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Abstract: We reveal the continuous change of information dynamics patterns in anyonic-PT sym-
metric systems that originates from the continuity of anyonic-PT symmetry. We find there are three
information dynamics patterns for anyonic-PT symmetric systems: damped oscillations with an
overall decrease (increase) and asymptotically stable damped oscillations, which are three-fold de-
generate and are distorted using the Hermitian quantum Rényi entropy or distinguishability. It is the
normalization of the non-unitary evolved density matrix that causes the degeneracy and distortion.
We give a justification for non-Hermitian quantum Rényi entropy being negative. By exploring the
mathematics and physical meaning of the negative entropy in open quantum systems, we connect
negative non-Hermitian quantum Rényi entropy and negative quantum conditional entropy, paving
the way to rigorously investigate negative entropy in open quantum systems.

Keywords: non-Hermitian; quantum Rényi entropy; anyonic-PT symmetry

1. Introduction

The two fundamental discrete symmetries in physics are given by the parity operator
P and the time reversal operator T. In recent decades, parity-time-reversal (PT) symmetry
and its spontaneous symmetry breaking has attracted growing interesting both in theory
and experiments. On the one hand, non-Hermitian (NH) physics with parity-time sym-
metry can be seen as a complex extension of conventional quantum mechanics that has
novel properties. On the other hand, it is closely related to open and dissipative systems
of realistic physics [1–6]. Symmetries such as PT symmetry [7–10], anti-PT (APT) symme-
try [11–18], pseudo-Hermitian symmetry [19–22], and anyonic-PT symmetry [23–25] play
a central role in typical NH systems. In the quantum regime, various aspects of PT symme-
try have been studied, such as Bose–Einstein condensates [26,27], entanglement [28–30],
critical phenomena [8,31], etc. For a PT symmetric system, the Hamiltonian HPT satisfies
[PT, HPT] = 0. It is in the PT-unbroken phase if each eigenstate of the Hamiltonian is
simultaneously the eigenstate of the PT operator, in which case the entire spectrum is real.
Otherwise, it is in a PT symmetry broken phase, and some pairs of eigenvalues become
complex conjugate to each other. Between the two phases lie exceptional points (EPs) where
an unconventional phase transition occurs [7,32–37], and this is related to many intriguing
phenomena [8,38–41].

Anyonic-PT symmetry can be seen as the complex generalization of PT symmetry,
and the relationships between PT, APT, and anyonic-PT symmetry can be an analogy
to relationships between bosons, fermions, and anyons [23–25]. In this spirit, it was
named anyonic-PT symmetry. PT, anti-PT, and anyonic-PT symmetric systems can be
simulated [9,17,23,42] by current quantum devices using the linear combination of unitaries
(LCU) in the scheme of duality quantum computing [43,44]. While (anti-)PT symmetry
is discrete, anyonic-PT symmetry is continuous with respect to the phase parameter in
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a way similar to rotational symmetry [32]. The investigation of information dynamics
in (anti-)PT symmetric systems [8,18] shows that the change of information dynamics
patterns in (anti-)PT symmetric systems are discontinuous. In this paper, through a new
information dynamics description, which is found to be synchronous and correlated with
NH quantum Rényi entropy [45–47], we investigate the non-Hermitian (NH) quantum
Rényi entropy dynamics of anyonic-PT symmetric systems. Our results show: in contrast to
the discontinuous change of information dynamics patterns in (anti-)PT symmetric systems,
the change of information dynamics patterns in anyonic-PT symmetry is continuous and
originates from the interplay of features of (anti-)PT symmetry and the continuity of
anyonic-PT symmetry.

While Hermiticity ensures the conservation of probability in an isolated quantum
system and guarantees the real spectrum of eigenvalues of energy, it is ubiquitous in nature
that the probability in an open quantum system effectively becomes non-conserved due
to the flows of energy, particles, and information between the system and the external
environment [33]. In the study of radiative decay in reactive nuclei, which is analyzed by
an effective NH Hamiltonian, the essential idea is that the decay of the norm of a quantum
state indicates the presence of nonzero probability flow to the outside of the nucleus [48,49].
The non-conserved norm indicates there is information flow between the NH system and
the environment. Thus, the non-conserved norm is essential for describing information
dynamics in NH systems. In quantum information, a trace of the density matrix is a
central concept in various formulae characterizing information properties, such as von
Neumann entropy [50], Rényi entropy [45–47,51], and trace distance measuring of the
distinguishability of two quantum states [8,18,52,53].

In this work, we investigate the NH quantum Rényi entropy dynamics of anyonic-PT
symmetric systems through a new information dynamics description, which is found
to be synchronous and correlated with NH quantum Rényi entropy. Our results show
that the intertwining of (anti-)PT symmetry leads to new information dynamics patterns:
damped oscillation with an overall decrease (increase) and asymptotically stable damped
oscillation. The approaches of Hermitian quantum Rényi entropy or distinguishability
adopted in [8,18,53,54] not only degenerate the three distinguished patterns to the same
one, but they also distort it. The degeneracy is caused by the normalization of the non-
unitary evolved density matrix, which leads to the loss of information about the total
probability flow between the open system and the environment, while our approach based
on the non-normalized density matrix reserves all the information related to the non-
unitary time evolution. Furthermore, our results show that the lower bounds of both von
Neumann entropy and distinguishability being zero is related to their distortion of the
information dynamics in the NH systems. The discussion of the degeneracy and distortion
also serves as a justification for NH quantum Rényi entropy being negative. We further
explore the mathematical reason and physical meaning of the negative entropy in open
quantum systems, revealing a connection between negative NH entropy and negative
quantum conditional entropy [55–57]. Our work paves the way to rigorously investigate
the physical interpretations and the application prospects of negative entropy in open
quantum system. In contrast to the discontinuous change of information dynamics patterns
in (anti-)PT symmetric systems, we find that the change of information dynamics patterns
in anyonic-PT symmetry is continuous and originates from the interplay of features of
(anti-)PT symmetry and the continuity of anyonic-PT symmetry.

2. NH Quantum Rényi Entropy in Anyonic-PT Symmetric Systems

Quantum Rényi entropy [47] is suitable for Hermitian quantum systems (thus, we call
it Hermitian quantum Rényi entropy) as it requires the trace of the density matrix to satisfy
Tr ρ ∈ (0, 1]. The Hermitian quantum Rényi entropy is defined as:

SH
α (ρ) =

ln Tr ρα

1 − α
, (1)
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where α ∈ (0, 1) ∪ (1, ∞). If the initial quantum state ρ(0) is a pure state, SH
α (ρ) is trivial

as it is always zero under unitary time evolution. For open quantum systems with a trace
of the initial density matrix less than 1, due to the nonzero probability flow between the
systems and the environment, Tr ρ > 1 is possible with the time evolution of the systems.
Thus, the condition Tr ρ ∈ (0, 1] should be relaxed to Tr ρ ≥ 0 for open quantum systems. To
describe the information dynamics in NH open quantum systems properly, NH quantum
Rényi entropy [46] is defined using both the non-normalized density matrix Ω and the
normalized one ρ = Ω/Tr Ω as

Sα(Ω) =
ln Tr(Ωα−1ρ)

1 − α
α ∈ (0, 1) ∪ (1, ∞), (2)

with S0,1,∞(Ω) = Sα→0,1,∞(Ω),

S1(Ω) = −Tr (ρ ln Ω). (3)

Another commonly adopted description of information dynamics is the distinguishability
D of two quantum states [8,52,58]:

D(ρ1(t), ρ2(t)) =
1
2

Tr| ρ1(t)− ρ2(t) |, (4)

where |ρ| :=
√

ρ†ρ, and ρ1,2 are normalized density matrices. We notice that the only
difference between the expressions of Sα(Ω) and SH

α (ρ) is the use of Ω. Investigation of
S1(Ω) is enough for our purpose, as the dynamics of NH quantum Rényi entropy for
different values of α are similar [46,47]. Boltzmann’s entropy formula and Shannon’s
entropy formula state the logarithmic connection between entropy and probability. We
borrow this wisdom and take the natural logarithm of Tr Ω. We find that − ln Tr Ω(t) can
serve as a new description for the information dynamics in NH systems, as it is found to be
synchronous and correlated with NH quantum Rényi entropy. The function − ln Tr Ω(t)
captures the essence of the information dynamics in NH systems, as we show in Figure 1.
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Figure 1. Sα(Ω) behaves similarly for typical values of α; φ = −π/18; λ = 0, δ > 0, and Hφ in
Equation (10) in PT-unbroken phase. The black line marked with △ represents − ln Tr Ω(t), which is
shown to be synchronous and highly correlated with Sα(Ω).
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2.1. Anyonic-PT Symmetry

Anyonic-PT symmetric Hamiltonians Hφ satisfy (PT)Hφ(PT)−1 = eiφ Hφ, and thus,

Hφ = e−i φ
2 HPT = pHPT + q(iHPT), (5)

where p = cos φ
2 , q = − sin φ

2 , and HPT are PT symmetric, and iHPT satisfy anti-PT sym-
metry (thus, we denote HAPT = iHPT). HPT and HAPT commute, which means the two
can be simultaneously diagonalized, and so the eigenfunctions of Hφ (HPT and HAPT) are
independent of φ even though the eigenvalues vary with φ. The eigenvalues of HPT (HAPT)
undergo an abrupt change with the symmetry breaking, indicating a discontinuous change
of information dynamics patterns [8,18]. In contrast, the change of eigenvalues of Hφ with
symmetry breaking can be continuous because of the phase e−i φ

2 , indicating the possibility
of continuous change of information dynamics patterns.

We employ the usual Hilbert–Schmidt inner product when we investigate the effective
non-unitary dynamics of open quantum systems governed by Hφ (it is worth comparing
the results with calculations using biorthogonal inner products; please refer to Appendix B
for details) [8,59,60]:

Ω(t) = e−iHφt Ω(0) eiH†
φt, (6)

ρ(t) = Ω(t)/Tr Ω(t). (7)

For Hφ with eigenenergies En + iΓn,

Hφ|φn⟩ = (En + iΓn)|φn⟩, (8)

with ⟨φn|φn⟩ = 1. Define the eigenstates with the largest (second largest) imaginary part
as |φ1⟩ (|φ2⟩). After a sufficiently long time, |φ1⟩ and |φ2⟩ dominate the dynamics. With
arbitrary initial state |φ0⟩ = ∑n=1cn|φn⟩ and Ω(0) = |φ0⟩⟨φ0|, we have

− ln Tr Ω(t) ∼ − ln[ |c1|2 e2Γ1t + |c2|2 e2Γ2t + (c1c†
2 e−i(E1−E2)t⟨φ2|φ1⟩+ c.c.)e(Γ1+Γ2)t ] . (9)

For HPT in the PT-unbroken phase, Γn = 0, − ln Tr Ω(t) periodically oscillates; for HPT
in the PT-broken phase, some pairs of its eigenvalues become complex conjugate to each
other; the biggest positive Γn determines the dynamics of − ln Tr Ω(t): it asymptotically
decreases. For HAPT in the PT-unbroken phase, En = 0, Γ1,2 determines the overall trend of
− ln Tr Ω(t): it may be asymptotically decreasing (increasing or stable) without oscillation;
for HAPT in the PT-broken phase, Γ1,2 determines the overall trend of − ln Tr Ω(t): it may
be asymptotically decreasing (increasing or stable) with oscillation. Investigations [8,18] of
information dynamics in (anti-)PT symmetric systems show that the change of information
dynamics patterns in them is discontinuous, which is connected with the fact that parity-
time (PT) symmetry and anti-PT symmetry are discrete. By Equation (5), we know that the
information dynamics of Hφ are the result of the interplay of HPT and HAPT. According
to our analysis of HPT and HAPT, damped oscillation of information dynamics is possible
for Hφ in the PT-unbroken phase or the PT-broken phase, showing that the change of
information dynamics patterns in anyonic-PT symmetry is continuous.

2.2. Two-Level Systems

As a proof-of-principle example, we consider a generic two-level anyonic-PT sym-

metric system governed by Hφ. With the parity operator P given by
(

0 1
1 0

)
and the time

reversal operator T being the operation of complex conjugation, Hφ can be expressed as a
family of matrices:

Hφ = e−i φ
2

(
reiθ r1eiθ1

r1e−iθ1 re−iθ

)
, (10)
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where φ, r, θ, r1, θ1 are real. The energy eigenvalues of Hφ are

E± = e−i φ
2 (r cos θ ±

√
δ) , (11)

with
δ = r2

1 − r2 sin2 θ . (12)

When δ > 0, Hφ is in the PT-unbroken phase; when δ < 0, Hφ is in the PT-broken phase;

the exceptional point of Hφ is located at δ = 0. When δ > 0, with a =
r2

1+r2 sin2 θ
δ ≥ 1,

Tr Ω(t) = eq·2tr cos θ · 1 − a
2

cos 2p
√

δt + eq·2tr cos θ · 1 + a
2

cos 2iq
√

δt , (13)

where 1−a
2 cos 2p

√
δt is the feature of HPT in the PT-unbroken phase, and 1+a

2 cos 2iq
√

δt
and eq·2tr cos θ are the features of HAPT in the PT-unbroken phase. The interplay of HPT and

HAPT leads to new novel properties unique to Hφ. When δ < 0, with b =
r2

1+r2 sin2 θ
−δ ≥ 1,

we have

Tr Ω(t) = eq·2tr cos θ · 1 + b
2

cos 2ip
√
−δt + eq·2tr cos θ · 1 − b

2
cos 2q

√
−δt . (14)

So, similar to Equation (13), Equation (14) is a combination of underdamped oscillation and
overdamped oscillation (see Appendix A for details), and thus, the information dynamics
patterns of Hφ in the PT-unbroken phase or the PT-broken phase can be similar, which
shows that the change of information dynamics patterns in two-level anyonic-PT symmetry
is continuous. The asymptotically stable damped oscillation of S1(Ω) of Hφ in the PT-
broken phase is shown in Figure 2.
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Figure 2. The asymptotically stable damped oscillation of S1(Ω) and the distortion if adopting D(ρ)

or von Neumann entropy SvN(ρ) when Hφ is in the PT-broken phase: r = 40, r1 = 32, θ = 33π/64,

φ = −2 arctan
√

−δ
r2 cos2 θ

, δ < 0, and Hφ in the PT-broken phase.
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For Hφ1 and Hφ2 with φ1 + φ2 = −2π or 2π, the trace expressions of Hφ1 and Hφ2 are
the same. Therefore, we only consider −π < φ < 0 (p > 0, q > 0). For significantly large t,

Tr Ω(t) ∼ 1 + a
4

e2qλt (15)

Equation (15) determines the overall trend of Equation (13), with λ = r cos θ +
√

δ (λ = 0 if
and only if |r1| = |r| and r cos θ < 0 ). There are three information dynamics patterns for
anyonic-PT symmetric systems: damped oscillation with an overall decrease (increase) and
asymptotically stable damped oscillation, as we show in Figure 3. If we use the Hermitian
quantum Rényi entropy or distinguishability, a three-fold degeneration and distortion
happen, as we show in Figure 4. The three-fold degeneration and distortion happen in the
PT-broken phase of Hφ too, as we show in Figure 2 for the case of asymptotically stable
damped oscillation. The degeneracy is caused by the normalization of the non-unitary
evolved density matrix Ω, which washes out the effects of decay parts eΓnt and thus leads
to the loss of information about the total probability flow between the open system and the
environment, while our approach based on the non-normalized density matrix reserves
all the information related to the non-unitary time evolution. The asymptotically stable
damped oscillations and their relaxation time varying with φ are showed in Figure 5.
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Figure 3. Variable φ = −π/36; δ > 0 and Hφ in the PT-unbroken phase. The red line represents
S1(Ω); the dashed blue line represents − ln Tr Ω. (a) r = 0.8, λ > 0; (b) r = 1, λ = 0; (c) r = 1.2,
λ < 0. The three information dynamics patterns—damped oscillation with an overall decrease
(increase) and asymptotically stable damped oscillation—are well predicted by Equation (15).
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Figure 4. The black line represents distinguishability D; the dashed green line represents SH
1 (ρ),

i.e., the von Neumann entropy. The variable φ = −π/36. (a) r = 0.8, λ > 0; all parameters are
the same as in Figure 3a; (b) r = 1.2, λ < 0; all parameters are the same as in Figure 3c; (c) r = 1,
λ = 0; all parameters are the same as in Figure 3b. While S1(Ω) and − ln Tr(Ω) show that there are
three information dynamics patterns for anyonic-PT symmetric systems—damped oscillation with
an overall decrease (increase) and asymptotically stable damped oscillation—the three patterns are
distorted by D and SH

1 (ρ) and are degenerate to the same pattern, as we show here. We see that the
distortion is related to the lower bounds of D and SH

1 (ρ) being zero.
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Figure 5. When λ = 0, S1(Ω) is asymptotically stable. The red line represents S1(Ω); the dashed blue
line represents − ln Tr Ω(t). The function r cos θ = −

√
2/2, δ > 0, and Hφ in the PT-unbroken phase.

(a) φ = −π/36, (b) φ = −π/12, (c) φ = −π/6, and (d) φ = −3π/4. Clearly, the relaxation time of
the damped oscillation is determined by q · 2r cos θ.
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3. Negative Entropy

Here comes the problem that Sα(Ω) can be negative, and the comparison above in
Figure 4 gives a phenomenological justification for the necessity of it. We go one step
further and discuss the negative entropy in NH open quantum system. Entropy measures
the degree of uncertainty. In the sense of a classical statistical mixture, a closed system
with complete certainty is possible, and thus, it is reasonable that the lower bound of
the von Neumann entropy is zero. However, a general open quantum system cannot
possess complete certainty since it constantly interacts with its external environment in a
unpredictable way. Therefore, if we take the entropy of closed systems as reference, it is
natural that for open quantum systems, entropy might be negative. For example, unique
properties of PT symmetric systems are always predicted and observed in classical or
quantum systems where gain and loss of energy or amplitude are balanced. Then, we
can reasonably expect that different magnitudes of the balanced gain and loss will lead to
different lower bounds of entropy. Negative entropy is possible and important in Hermitian
physics too. It is well known that quantum information theory has peculiar properties that
cannot be found in its classical counterpart. For example, an observer’s uncertainty about a
system, if measured by von Neumann conditional entropy, can become negative [55–57].
With the density matrix of the combined system of A and B being ρAB (Tr ρAB = 1), von
Neumann conditional entropy is defined as

S(A|B) = −Tr(ρAB ln ρA|B) (16)

which is based on a conditional ‘amplitude’ operator ρA|B [57]. The eigenvalues of ρA|B can
exceed 1, and it is precisely for this reason that the von Neumann conditional entropy can
be negative [57]. For our purpose, the similarity between Equation (16) and Equation (3)
inspires a comparison of the role of non-normalized density matrix Ω in NH entropy S1(Ω)
and the role of ρA|B in von Neumann conditional entropy S(A|B); we remark that the
mathematical reason why S1(Ω) can be negative is similar to S(A|B), as Tr Ω can exceed 1.
The strong correlation between − ln Tr Ω and S1(Ω) also suggests that Tr Ω > 1 will lead
to negative entropy. Negative von Neumann conditional entropy has been given a physical
interpretation in terms of how much quantum communication is needed to gain complete
quantum information [55]. Furthermore, a direct thermodynamic interpretation of negative
conditional entropy is given in [56]. For NH entropy, our results above demonstrate that
allowing NH entropy to be negative is necessary and inevitable if we want to characterize
the information dynamics of NH systems properly.

4. Conclusions

We investigate the NH quantum Rényi entropy dynamics of anyonic-PT symmetric
systems through a new information dynamics description, i.e., − ln Tr Ω, which is found to
be synchronous and correlated with NH quantum Rényi entropy. While the information
dynamics in PT symmetric systems and anti-PT symmetric systems show that the change of
information dynamics patterns in them is discontinuous, we demonstrate that the change
of information dynamics patterns in anyonic-PT symmetry is continuous. Based on the
analysis of spectra and the information dynamics in PT symmetric systems and anti-PT
symmetric systems, we find that the continuous change of information dynamics patterns
originates from the interplay of features of PT symmetry and anti-PT symmetry plus the
continuity of anyonic-PT symmetry. We find that there are three information dynamics
patterns for anyonic-PT symmetric systems: damped oscillation with an overall decrease,
damped oscillation with an overall increase, and asymptotically stable damped oscillation.
We then use the Hermitian quantum Rényi entropy and distinguishability to investigate
the information dynamics in anyonic-PT symmetric and find that the three patterns are
distorted and degenerate to the same one. The discussion of the degeneracy and distortion
serves as a justification for negative NH quantum Rényi entropy. We further explore the
mathematical reason and physical meaning of the negative entropy in open quantum
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systems, revealing a connection between negative NH entropy and negative quantum
conditional entropy, as both quantities can be negative for similar mathematical reasons.
Since the physical interpretation and the following applications of negative quantum
conditional entropy are successful and promising, our work gives a direction to rigorously
investigate the physical interpretations and the application prospects of negative entropy
in open quantum system.
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Appendix A. Derivation of Equations (13) and (14)

Define the two-level PT symmetric HPT as

HPT =

(
reiθ r1eiθ1

r1e−iθ1 re−iθ

)
. (A1)

Decompose HPT in a Pauli matrix: HPT = r cos θ I + r1 cos θ1σ1 − r1 sin θ1σ2 + ir sin θσ3 and
define M = r1 cos θ1σ1 − r1 sin θ1σ2 + ir sin θσ3. When δ ̸= 0, the time-evolution operator
Uφ of Hφ = e−i φ

2 HPT is

Uφ = e−ite−i φ
2 r cos θ · (cos(te−i φ

2
√

δ)I − i
sin(te−i φ

2
√

δ)√
δ

M). (A2)

Denote

M1 = cos(te−i φ
2
√

δ)I − i
sin(te−i φ

2
√

δ)√
δ

M. (A3)

With Ω(0) = 1
2 I,

Ω(t) = UφΩ(0)U†
φ

=
1
2

eq·2tr cos θ · M1M†
1 .

(A4)

When δ > 0, with a =
r2

1+r2 sin2 θ
δ ≥ 1, we get Equation (13):
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Tr Ω(t) = eq·2tr cos θ · 1 − a
2

cos 2p
√

δt + eq·2tr cos θ · 1 + a
2

cos 2iq
√

δt . (A5)

When q · 2r cos θ < 0, the first term in Equation (13) is the equation of underdamped
oscillation, with the undamped frequency ω2 = 4(p2δ + q2r2 cos2 θ); in particular, when
|r| = |r1|, ω2 = 4r2 cos2 θ; the second term in Equation (13) is the equation of over-
damped oscillation, with the undamped frequency ω2 = 4q2(r2 − r2

1); in particular, when
|r| = |r1|, ω2 = 0. So Equation (13) is a combination of the underdamped oscillation and
the overdamped oscillation, and the undamped frequencies are independent of φ when
|r| = |r1|. When q · 2r cos θ > 0, corresponding amplified oscillations can be analyzed in

the same way. When δ < 0, with b =
r2

1+r2 sin2 θ
−δ ≥ 1, we get Equation (14):

Tr Ω(t) = eq·2tr cos θ · 1 + b
2

cos 2ip
√
−δt + eq·2tr cos θ · 1 − b

2
cos 2q

√
−δt . (A6)

By Equation (A4)–(A6), we know that the normalization procedure ρ(t) = Ω(t)
Tr Ω(t) washes out

the decay part eq·2tr cos θ (q = 1 for HAPT; q = 0 for HPT) and causes loss of information about
the total probability flow between the NH open quantum system and the environment.

Appendix B. Results Using Biorthogonal Inner Product

Appendix B.1. Biorthogonal Inner Product

We employ the Hilbert–Schmidt inner product when we investigate the non-unitary
dynamics governed by Hφ. It is worth comparing the results with calculations using the
biorthogonal inner product. To this end, we restate the essential ideas of biorthogonal
quantum mechanics [61].

Let K̂ = Ĥ − iΓ̂, with Ĥ† = Ĥ and Γ̂† = Γ̂, be a complex Hamiltonian with eigenstates
{|ϕn⟩} and non-degenerate eigenvalues {κn}:

K̂|ϕn⟩ = κn|ϕn⟩. (A7)

The biorthogonal basis {⟨χn|} is defined as:

K̂†|χn⟩ = νn|χn⟩ and ⟨χn|K̂ = ν̄n⟨χn|, (A8)

where κn = ν̄n and ⟨χm|ϕn⟩ = δnm.
For an arbitrary state |ψ⟩, the associated state |ψ̃⟩ is defined as:

|ψ⟩ = ∑
n

cn|ϕn⟩ ⇔ ⟨ψ̃| = ∑
n

c̄n⟨χn| ⇒ |ψ̃⟩ = ∑
n

cn|χn⟩. (A9)

The density matrix of any mixed state is

ρ̂ = ∑
n,m

ρnm|ϕn⟩⟨χm|. (A10)

A density matrix ρ̂ is ‘Hermitian’ with respect to the choice of biorthogonal basis {|ϕn⟩, |χn⟩}
so that ρ̄nm = ρmn.

If {κn} are real, then the evolution operator Û = e−iK̂t in effect is unitary in the sense of
biorthogonal quantum mechanics so that the norms of states and transition probabilities are
preserved under the time evolution. With initial condition |ψ0⟩ = ∑n cn|ϕn⟩, |ψt⟩ = Û|ψ0⟩
is given by

|ψt⟩ = ∑
n

cne−iκnt|ϕn⟩. (A11)
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According to the conjugation rule (A9),

⟨ψ̃t| = ∑
n

c̄neiκ̄nt⟨χn| ⇒ |ψ̃t⟩ = ∑
n

cne−iκnt|χn⟩. (A12)

⟨ψ̃t|ψt⟩ = ∑
n

c̄ncne−i(κn−κ̄n)t. (A13)

|ψt⟩⟨ψ̃t| = ∑
n,m

cn c̄me−i(κn−κ̄m)t|ϕn⟩⟨χm|. (A14)

If κn are real so that κ̄n = κn, then for all time t > 0, we have ⟨ψ̃t|ψt⟩ = ⟨ψ̃0|ψ0⟩.

Appendix B.2. Two-Level Systems

As an elementary example, consider the two-level PT symmetric Hamiltonian
K̂ = σ̂x − iγσ̂z. The eigenvalues κn = ±

√
1 − γ2 and the eigenstates of K̂ and K̂†

are |ϕ±⟩ and |χ±⟩, respectively. With the initial state being the maximal mixed state
1
2 |ϕ+⟩⟨χ+|+ 1

2 |ϕ−⟩⟨χ−|, the non-normalized density matrix is

Ω(t) =
1
2

e−i(κ1−κ̄1)t|ϕ+⟩⟨χ+|+
1
2

e−i(κ2−κ̄2)t|ϕ−⟩⟨χ−|. (A15)

In the region γ2 < 1, κn are real, and K̂ is in the PT-unbroken phase,

Tr Ω(t) = 1, (A16)

as expected. In the region γ2 > 1, κn = ±i
√

γ2 − 1 are pure imaginary, and K̂ is in the
PT-broken phase,

Tr Ω(t) = cosh 2t
√

γ2 − 1. (A17)

If we accept that the definition of NH Rényi entropy Sα(Ω) is applicable to biorthogonal
quantum systems, then according to Equations (A16) and (A17), there are two information
dynamics patterns for PT and anti-PT symmetric systems in the sense of biorthogonal
quantum mechanics. Case (i): If the eigenvalues are entirely real, the NH quantum Rényi
entropy Sα(Ω), distinguishability D, and Hermitian quantum Rényi entropy SH

α (ρ)) are
constant because Û = e−iK̂t is unitary in effect based on the biorthogonal inner product [61],
which is similar to the Hermitian case based on the Hilbert–Schmidt inner product. Case
(ii): If complex eigenvalues exist, the largest positive imaginary part of the eigenvalues
determines the information dynamics pattern, and the information dynamics pattern is
monotonically decreasing, which is similar to the general anyonic-PT symmetric cases.

Given that the Hamiltonian Hφ = e−i φ
2 K̂ of a general anyonic-PT symmetric system

is the combination of PT symmetric K̂ and anti-PT symmetric iK̂, Sα(Ω) monotonically
decreases for Hφ in the PT-unbroken or PT-broken phases, as we show in Figure A1. We
have performed further numerical studies, the results of which also indicate that when
the eigenvalues of K̂ are real, the three kinds of information dynamics descriptions (Sα(Ω),
D, and SH

α (ρ)) are constant; when one or more of the eigenvalues is complex with a
positive imaginary part, Sα(Ω), D, and SH

α (ρ) monotonically decrease. In conclusion, if
we adopt a biorthogonal inner product to study the information dynamics of general
anyonic-PT symmetric systems, there will be only one information dynamics patterns, i.e.,
monotonically decreasing.



Symmetry 2024, 16, 584 12 of 14

0 2 4 6 8 10 12 14 16 18 20

t

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

S
(

) 
in

 B
io

rt
h

o
g

o
n

a
l 
In

n
e

r 
P

ro
d

u
c
t

=0

=1/2

=1

=2

=

-ln(Tr )

Figure A1. If we adopt a biorthogonal inner product, Sα(Ω) monotonically decreases for typical
values of α. The variable φ = −π/18. The variable γ = 0.9, Hφ = e−i φ

2 K̂ in the PT-unbroken phase.
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