48)

If Assumption 1 holds, then a collapsing scalar field in the case κ = −1 with initial data in Ω
remains in Ω for every τ ≥ 0, and generically approach the set M−1 ⊆ Ω \ Ω defined as follows:

M−1 := Ω ∩
(
{|s| = 1} ∪ {w2 + z2 = 1}

)
∩ {x = 0}. (49)

In particular, we have generically that

lim
τ→∞

x(τ) = 0+.

Proof. As for Theorem 1, the proof is based on the LaSalle invariance theorem, and it
proceeds following the same steps.

Step 1. Since Assumption 1 implies that V is bounded from below, it is easy to see that
Ω is bounded.
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Step 2. In this case, the limit points for Ω that are not in Ω are the following:

Ω \ Ω = {(±1, x, w, z) : x ∈ [0, x̄], V±
∞ x2 + w2 + z2 = 1}

∪ {(s, 0, w, z) : s ∈ (−1, 1), w2 + z2 = 1},

where again, with abuse of notation, we include in the first subset the situation where
V±

∞ = ∞, which implies x = 0 and w2 + z2 ≤ 1.
Step 3. Let us show the positive invariance of Ω. If the initial condition is inside

Ω, then (45) is satisfied and x is a decreasing function, so the solution remains inside Ω.
Otherwise, we need to consider the following situations:

• s0 = ±1 and V±
∞ ∈ R: in this case, we have u(s0) = 0. Hence, by using (41)–(44) one

can find that

d
dτ

(V±
∞ x2 + w2 + z2) = −

√
2
3
(3w2 + z2)(V±

∞ x2 + w2 + z2 − 1) = 0, (50)

so the constraint is satisfied for all τ ≥ 0.
• s0 = ±1 and V±

∞ = ∞: in this case we have x0 = 0 and w2
0 + z2

0 ≤ 1. Since
f ′( f−1(s0)) = 0 and x(τ) = 0 for all τ ≥ 0, the positive invariance is achieved
by showing that w2(τ) + z2(τ) ≤ 1 for all τ ≥ 0. Since we are in a neighborhood of
the extrema, we can use (43) that, together with (44), implies the following equation:

d
dτ

(w2 + z2) =

√
2
3
(1 − w2 − z2)(3w2 + z2 − 3u(s0)w). (51)

By the last identity, we deduce that if w2
0 + z2

0 ≤ 1 then w2(τ) + z2(τ) ≤ 1 for every
τ ≥ 0.

• x0 = 0, s0 ∈ (−1, 1) and w2
0 + z2

0 = 1: in this case, it suffices to show that w2(τ) +

z2(τ) = 1 for every τ ≥ 0. By combining (44) and (46) we obtain

d
dτ

(w2 + z2) =

√
2
3
(1 − w2 − z2)(3w2 + z2), (52)

hence, the constraint is always satisfied.

Step 4. Even in this case, the function x(τ) is a Lyapunov function, and we need to
characterize the set E ⊂ Ω where dx/dτ = 0. By (42), we obtain that E is constituted by
the following subsets:

• E1 =
{
(s, 1/

√
V( f−1(s), 0, 0) : s ∈ [−1, 1]

}
, where the limit cases s = ±1 are possible

only when V±
∞ ∈ R;

• E2 =
{
(±1, 0, w, z) : w2 + z2 ≤ 1

}
if V±

∞ = ∞;
• E3 =

{
(s, 0, w, z) : s ∈ (−1, 1), w2 + z2 = 1

}
;

Step 5. Let us determine the largest invariant subset of E. The two subsets E2
and E3 are invariant by (51) and (52), respectively. A solution starting in E1 remains
in E only if it remains in E1. Hence, w(τ) should be zero for every τ and by (46), we
obtain that V′( f−1(s0)) should vanish. As a consequence, the largest invariant sub-
set of E is constituted by E2 and E3, which together form the set M−1, and the subset
E0 =

{
(s, 1/

√
V( f−1(s)), 0, 0) : s ∈ [−1, 1], V′( f−1(s)) = 0

}
.

Step 6. The proof ends by noticing that every point in E0 is an unstable fixed point for
the system. This can be achieved simply by observing that the linearization of the system
at a point (s, 1/

√
V( f−1(s), 0, 0) always has 1/

√
6 as the eigenvalue due to (44).

As performed for the case κ = 0, the study of the stability of the equilibrium points for
the system (41)–(44) in M−1 gives us the candidates to ω–limit points of the system. Since
M−1 is given by (49), we have the following cases:
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• if s0 ̸= ±1 and (s0, 0, w0, z0) ∈ M−1 is an equilibrium point, then by (41), we have
w0 = 0, which implies z2

0 = 1. In this case, the linearized system is characterized by
the following matrix: 

0 0 f ′( f−1(s0)) 0
0 − 1√

6
0 0

0 0
√

2
3 0

0 0 0 −
√

2
3

,

hence, the two lines given by
{
(s, 0, 0,±1) : s ∈ (−1, 1)

}
are unstable equilibria for

the system.
• If s0 = ±1, then we can reduce to study the system only with respect to (s, w, z).

By (44), we have an equilibrium point if either z0 = 0 or 1 − 3w2
0 − z2

0 = 0. Let us
examine separately the two cases:

– s0 = ±1 and z0 = 0: we have considerations analogous to the case where κ = 0.
Specifically, the physically relevant points (1, 1, 0) and (−1,−1, 0) are stable if
u(1) < 1 and u(−1) > −1, respectively. Moreover, the other two points of
equilibrium, which are (1, u(1), 0) and (−1, u(−1), 0), are always unstable.

– s0 = ±1 and 1 − 3w2
0 − z2

0 = 0: in such points, (43) reads as follows:

dw
dτ

=

√
2
3

w0
(
1 − 3w0u(s0)

)
.

As a consequence, such points are of equilibrium if either w0 = 0 or 3w0u(s0) = 1.
If w0 = 0, then z2

0 = 1 and the linearized system is given by the following matrix:
0 0 0

0
√

2
3

√
6u(s0)z0

0 0 −
√

2
3

,

so the point is an unstable equilibrium. On the other hand, if s0 = ±1, 1 − 3w2
0 +

z2
0 = 0 and 3w0u(s0) = 1, the linearized system is characterized by the following

matrix: 
w0λ± 0 0

−
√

6u′(s0)w2
0

√
2
3 (1 + z2

0)
√

2
3 z0(3u(s0)− w0)

0 −
√

6w0z0 −
√

2
3 z2

0

,

whose eigenvalues are w0λ± < 0 (where we assume that w0 and s0 have the same

sign), and 1√
6
(1 ±

√
1 − 4z2

0), so it always has an eigenvalue with a positive real
part. Therefore, these equilibrium points are also unstable.

Summarizing, by the above considerations, we obtain that Proposition 1 holds, even
in this case; namely, if u(−1) > −1 or u(1) < 1, then the scalar field generically diverges,
meaning that s2 → 1, with a velocity such that w2 → 1 and z2 → 0.

5. A Collapsing Global Model

The above models can be considered the interior matter of a global model obtained
performing a suitable junction with an exterior spacetime, thereby obtaining models of
collapsing objects, whose endstate can be investigated.
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A natural choice for the exterior is the so-called generalized Vaidya solution, which is the
spacetime generated by a radiating object [22], and it reads as follows:

ds2
ext = −

(
1 − 2M(U, R)

R

)
dU2 − 2 dR dU + R2 dΩ2, (53)

where M is an arbitrary (positive) function. The matching is performed along a hypersur-
face Σ = {r = rb}. As proved in [18,23], the junction conditions of Darmois–Israel between
these two models require continuity of M at the junction hypersurface, and the additional
condition ∂M

∂U = 0, again on the junction hypersurface.
Having established a global model, our next task is to investigate whether recol-

lapse occurs within a finite amount of comoving time. Let us start by recalling that
dt
dτ = − 1√

6h
= x/

√
2. The time of collapse is then given by

ts =
1√
2

∫ ∞

0
x(τ)dτ. (54)

On the other hand, (25) implies

dx
dτ

= − x√
6
(3w2 − κz2),

and therefore, we obtain

x(τ) = x0 exp
(

1√
6

∫ τ

0

(
κz(τ̃)2 − 3w(τ̃)2)dτ̃

)
. (55)

Let us consider, for example, the case κ = 0. We have seen that, under suitable
assumptions on V(ϕ), generically w2 → 1. By (55), we have x(τ) ∼ e−τ

√
3/2 and then the

integral in (54) converges, so the solution collapses in a finite amount of comoving time.
There is also a nongeneric situation in the case of κ = 0, where w → u(1) < 1 (a similar

argument applies to u(−1) > −1). In this case, by (55), we infer x(τ) ∼ e−τ
√

3/2u(1)2
, so

again, when u(1) > 0, the integral converges and the singularity forms in a finite amount
of time. Observe that, in case w → u(1) = 0, one can conceive situations where∫ ∞

0
w(τ)2 dτ

diverges. In this case, the integral (54) may also diverge, indicating a solution that indefi-
nitely collapses, remaining regular eternally.

5.1. Horizon Formation

In addition to the above analysis, one can examine the causal character of the solution
when approaching (finitely or infinitely) the singularity. For this purpose, one can use the
results from [23], where it is shown that if ȧ(t) remains bounded when approaching the
singularity, the boundary of the interior can be chosen so small that the apparent horizon
does not form (see Figure 3).
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R < 2m

ts

r

t

(a)

R < 2m

ts

rb
r

t

(b)

Figure 3. (a): If ȧ(t) is unbounded, at the center of the model the horizon (blue line) forms at the
same comoving time as the singularity (red line). (b): when ȧ(t) is bounded in the approach to the
singularity, one can choose a sufficiently small neighborhood of the center such that R > 2m and
perform a junction of the interior (the green region) with an exterior spacetime.

This fact also holds when κ = −1. By applying the definition of the Misner–Sharp
mass 1 − 2m/R = g(∇R,∇R) to the metric (2), we obtain the following implications:

R > 2m ⇐⇒ 1 + ȧ(t)r − κr2 > 0 ⇐⇒ −ȧ(t) <
1 − κr2

r
(56)

(recall that ȧ(t) is the derivative with respect to comoving time t, and it is negative in
our model).

In our situation, ȧ(t) is related, recalling (10), to the unknown z(τ), whose behavior is
given by Equation (27), which we recall reads as follows:

dz
dτ

=
z√
6

(
1 − 3w2 + κz2

)
.

Again, let us briefly review the case κ = 0. The generic situation is given by w2 → 1,
in such a way that z ∼ e−τ

√
2/3. This means that z → 0 as τ → +∞ and then ȧ diverges,

resulting in the formation of the horizon and then in a black hole. Vice versa, in the
nongeneric situation w → u(1) < 1, we obtain

z ∼ e(1−3u(1)2)τ .

Therefore, if
1 − 3u(1)2 > 0,

(for example, if u(1) = 0) then z diverges and then ȧ is bounded in the approach to the
singularity. Because of this, the model can be built in such a way that the horizon does not
form, and the singularity is naked.

We summarize the above findings in the following result.

Proposition 2. If the limit
lim

τ→+∞
3w(τ)2 − κz(τ)2 =: ℓ

exists and it is positive, then ts ∈ R, i.e., the solution collapses in a finite amount of comoving time.
Moreover, if ℓ > 1 then a horizon forms, and the model exhibits a black hole. Otherwise, if

ℓ < 1 and the boundary of the internal solution is chosen as sufficiently small, the horizon does not
form, resulting in a naked singularity.

In view of the analysis of the qualitative behavior performed in Sections 3 and 4, we
can conclude with the following theorem.
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Theorem 3. If u(−1) > −1 or u(1) < 1, then the collapsing scalar field with open spatial
topology (i.e., κ = 0 or κ = −1) generically collapses in a finite amount of comoving time forming
a black hole.

6. Horizon Formation Genericity

In the results stated above, genericity is meant with respect to the initial data of the
dynamical system: even if there may exist solutions that do not develop a horizon, and
therefore they collapse into a naked singularity, a small perturbation of its initial data will
restore black hole formation.

On the other side, one can conceive the same model but prescribe the behavior of
some physical quantity, e.g., the energy density, with respect to the scale factor, and see
whether the endstate associated with a given prescription is stable with respect to the
perturbation of the prescription itself. This analysis has been discussed—at least for the flat
case κ = 0—in the paper [23], where a function ψ(a) is prescribed such that

ȧ = −ψ(a). (57)

In the general case, field Equations (3) and (4) yield the following expressions for(
dϕ

da

)2
and V = V(a) (see [23,24]):

(
dϕ

da

)2
=

2
a2

[
1 − a

ψ′(a)
ψ(a)

+
κ

ψ2(a)

]
, (58)

V(a) = 2
(

ψ(a)
a

)2[
1 +

1
2

aψ′(a)
ψ(a)

+
κ

ψ2(a)

]
. (59)

Within the above framework, generical examples of collapse can conceived, leading to
naked singularities, where genericity now is intended with respect to the perturbation of
some parameter entering the relation (57). Let us review a few examples already known
in the literature, verifying that they correspond to a nongeneric situation (with respect to
perturbations of initial data).

Example 2. In the paper [14], the loop quantum gravity modification of a collapsing scalar field
in the case κ = 0 is considered, with the additional ansatz that the energy density ρ satisfies the
following identity:

ρ =
1
aν

, (60)

where ν is a positive parameter. It is shown that the additional condition ν < 2—that is, an open
condition, hence stable with respect to perturbation of ν—produces a solution collapsing in a finite
amount of comoving time, where the horizon does not form and then the singularity is naked. Let us
reconsider this example in the framework developed in the previous sections.

Recalling (3), we have

ρ =
1
2

ϕ̇2 + V(ϕ) = 3
(

ȧ
a

)2
,

which implies that

ȧ = − 1√
3

a1− ν
2 ,

and then the function ψ(a) in (57) is given by:

ψ(a) =
1√
3

a1− ν
2 .
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By (58), we have (
dϕ

da

)2
=

2
a2

[
−1 + 1 +

ν

2

]
=

ν

a2 ,

and then dϕ
da = ±

√
ν

a . Taking, for instance, the positive root, we have ϕ = ln a
√

ν, i.e., a = eϕ/
√

ν,
where the iteration constant has been chosen for simplicity. Then, the collapse happens for ϕ → −∞.
Using (59), we have

V(a) =
2
3

a−ν

(
1 +

1
2

(
1 − ν

2

))
=
(

1 − ν

6

) 1
aν

.

Combining this formula with the previous result, we obtain

V(ϕ) =
(

1 − ν

6

)
e
√

ν|ϕ|, (61)

where we have introduced the absolute value to remove the ambiguity coming from the square root
extraction shown above. From (61), we derive

u(ϕ) =
√

ν

6
sgn(ϕ), (62)

and then, by using the notation introduced in Section 3, we have u(−1) = −
√

ν/6 and u(1) =
√

ν/6.
On the other hand, we have

w = − ϕ̇√
6 h

= −dϕ

da
ȧ

a√
6ȧ

= − a√
6

√
ν

a
= −

√
ν

6
.

Then, the prescription (60) corresponds to the situation where w → u(−1), i.e., one of the nongeneric
choices discussed in Theorem 1.

In view of the results of Section 5, this solution leads to a naked singularity when 1 −
3u2(−1) > 0, i.e., ν < 2, as remarked in [14].

Example 3. The paper [15] presents a modification of the situation presented in the previous
example, considering the Einstein field equations explicitly adding a (negative) cosmological constant.
As a matter of fact, due to the form of the energy–momentum tensor (1), the presence of Λ adds a
constant to the potential function V(ϕ). With this in mind, one has to expect a situation similar to
the one that emerges from the previous example.

In [15], it is prescribed the following functional dependence of the energy density with respect
to the scale factor:

ρ(a) = 3a2β−2, (63)

with β < 1 so that ρ diverges as a → 0+. This amounts to prescribe the function ψ(a) in (57)
as follows:

ψ(a) =

√
a2β − a2

l2 , (64)

where the cosmological constant Λ is set equal to − 3
l2 , using the notation of [15]. Since β < 1,

ψ(a) ≃ aβ as a → 0+, and therefore, 1/ψ(a) is integrable in a right neighborhood of a = 0, the
singularity forms in a finite amount of comoving time. Moreover, also assuming β > 0, ψ(a) is
bounded, and therefore, a naked singularity can be built from this collapse, exactly as in the previous
example. Again, one can reconstruct back the potential V(ϕ), whose complete expression is given
in ([15] (23)) and has exponential growth. In this case, we have (embodying Λ in V)

ϕ̇2 = 2(1 − β)a2β−2, V = (β + 2)a2β−2 − 3
l2 ,
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and then we can find w as a function of a, satisfying the following relation:

w2 =
(β − 1)l2a2β

3
(
a2 − l2a2β

) a→0−−→ 1 − β

3
.

At the same time, we can compute u2(1), obtaining

u2(1) = lim
a→0+

(
1√
6

dV
da

(−ψ(a))
ϕ̇

)2

= lim
a→0+

(1 − β)(β + 2)2l2a2β
(
l2a2β − a2)

3
(
(β + 2)l2a2β − 3a2

)2 =
1 − β

3
.

Since these two limits are equal, we deduce that w → u(1) < 1, that is, once again, one of the
nongeneric situations occurring in the κ = 0 case. We deduce as well that the naked singularity
arising from the functional dependence (64) is nongeneric with respect to the perturbation of the
initial conditions.

Example 4. In [16], a collapsing scalar field in the flat case (κ = 0) is considered, where it is
prescribed the following behavior:

ρ(a) = 64λ(γ − log a)2, (65)

where λ and γ are positive parameters and, therefore, again subjected to open—hence stable—
conditions. The resulting collapse is shown to not form a singularity in a finite amount of time since
a(t) vanishes as t → +∞. Again, let us discuss this example in view of the results stated in the
previous sections.

Arguing as in Examples 2 and 3, we have

ψ(a) = 8a

√
λ

3
(γ − log a),

(
dϕ

da

)2
=

2
a2(γ − log a)

=⇒ ϕ(a) = −2
√

2(γ − log a) =⇒ a = eγ− ϕ2
8 ,

from which we get

V(a) =
64
3

λ(3γ − 1 − 3 log a)(γ − log a).

Combining these equations with the previous result yields the expression:

V(ϕ) = λ

(
ϕ4 − 8

3
ϕ2
)

, (66)

which produces u(−1) = u(1) = 0. On the other hand, we have

w = − a√
6

dϕ

da
= − a√

6

√
2

a
√

γ − log a
= − 1√

3(γ − log a)
a→0−−→ 0,

once again corresponding to one of the nongeneric choices described in Theorem 1, where the apparent
horizon does not form.

We observe that, in this case, we have, from (29) and the above expression for w, that

dx
dτ

= − 1√
6

x
γ − log a

⇒ dx
da

=
x

a(γ − log a)
.

Hence, x(a) = c
γ−log a , where c is an integration constant, and since

∫ ∞

0
x dτ = −

√
6c
∫ a0

0

da
a(γ − log a)
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diverges, then the solution indefinitely collapses and remains regular, as remarked at the beginning
of the present example.

Example 5. In the wake of the previous examples, we can build a similar model when κ = −1,
prescribing

ρ(a) =
3 − c a2γ2

a2 , (67)

with c, γ ̸= 0. Arguing as before, and recalling (3), we can find that

ȧ = −
√

1
3

a2ρ(a) + 1 = −
√

2 − 1
3

c a2γ2 .

We observe that the function

a 7→ − 1√
2 − 1

3 c a2γ2

is regular, hence integrable in a right neighborhood of a = 0, and then the singularity is reached in
a finite amount of comoving time. Moreover, ȧ is bounded as a → 0+, which means that a model
without a horizon can be built as well. However, denoting by w0 and z0 the limits of w(τ) and z(τ),
we can compute them using the limit of the scale factor as a → 0+:

1 − 3w2
0 − z2

0 = lim
a→0+

1 −−3

(
− aϕ̇√

6(−ψ(a))

)2

−
(

1
ψ(a)

)2


= lim
a→0+

γ2
(

1 +
6

−6 + c a2γ2

)
= 0,

which is again one of the nongeneric situations described in Section 4.
Observe that, once again, we can reconstruct the potential V(ϕ) solving (58), inverting a as a

function of ϕ and plugging it back in (59). In this case, the solution cannot be written in explicit
form, but Figure 4 represents the behavior of V for several choices of γ.

Figure 4. V(ϕ) for several choices of γ, see Example 5. The constant c in (67) has been fine-tuned
requiring the continuity of V′(ϕ) in ϕ = 0.
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7. Conclusions

It is well-known that research on scalar fields in general relativity has primarily
developed within a cosmological framework, with significant attention given to F(R)
theories. Consequently, the study of scalar field evolution in a Robertson–Walker (RW)
metric has predominantly focused on expanding cosmologies (see, e.g., [25–27]). However,
as outlined in the introduction, the study of (inhomogeneous) scalar fields has also served
as crucial toy models for investigating relativistic gravitational collapse [24]. Consequently,
in recent years, there has been a growing interest in examining the behavior of collapsing
scalar fields within homogeneous settings. This interest extends to alternative gravitational
theories or classical relativistic contexts involving matter sources in addition to the scalar
field itself (see, e.g., [19,28,29]).

In this paper, we have reviewed the main findings concerning the collapse process,
with an attempt in some cases to provide proofs of these theorems more closely aligned
with dynamical systems theory, akin to pioneering works in this field [6–8]. For instance,
Theorem 1, pertaining to the flat case κ = 0, was treated in ([18] Theorem 3.6) with an
ad-hoc argument utilizing the implicit function theorem. The consideration of closed spatial
topologies has been approached from various perspectives, including alternative theories
of gravity (see, e.g., [30–32]).

We demonstrated that similar techniques can be successfully applied, with necessary
adjustments, to cases with open spatial topologies (κ = 1), as shown in Theorem 2. This is
primarily due to Remark 2, which we discussed at the outset, highlighting the monotonicity
of the Hubble function h(t). On the contrary, in the case of closed spatial topology (κ = 1),
an increasing collapse may lead to competition between the terms on the right-hand side
of (9), potentially resulting in a reversal of the evolution towards an expansion phase.
Moreover, the compactness of the set where the trajectories of the model are analyzed (see
(16)) offers a reliable basis for cases where κ ≤ 0, but this compactness is not guaranteed
when dealing with κ = 1.

In Section 6, we have further analyzed the potential endstates of collapse for specific
models, including notable cases documented in the literature in the flat case [14–16], with
and without cosmological constant, and presenting an additional example for κ = −1. This
discussion is closely tied to the genericity aspects of naked singularity occurrences in these
models, which in turn relates to the well-known Penrose cosmic censorship conjecture. The
determination of genericity hinges on the set where parameter perturbations are applied.
When considering genericity concerning perturbations of initial conditions governing
the dynamical systems associated with these models, cosmic censorship is restored, as
evidenced by the results presented in Section 5.1, particularly in Theorem 3. Nevertheless,
it is important to note, as emphasized in the introduction, that these non-generic naked
singularities are gravitationally strong [17].

The results presented in this paper rely on general assumptions about the potential
function V(ϕ), particularly its behavior at infinity. Specifically, we assume an at-most-
exponential growth, as outlined in Assumption 1. Finally, it is noteworthy that the introduc-
tion of a cosmological constant, whether negative [15] or positive, does not fundamentally
alter the qualitative framework.
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