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Abstract: Starlike and convex functions have gained increased prominence in both academic literature
and practical applications over the past decade. Concurrently, logarithmic coefficients play a pivotal
role in estimating diverse properties within the realm of analytic functions, whether they are univalent
or nonunivalent. In this paper, we rigorously derive bounds for specific Toeplitz determinants
involving logarithmic coefficients pertaining to classes of convex and starlike functions concerning
symmetric points. Furthermore, we present illustrative examples showcasing the sharpness of
these established bounds. Our findings represent a substantial contribution to the advancement
of our understanding of logarithmic coefficients and their profound implications across diverse
mathematical contexts.
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1. Introduction, Definitions and Motivation

Within the open unit disk U in the complex plane, the class B is defined by functions g
expressed as power series g(z) = ∑∞

k=1 akzk, where z ∈ U and the functions are analytic.
Let A be the collection of functions g ∈ B satisfying g(0) = 0, g′(0) = 1. Additionally, S is
defined as a sub-collection of A consisting of schlicht functions, where a function g ∈ S is
represented by

g(z) = z +
∞

∑
k=1

ak+1zk+1, z ∈ U. (1)

In the domain of geometric function theory, considerable attention has been directed
towards subclasses associated with convex and starlike functions. A function g within
the class S is classified as convex if its image g(U) takes on a convex shape, while it is
characterized as starlike when the image g(U) exhibits starlikeness with respect to the
origin. We denote these sets of functions by S c and S∗, respectively.

Undoubtedly, the primary focus of study within univalent functions revolves around
the subclasses S c and S∗. Throughout this manuscript, it will become evident that both
S c and S∗ fall within the purview of S , thereby exemplifying natural subsets of S . These
subclasses boast a longstanding historical legacy, originating in the early decades of the
twentieth century. Starlike functions hold a particular allure, especially considering the
inclusion of the Koebe function K(z) = z/(1 − z)2 within S∗. This implies that starlike
functions have the potential to exhibit growth rates equivalent to those in S . Consequently,
the geometric constraints imposed on the image domain of starlike functions contribute to
a rich array of properties within S∗, many of which extend to the broader class S . However,
some properties either prove false or present open conjectures within S . We begin by
presenting the established analytic characterization of starlike functions, as outlined by
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Duren [1], in which these functions are defined in terms of having a positive real part. Let
g ∈ A. Then g ∈ S∗ if, and only if, Re(G1) > 0, where

G1(z) =
zg′(z)
g(z)

, z ∈ U. (2)

A similar analytic expression applies to convex functions, and a again follows that
given by Duren [1]. Let g ∈ A. Then g ∈ S c if, and only if, Re(G2) > 0, where

G2(z) =
(zg′(z))′

g′(z)
, z ∈ U. (3)

We note that S c ⊂ S∗ ⊂ S . In the research by Sakaguchi [2], a category of functions,
denoted by S∗

s , was introduced, where a function g ∈ S∗
s was defined as starlike concerning

symmetric points if, for any ρ ∈ (0, 1) near 1 and for any z0 located on |z| = ρ, the angular
velocity of g(z) around g(−z0) is positive at z0 as z moves along the circle |z| = ρ in the
positive direction. These functions, often referred to as Sakaguchi functions, are noteworthy
for their amalgamation of symmetry and starlike properties, establishing them as a unique
subclass within the realm of univalent functions. The well-known analytic description of
functions that are starlike with respect to symmetric points has an excellent exposition,
expressed by Re(G3) > 0, where

G3(z) =
2zg′(z)

g(z)− g(−z)
, z ∈ U. (4)

Das and Singh [3] introduced the class of convex functions concerning symmetric
points. A similar analytic expression holds for functions that are convex with respect to
symmetric points, expressed as Re(G4) > 0, where

G4(z) =
2(zg′(z))′

(g(z)− g(−z))′
, z ∈ U. (5)

The functions within the class S∗
s are recognized as close to convex, thus ensuring

their univalence. This class encompasses not only starlike functions concerning symmetric
points but also extends to convex functions and odd starlike functions with respect to the
origin. Addressing the geometric properties of analytic functions, Sakaguchi functions
find applications in various facets of complex analysis, including the theory of univalent
functions, quasiconformal mappings, and the exploration of conformal maps between
diverse regions in the complex plane. The practical utility of conformal mappings and
geometric transformations tied to the properties of starlike functions extends to computer
graphics and image processing, facilitating the visually pleasing and efficient mapping of
shapes, textures, and images.

Consider H as the collection of functions ω ∈ B satisfying ω(0) = 0 and |ω(z)| < 1
for z ∈ U. Functions ω ∈ H are said to be Schwarz functions and have the following
series form:

ω(z) =
∞

∑
k=1

bkzk. (6)

An analytic function g1 is considered subordinate to g2 (symbolically g1 ≺ g2), if we
have ω ∈ H, such that g1(z) = g2(ω(z)) for z ∈ U. Ma and Minda [4] unified various
subclasses of starlike and convex functions. They defined

S∗(ϕ) = {g ∈ S : G1 ≺ ϕ}, (7)

and

S c(ϕ) = {g ∈ S : G2 ≺ ϕ}, (8)
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where G1 and G2 are given by (2) and (3), respectively. Moreover,

ϕ(z) = 1 +
∞

∑
k=1

Jkzk, (9)

is univalent in U with a positive real part, and all Jks are real numbers, where J1 > 0. In [5],
Ravichandran introduced unified classes S∗

s (ϕ(z)) and S c
s (ϕ(z)) of Sakaguchi functions,

which are defined as follows:

S∗
s (ϕ) = {g ∈ S : G3 ≺ ϕ}, (10)

and

S c
s (ϕ) = {g ∈ S : G4 ≺ ϕ}, (11)

where G3, G4 and ϕ are defined by (4), (5) and (9), respectively. The classes S∗
s (ϕ(z))

and S c
s (ϕ(z)) include various subclasses associated with the exponential function, the

cosine hyperbolic function, the lemniscate of Bernoulli, and others. Authors [6] focused
on subclasses, such as S∗

s (ez) and S∗
s (
√

z + 1), within the realm of Sakaguchi functions,
investigating bounded constraints on the initial Taylor–Maclaurin coefficients of functions
within these subclasses. Subsequently, Ganesh et al. [7] delved into the class S∗

s (ez) and
estimated certain coefficient functionals, although most of the results lack sharpness. In
a distinct approach introduced in [8], the author established connections between the
coefficients of Schwarz functions and the coefficients of corresponding functions in a
specified class. In this study, we examine the classes S∗

s := S∗
s (ϕ(z)) and S c

s := S c
s (ϕ(z)),

where ϕ(z) is the bilinear transformation (1+ z)/(1− z). Therefore, we can represent these
classes as

S∗
s =

{
g ∈ S : G3 ≺ 1 + z

1 − z
, z ∈ U

}
, (12)

and

S c
s =

{
g ∈ S : G4 ≺ 1 + z

1 − z
, z ∈ U

}
, (13)

where G3 and G4 are given by (4) and (5), respectively. It is well established that these
classes are subclasses of close-to-convex functions with bounded kth Taylor–Maclaurin
coefficients, where the bound is set to 1. However, no bounds are known for coefficients of
functions g satisfying (10) and (11), excluding cases where k = 2, 3. It is worth noting that
the functions g1(z) = z/(1 − z2) and g2(z) = − log(1 − z) belong to the classes S∗

s and S c
s ,

respectively. Consequently, it becomes evident that these classes are not empty.
The logarithmic coefficients of the function g ∈ S , denoted as γk for k ∈ N :=

{1, 2, 3, · · · }, are defined as follows:

1
2

log
g(z)

z
=

∞

∑
k=1

γkzk, z ∈ U. (14)

The significance of these coefficients becomes evident in various estimates during
the analysis of univalent functions (see Milin [9], Chapter 2). The heightened interest
in logarithmic coefficients is driven by the fact that, for the class S , exact bounds are
established solely for |γ1| (≤ 1) and |γ2| (≤ 0.5 + e−1). The logarithmic coefficients γk for
any g ∈ S adhere to the following inequality

∞

∑
k=1

|γk|2 ≤ π2

6
,
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and the equality is established for the Koebe function. It is noteworthy that the function
k(z) does not belong to S∗

s , preventing it from being an extremal function for S∗
s .

If g is given by (14), then differentiating and the equating coefficients yields

2γ1 = a2, 4γ2 = 2a3 − a2
2 and 6γ3 = 3a4 − 3a3a2 + a3

2. (15)

Toeplitz and Hankel matrices share a close relationship. Toeplitz matrices display
identical elements along their main diagonals, whereas Hankel matrices exhibit constant
values along the converse diagonals. In a seminal work in 2016, Ye and Lim [10] established
that matrices of size m × m across the set of complex values can generally be considered to
derive from the product of specific Toeplitz matrices. The importance of Toeplitz determi-
nants and matrices spans different mathematical concepts, presenting a diverse scope of
applications [10]. Furthermore, across both the theoretical and applied mathematical realm,
Toeplitz determinants take on vital roles, finding applications in fields such as integral
equations and analysis, quantum mechanics, signal and image processing, etc. [11].

The research presented by Thomas and Halim [12] introduces the symmetric Toeplitz
determinant associated with g ∈ S defined by (1). This Toeplitz determinant, denoted as
Tk,n(g), is expressed as follows:

Tk,n(g) =

∣∣∣∣∣∣∣∣∣
an an+1 · · · ak+n−1

an+1 an · · · ak+n−2
...

...
...

...
ak+n−1 ak+n−2 · · · an

∣∣∣∣∣∣∣∣∣
where k, n ∈ N. Numerous recent papers have focused on determining upper and lower
bounds for Toeplitz determinants associated with functions in S . Ali et al. [13] exam-
ined the bounds of |T2,n( f )|, |T3,1( f )| and |T3,2( f )| within the classes S∗ and S c. Cudna
et al. [14] investigated sharp upper and lower estimates for |T2,1( f )| and |T3,1( f )| concern-
ing the classes S∗(α) and S c(α), where 0 ≤ α < 1. Obradović and Tuneski [15] delved into
the same determinants within the class S and some of its subclasses. Recently, Sun and
Wang [16] derived sharp bounds for second- and third-order Hermitian Toeplitz determi-
nants for the class S c(α) of convex functions. Recently, Mandal et al. [17] determined the
best possible bounds for second Hankel and Hermitian Toeplitz matrices, involving loga-
rithmic coefficients of inverse functions, which are applied to starlike and convex functions
concerning symmetric points. In recent studies, considerable attention has been devoted to
exploring interesting properties associated with Teoplitz and Hankel determinants within
the realm of analytic functions of certain classes of convex and starlike functions (see,
for example, [18–27] and references therein).

The Toeplitz determinant, characterized by entries corresponding to the logarithmic
coefficients of g ∈ S in the form (14), is expressed as

Tk,n
(
γg
)
=

∣∣∣∣∣∣∣∣∣
γn γn+1 · · · γk+n−1

γn+1 γn · · · γk+n−2
...

...
...

...
γk+n−1 γk+n−2 · · · γn

∣∣∣∣∣∣∣∣∣.
Consequently, specific expressions are obtained, such as

T2,1(γg) = γ2
1 − γ2

2 and T2,2(γg) = γ2
2 − γ2

3. (16)

Inspired by the aforementioned works and recognizing the importance of Toeplitz
determinants and logarithmic coefficients, the structure of the rest of this paper is as follows:
in Section 2, we establish sharp bounds for the Toeplitz determinants T2,1(γg) and T2,2(γg).
These determinants are characterized by entries representing the logarithmic coefficients
of analytic univalent functions, and we delve into the analysis of the well-known class
of Sakaguchi functions within U. To achieve this, we employ the Schwarz function, in
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accordance with the principle of subordination between analytic functions with respect to
symmetric points. Significant advancements have been achieved in this regard, particularly
in the context of Toeplitz determinants for univalent functions concerning symmetric
points. The findings contribute to a broader understanding of logarithmic coefficients.
Finally, Section 3 includes the most relevant concluding remarks from the present work
and addresses future research directions.

2. Main Results

To establish our findings, the pivotal role will be played by the subsequent lemma
applied to Schwarz functions.

Lemma 1 ([28]). If ω ∈ H be of the form (6), then

|b1| ≤ 1,

|b2| ≤ 1 − |b1|2,

|b3| ≤ 1 − |b1|2 −
|b2|2

1 + |b1|
.

Theorem 1. Let g ∈ S∗
s be given by (1). Then, the inequality∣∣∣γ2

1 − γ2
2

∣∣∣ ≤ 5
16

, (17)

holds true, and the bound is proven to be sharp.

Proof. Assuming g ∈ S∗
s , it follows that we have ω ∈ H in the form (6), such that

2zg′(z)
g(z)− g(−z)

=
1 + ω(z)
1 − ω(z)

. (18)

We begin by observing that, through the equalization of coefficients in (18), we derive

a2 = b1, a3 = b2
1 + b2, (19)

and

2a4 = 2b3
1 + 3b1b2 + b3. (20)

Substituting (19) into (15) and simplifying, we obtain

16
(

γ2
1 − γ2

2

)
= 4b2

1 − 4b2
2 − 4b2

1b2 − b4
1. (21)

Next, using Lemma 1 along with the triangle inequality, we obtain

16
∣∣∣γ2

1 − γ2
2

∣∣∣ ≤ |b1|4 + 4|b1|2 + 4|b1|2
(

1 − |b1|2
)
+ 4
(

1 − |b1|2
)2

. (22)

Now, setting ξ = |b1| in (22) and simplifying, we arrive at

16
∣∣∣γ2

1 − γ2
2

∣∣∣ ≤ ξ4 + 4 ≤ 5 for 0 ≤ ξ ≤ 1.

The equality case in (17) is realized by the function g1, which is given as

2zg′1(z)
g1(z)− g1(−z)

=
1 − iz
1 + iz

.

It is clear that g1 ∈ S∗
s , and for this function, we find
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γ1 = − i
2

and γ2 = −1
4

,

which demonstrates the sharpness of the bound in (17).

Theorem 2. If g is defined in S c
s according to (1), then the inequality∣∣∣γ2

1 − γ2
2

∣∣∣ ≤ 169
2304

, (23)

holds true, and the estimate is sharp.

Proof. Consider g ∈ S c
s expressed as in (1). There exists ω ∈ H represented by (6), such

that

2[zg′(z)]′

[g(z)− g(−z)]′
=

1 + ω(z)
1 − ω(z)

. (24)

By equating coefficients in (24), we derive

2a2 = b1, 3a3 = b2
1 + b2 (25)

and

8a4 = 2b3
1 + 3b1b2 + b3. (26)

Using (15), we obtain

2304
(

γ2
1 − γ2

2

)
= 144b2

1 − 64b2
2 − 80b2

1b2 − 25b4
1. (27)

Applying Lemma 1 and the triangle inequality yields

2304
∣∣∣γ2

1 − γ2
2

∣∣∣ ≤ 25|b1|4 + 144|b1|2 + 80|b1|2
(

1 − |b1|2
)
+ 64

(
1 − |b1|2

)2
. (28)

Setting τ = |b1| in (28) and simplifying, we obtain

2304
∣∣∣γ2

1 − γ2
2

∣∣∣ ≤ 9τ4 + 96τ2 + 64 ≤ 169 for 0 ≤ τ ≤ 1.

To establish the sharpness of the bound in (23), we consider the function g2, which is
defined by

2[zg′2(z)]
′

[g2(z)− g2(−z)]′
=

1 + iz
1 − iz

.

Clearly, g2 ∈ S c
s and for this function, we have

γ1 =
i
4

and γ2 = − 5
48

,

demonstrating the sharpness of the bound.

Theorem 3. Let g ∈ S∗
s be given by (1). Then, the inequality∣∣∣γ2

2 − γ2
3

∣∣∣ ≤ 37
144

, (29)

holds true, affirming the sharpness of the bound.
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Proof. Given that g ∈ S∗
s , we can derive the following expression from (15):

144
(

γ2
2 − γ2

3

)
= 9a4

2 − 8a6
2 + 24a4

2a3 − 24a3
2a4 − 36a2

2a3 + 36a2
3 − 36a2

4 + 72a2a3a4. (30)

Further, by substituting the values of a2, a3 and a4 from (19) and (20) into (30) for
g ∈ S∗

s , we obtain

144
(

γ2
2 − γ2

3

)
= 28b6

1 + 9b4
1 + 60b4

1b2 − 12b3
1b3 + 36b2

1b2 + 27b2
1b2

2 + 36b2
2 − 9b2

3 − 18b1b2b3. (31)

Applying the triangle inequality and Lemma 1 to Equation (31), we obtain the follow-
ing inequality

144
∣∣∣γ2

2 − γ2
3

∣∣∣ ≤ 28|b1|6 + 9|b1|4 + 60|b1|4|b2|+ 36|b1|2|b2|+ 27|b1|2|b2|2 + 36|b2|2

+

(
12|b1|3 + 18|b1||b2|+ 9

(
1 − |b1|2 −

|b2|2

1 + |b1|

))(
1 − |b1|2 −

|b2|2

1 + |b1|

) (32)

where

0 ≤ |b1| ≤ 1 and 0 ≤ |b2| ≤ 1 − |b1|2.

Now, by letting α = |b1| and β = |b2| in (32), we express the inequality as follows:

144
∣∣∣γ2

2 − γ2
3

∣∣∣ ≤ Γ(α, β), (33)

where Γ is defined by

Γ(α, β) = α4
(

28α2 + 9
)
+ α2β

(
60α2 + 36

)
+ β2

(
27α2 + 36

)
+ α

(
12α2 + 18β

)(
1 − α2 − β2

1 + α

)
+ 9
(

1 − α2 − β2

1 + α

)2

,

Considering Lemma 1, the admissible values for a pair (α, β) are consistent with the
compact set defined by (see Figure 1)

∆ =
{
(α, β) : 0 ≤ α ≤ 1, 0 ≤ β ≤ 1 − α2

}
. (34)

Figure 1. Graph of the region ∆ and the function Γ(α, β) over ∆.

Since Γ is differentiable, the only places where Γ can assume these values are points
inside ∆ where ∂Γ

∂α = ∂Γ
∂β = 0 and points on the boundary. Therefore, we show that

max Γ(α, β) ≤ 37 for 0 ≤ α ≤ 1 and β = 1 − α2. All the critical points of Γ within ∆ satisfy



Symmetry 2024, 16, 595 8 of 11

∂Γ
∂α

= αβ
(

54β + 120α2
)
+ 18x(y − 2α2 − β) + 12α3(14α2 + 3) + 2αβ(60α2 + 36)− α(12α2 + 18β)y = 0,

∂Γ
∂β

= 2β(27α2 + 36)− 18αx + α2(60α2 + 36) +
30βx
α + 1

− 2αβ(12α2 + 18β)

α + 1
= 0,

where

x =
β2

α + 1
+ α2 − 1 and y = 2α − β2

(α + 1)2 ,

by a numerical computation are the following:

(−0.999853,−0.000056), (−0.999912,−0.000034), (−0.999669,−0.000126), (−0.999932,−0.000026),

(−0.99994,−0.000023), (−0.999738,−0.0001), (−0.999922,−0.00003), (−0.999861,−0.000053),

(−0.999812,−0.000071), (−0.724801,−0.358268), (−1.001259, 0.030112), (−0.999944,−0.000021),

(−1.192423,−0.566136), (−0.999819,−0.000068), (−0.999905,−0.000035), (0.87716,−0.565515),

(−0.999685,−0.000121), (−0.999837,−0.000063).

Thus, there are no solutions within the interior of ∆. Utilizing basic calculus techniques,
we can establish that the maximum value of Γ(α, β) exists on the boundary of ∆. In
particular, at the boundary defined by α = 0 and 0 ≤ β ≤ 1, the function is

Γ(0, β) = 9β4 + 18β2 + 9 ≤ 36.

Likewise, at the boundary where β = 0 and 0 ≤ α ≤ 1, the function is

Γ(α, 0) = 28α6 − 12α5 + 18α4 − 18α2 + 12α3 + 9 ≤ 37.

Lastly, on the boundary curve defined by β = 1 − α2 and 0 ≤ α ≤ 1, the function
becomes

Γ(α, 1 − α2) = 10α6 − 27α4 + 18α2 + 36

with a maximum of 37. The amalgamation of these cases leads to

max Γ(α, β) = 37

and therefore, from (33), we obtain the desired result.
The sharpness of the bound specified in (29) is illustrated through the function g3,

which is defined by

2zg′3(z)
g3(z)− g3(−z)

=

√
37 + 6z2

√
37 − 6z2

.

It is evident that g3 ∈ S∗
s , and for this function, we observe that

γ2 =

√
37

12
and γ3 = 0,

demonstrating the sharpness of the bound in (29).

Theorem 4. If g is expressed in S c
s according to (1), then the inequality∣∣∣γ2

2 − γ2
3

∣∣∣ ≤ 1
36

, (35)
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remains valid, and it has been established that this estimate is sharp.

Proof. In view of (25), (26) and (30), we have

2304
(

γ2
2 − γ2

3

)
= 6b6

1 + 2b4
1b2 + 25b4

1 − 18b3
1b3 − 9b2

1b2
2 + 80b2

1b2 − 30b1b2b3 + 64b2
2 − 9b2

3. (36)

Therefore, using Lemma 1, we obtain

2304
∣∣∣γ2

2 − γ2
3

∣∣∣ ≤ 6|b1|6 + 2|b1|4|b2|+ 25|b1|4 + 18|b1|3
(

|b2|2

1 + |b1|
+ |b1|2 − 1

)
+ 9|b1|2|b2|2 + 80|b1|2|b2|

+ 30|b1||b2|
(

|b2|2

1 + |b1|
+ |b1|2 − 1

)
+ 64|b2|2 + 9

(
|b2|2

1 + |b1|
+ |b1|2 − 1

)2

.

(37)

Consequently, letting µ = |b1| and ν = |b2| in (37) provides

2304
∣∣∣γ2

2 − γ2
3

∣∣∣ ≤ Λ(µ, ν) (38)

where

Λ(µ, ν) = 6µ6 + 2µ4ν + 25µ4 − 9µ2ν2 + 80µ2ν + 64ν2 +
(

18µ3 + 30µν
)( ν2

1 + µ
+ µ2 − 1

)
− 9
(

ν2

1 + µ
+ µ2 − 1

)2

.

In accordance with Lemma 1, the feasible region for the pair (µ, ν) aligns with ∆,
which is defined by (34). Given the differentiability of Λ, its values are restricted to points
inside ∆, where ∂Λ

∂µ = ∂Λ
∂ν = 0, as well as points on the boundary. Hence, it is necessary to

determine the maximum value of Λ(µ, ν) within ∆ (see Figure 2). The critical points of Λ
adhere to the following conditions

∂Λ
∂µ

= 8µν(µ2 + 20) + (54µ2 + 30ν)y − 18xy − 18µν2 + xµ(18µ2 + 30ν) + µ3(36µ2 + 100) = 0,

∂Λ
∂ν

= ν(128 − 18µ2) + 2µ2(40 + µ2) + 30µy − 36νy
µ + 1

+
2νµ(18µ2 + 30ν)

µ + 1
= 0,

where

x = 2µ − ν2

(µ + 1)2 and y =
ν2

µ + 1
+ µ2 − 1.

Figure 2. Graph of Λ(µ, ν) within the region 0 ≤ µ ≤ 1 and 0 ≤ ν ≤ µ2.

The system of two equations described above does not possess a solution within
the interior of ∆. Consequently, the function Λ(µ, ν) cannot attain a maximum within
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the interior of ∆. Due to the continuity of Λ on ∆, its maximum value is realized on the
boundary of ∆. As a result, we obtain

Λ(µ, 0) = 6µ6 + 18µ5 + 16µ4 − 18µ3 + 18µ2 − 9 ≤ 31, for µ ∈ [0, 1],

Λ(0, ν) = −9ν4 + 82ν2 − 9 ≤ 64, for ν ∈ [0, 1],

Λ(µ, 1 − µ2) = −26µ6 + 89µ4 − 96µ2 + 64 ≤ 64, for µ ∈ [0, 1].

Combining the considerations from the above-discussed cases yields

max Λ(µ, ν) = 64.

Consequently, from (38), the desired result is obtained.
To demonstrate the sharpness of the bound in (35), we examine the function g4,

which is defined as

2
[
zg′4(z)

]′
[g4(z)− g4(−z)]′

=
1 + z2

1 − z2 .

Evidently, g4 ∈ S c
s , and for this function, we find

γ2 =
1
6

and γ3 = 0,

indicating the sharpness of the bound.

3. Concluding Remarks and Observations

The primary focus of exploring coefficient problems in various categories of analytic
functions, whether multivalent or univalent, revolves around expressing the coefficients
of functions within a particular class using the coefficients of related functions that ex-
hibit a positive real part. This approach allows coefficient functionals to be analyzed by
applying established inequalities for the class S . The investigation in this paper has exten-
sively delved into Toeplitz determinants featuring logarithmic coefficients for symmetric
points in convex and starlike functions’ associated bilinear transformation, resulting in the
establishment of sharp bounds.

The importance of logarithmic coefficients enhances the appeal of the proposed prob-
lem, making it a topic worthy of consideration and interest. Nevertheless, there has been
insufficient work conducted to establish sharp bounds for Toeplitz determinants with
logarithmic coefficients for convex, starlike, and their associated subclasses. So, it becomes
possible to investigate the bounds of T2,3

(
γg
)

and T3,2
(
γg
)

for a given class and its associate
subclasses, defined as

T2,3
(
γg
)
=

∣∣∣∣ γ3 γ4
γ4 γ3

∣∣∣∣ and T3,2
(
γg
)
=

∣∣∣∣∣∣
γ2 γ3 γ4
γ3 γ2 γ3
γ4 γ3 γ2

∣∣∣∣∣∣
where γ2 and γ3 are given by (15) and 8γ4 = 4a5 − 4a4a2 + 4a3a2

2 − 2a2
3 − a4

2.
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