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Abstract: Late Permian coal deposits are widely distributed throughout southwestern China. This
paper describes the petrological composition of the last coal seam in the Longmendong section of
the Emeishan area during the latest Changhsingian (Permian) and records important information
regarding the evolution of the mass extinction event that occurred at the end of the Permian. The
results show that the dominant coal maceral group is vitrinite, followed by liptinite and inertinite
macerals, and the coal minerals include quartz, chamosite and pyrite. The pyrofusinite and carbon
microparticles occurrence modes could have been formed during wildfires in the adjacent areas.
The β-tridymite occurrence modes and the high proportions and occurrence modes of magmatic
quartz indicate that synchronous felsic volcanic activity occurred during the peat mire accumulation
period. The chamosite and quartz occurrence modes suggest that they primarily precipitated from
Fe-Mg-rich siliceous solutions that was derived from the weathering of nearby Emeishan basalt. The
pyritic coal balls occurrence modes in the C1 coal seam are likely the result of coal-forming plants and
Fe-Mg-rich siliceous solutions in neutral to weak alkaline conditions during late syngenetic stages or
early epigenetic stages within paleomires.

Keywords: coal; maceral composition; wildfire; volcanic activity; Emeishan basalt; latest Changhsingian

1. Introduction

Coal is considered to be one of the most complex geological materials and consists
of a combination of organic and mineral matter [1]. The organic components in coal have
high energy potential and are used to characterize the coal deposit [2–4]. Coal is well
known to possess a wide variety of minerals [5–9]. Coal mineralogy is therefore a crucial
aspect to understanding the inorganic processes involved in its formation [10–12]. In
particular, coal minerals provide important information regarding the local geological
history and depositional conditions of coal-bearing sequences [13–20], in addition to the
regional tectonic and sedimentary history [21]. The mineral assemblages in coal can also
be used to determine the paleoenvironmental conditions of peat accumulation and coal
formation [22–28].

The Late Permian was a major coal-forming period, and Late Permian coal deposits
are widely distributed throughout southwestern China, including Yunnan, Guizhou and
Sichuan [21]. The Late Permian siliciclastic coal measures in eastern Yunnan, southern
Sichuan and western Guizhou comprise the largest coal reserves in all of southern China,
forming a transitional paralic plain and nonmarine alluvial setting [29], despite some
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preserved coal seams within marine carbonate sequences [30–33]. Previous studies fo-
cused on marine/nonmarine transitional environment areas related to coalfields including
Yunnan [21,22], Guizhou [34,35], Guangxi [32,33], Chongqing [36,37] and Sichuan [38,39].
However, research on coal seams in a terrestrial mire–lacustrine–fluvial environment is
very rare, despite the fact that it contains important information about the material source
of Late Permian coals.

The end-Permian mass extinction event (EPE) was the most extreme biological crisis on
Earth, with a substantial loss of marine and terrestrial species. The extinction occurred on a
global scale and is most commonly attributed to a large release of greenhouse gases owing
to volcanic activity of the Siberian Traps [40,41] and/or of other areas [42,43]. The Permo-
Triassic boundary (PTB) in the Sydney Basin [44] has historically been placed at the top of
the uppermost coal seam in the sequence (i.e., the Katoomba Coal Member in the west of the
basin, Bulli Coal in the south and the Vales Point coal seam in the north). Fielding et al. [45]
concluded that the top of the Bulli Coal marks the most pronounced floristic turnover
and is equated with the continental EPE. Vajda et al. [43] thought the uppermost unit of
the coal measures represents peat accumulation immediately preceding the EPE. In South
China, the last coal seam in nonmarine transitional environments is coincident with the
marine mass extinction based on stratigraphic range data and biological evidence [46]. The
first report of pyritic coal balls [47] in China was from the research of the last coal seam
in nonmarine transitional environments in the Wangjiazhai Formation, Shuicheng Coal
Mining District, Guizhou Province. The last appearance of coal in a terrestrial environment
is at the bottom boundary of the Permian-Triassic transitional Kaiyitou Formation in
South China [46], which provides an important record of the evolution of the EPE. The
petrological composition of the last coal seam is critical to understanding the sources of
minerals in coal and the geological processes to which coal has been subjected. More
importantly, the last coal seam provides basic data for the EPE in South China and thus
provides some evidence for the cause of the EPE. This coal seam is thus worthy of detailed
investigation.

2. Geological Setting

During the Permian–Triassic transition, South China was considered to be an isolated
island in a tropical zone of the eastern Tethyan gape (Figure 1A) based on recent palaeogeo-
graphical reconstructions [48,49]. A large (~300,000 km2) coal-bearing depositional system
formed during the Late Permian along the eastern edge of this volcanic plateau owing to
the undulating basalt mountains formed by the eruption of the Emeishan basalt in the Late
Guadalupian (Middle Permian). These processes allowed terrestrial alluvial and transi-
tional coastal deposits to accumulate along the peripheral areas [49]. The Emeishan flood
basalt eruptions were extensive and led to the formation of the Kangdian Oldland [50].
The magma from the primary eruption period evolved from mafic to felsic and alkaline
compositions [21], as confirmed by the widespread distribution of mafic, silicic and alkaline
tonsteins in southwestern China [36,51].

The Xuanwei Formation, disconformably overlying the Emeishan Basalt Formation,
formed in a terrestrial mire–lacustrine environment. It is the major coal-bearing interval
and is mainly composed of grey, olive or multicolored sandstone; mudstone and some coal
seams, none of which are minable [49] (Figure 1C). The Xuanwei Formation is approxi-
mately 37.8 m thick in the study area [46]. The base of the transitional Kaiyitou Formation is
defined as the top of the final coal seam and the top of the final olive rock [46,49]. According
to this definition, the Kaiyitou Formation is approximately 6.0 m thick in the Longmendong
section and does not contain coal seams [46]. The composition of the Dongchuan Formation
is uniform and consists of maroon/purple sandstone and silty breccia [46].
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Figure 1. (A) Global paleogeographic plate reconstruction at ~250 Ma (Permo-Triassic boundary) (modified from [52]). 
Abbreviated continental units: A, Annamia; Am, Amuria; NC, North China; SC, South China; (B) Simplified geological 
map of the Longmendong area (modified from [53]); (C) Stratigraphic section and sampling location of the Longmendong 
section (modified from [46]). The lithology coloring approximately represents that of the rocks according to the Munsell 
color system; (D) Outcrop and macroscopic photographs of the last coal seam in the Longmendong section, the detailed 
description of the figures can be seen in Part 3. 
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Figure 1. (A) Global paleogeographic plate reconstruction at ~250 Ma (Permo-Triassic boundary) (modified from [52]).
Abbreviated continental units: A, Annamia; Am, Amuria; NC, North China; SC, South China; (B) Simplified geological
map of the Longmendong area (modified from [53]); (C) Stratigraphic section and sampling location of the Longmendong
section (modified from [46]). The lithology coloring approximately represents that of the rocks according to the Munsell
color system; (D) Outcrop and macroscopic photographs of the last coal seam in the Longmendong section, the detailed
description of the figures can be seen in Part 3.
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3. Sampling and Analytical Methods

The area investigated in this study is located along the northeastern margin of the
Kangdian Upland. The studied samples were collected from the Longmendong section
(29◦34′43.99′′ N, 103◦24′59.50′′ E), which is located in Huangwan Town, Emeishan City,
Sichuan Province. The Permian-Triassic sedimentary sequences (Figure 1B) in the Long-
mendong section include in ascending order: the Emeishan Basalt Formation, Xuanwei
Formation, Kaiyitou Formation and Dongchuan Formation [46]. The last coal seam (C1) of
the Xuanwei Formation has a thickness of 0.4 m, which is poorly preserved (Figure 1(D1)).
The sample we analyzed is at the top of the coal seam, and it is grey black, the weathering
surface is light yellow, and endogenous cracks are not developed (Figure 1(D1,D2)). The
structure is linear and striped due to variations in coal composition (Figure 1(D3)). Pyrite
is distributed in strips or lenses along the coal seam (Figure 1(D2,D3)), accounting for a
minor proportion. Fossils with plant wood tissue structures (Figure 1(D6)) can be seen on
the surface of the coal, identified as Lepidodendron cf. acutangala, which are oriented parallel
to the layer. The surface is characterized by being covered with spirally-arranged leaf seats
from rhombus to rhombus; there are zigzag and protruding separation bands between
the intervals of the leaf seats, which cause the trunk surface to have a notably tortuous
appearance (Figure 1(D6)). Plant fossils are replaced by coal tar pitch and pyrite, and the
preservation is relatively complete. The coal tar pitch (Figure 1(D3,D5,D6)) is similar to
coal in appearance, being granular, shiny, black, brittle and being without layering and
with obvious scratches (Figure 1(D4)).

The samples were carefully collected to minimize contamination. Random reflectance
of vitrinite was measured by a Leica DM4P microscope at the Sinopec Zhongyuan Oilfield
based on SY/T 5124-2012. Microscopic identification of the macerals and subdivision
into maceral types were performed under both transmitted light and fluorescence ex-
citation using a DM6M microscope at the Sinopec Zhongyuan Oilfield, based on SY/T
5125-2014. The XRD analysis was performed on a powder diffractometer with Ni-filtered
Cu-Kα radiation and a scintillation detector. The mineralogy was determined by optical
microscopy, coal petrography microscopy and scanning electron microscopy (SEM). A FEI
Quanta 250 FEG field emission environment scanning electron microscope (SEM) (PO,
USA) fitted with OXFORD INCAx-max20 energy-dispersive X-ray spectrometers (EDS)
(High Wycombe, Buckinghamshire, UK) was used to investigate the surface characteristics
and associated coal chemistry. Due to the complex composition, variable structure and
strong heterogeneity of the coal seam, we selected multiple samples for SEM analysis,
including naturally exposed and ion-polished samples. All samples were first coated with
gold using an Emitech K550X sputter coater (UK) to increase electrical conductivity. The
SEM working distance was set to 10 mm, and the beam acceleration voltage was 20.0 kV.

4. Results
4.1. Maceral Compositions

The macerals analyses show that the C1 coal seam is composed of three maceral groups,
consisting of vitrinite (74.2 vol%), liptinite (19.6 vol%) and inertinite (6.2 vol%) (Figure 2A,B).
Microphotographs of the polished blocks from the coal petrography microscope show that
vitrinite is mainly composed of collotelinite (Figure 2E) and collodetrinite (Figure 2D), and
telinite is rare (Figure 2C). Collotelinite (CT) has uniform brightness and is distributed in
strips (Figure 2E). There are often endogenous fissures in collotelinite, which have been
filled by minerals (Figure 2F). Collodetrinite (CD) often occurs as a matrix of cementation
minerals distributed in strips and bifurcated strips, which form a clear contrast with the
cemented components (Figure 2D,G). Typical liptinite groups are not seen in the polished
blocks from a coal petrography microscope. Inertinite macerals are dominated by fusinite
and semifusinite. Degradofusinite appears bright white under reflected light, and the
gradual transition from vitrinite to inertinite was observed in the same plant fragment
(Figure 2F). Pyrofusinite appears bright yellowish white under reflected light, which was
deformed by compression and mineralized by clay minerals (Figure 2H–J). Semifusinite
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appears grey to yellowish white under reflected light, and plant tissues are well-preserved.
In addition, a few carbon microparticles can be observed (Figure 2L). The C1 coal seam is
anthracite coal (Rr = 2.7%) through the measurement of 42 points, the maximum reflectivity
is 3.0, and the standard deviation is 0.1.
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Figure 2. Vitrinite, liptinite and inertinite macerals in the C1 coal. (A) Vitrinite and inertinite; (B) Vitrinite and liptinite;
(C) Lepidophytotelinite showing secondary xylem and scalariform pits; (D) Oxidized collodetrinite with dessication
cracks; (E) Oxidized collotelinite with dessication cracks; (F) Degradofusinite showing the transition from vitrinite to
inertinite; (G) Inertinite showing well-preserved cell structure; (H) Magnification of (G), lepidophytofusinite (peridem) and
pyrofusinite; (I) Magnification of (G), pyrofusinite showing ‘bogen’ structure; (J) Magnification of (G), pyrofusinite showing
‘bogen’ structure; (K) Semifusinite with well-preserved cell structure; (L) Ellipsoidal carbon microparticle displaying
homogeneneous structure, showing the transition from vitrinite to inertinite. All photomicrographs were taken under
reflected light, (A,B) maceral plate; (C–L) polished blocks; (A,B,D,G) dry objective; (C,E,F,H–L) oil immersion.
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4.2. Mineral Occurrence Modes

The XRD analysis (Figure 3) shows that quartz (86.1%) is the dominant mineral in the
C1 coal seam, followed by clay minerals (mainly chlorite and a trace amount of kaolinite)
and minor pyrite minerals (1.4%). The chlorite in the C1 coal seam is identified as chamosite
rather than clinochlore due to the reduced intensity of the odd-order peaks. The SEM-EDS
analysis and optical microscopic observations are in agreement with the XRD results.
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4.2.1. Quartz

The following four quartz modes occur in the C1 coal seam: (1) Fine-grained quartz
crystals (Figure 4A,B) appear as angular fragments or corroded particles restricted to or-
ganic matter, which account for a substantial component of the total material. A minor
amount of larger detrital quartz grains occur in subangular or subrounded forms within the
organic matter and long axes approximately parallel to the bedding direction (Figure 4C).
(2) Quartz associated with chamosite occurs within the cell cavities and cleat/fracture in-
fillings (Figure 4E,F). (3) High-temperature quartz was found in the C1 coal (Figure 4G–K),
and its crystals are hexagonal plates and arranged in clusters and shingles. It is defined
as β-tridymite according to its crystalline characteristics. (4) There is a minor amount of
authigenic quartz (Figure 4D,L).

4.2.2. Chamosite

The XRD and SEM-EDS analyses indicate that chamosite is the dominant clay mineral
in the C1 coal seam (Figure 5E). The following five chamosite modes occur in the C1
coal seam: (1) Chamosite closely associated with the quartz component occurs mainly as
cleat/fracture infillings, accounting for a substantial proportion (Figures 4D,F and 5I,J,L),
and in some cases distributed solely in organic matter (Figure 5G). (2) Chamosite occurs as
cleat/fracture infillings within pyritic coal balls (Figure 5D,E). (3) Chamosite occurs as a
fibrous aggregate that envelops organic matter (Figure 5A,G,H). (4) Chamosite occurs as
cell infillings, which account for a minor proportion (Figure 5F). (5) The chloritic matrix is
associated with volcanic matter, accounting for a lower yet significant proportion of the
mineral material (Figure 5C).
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Figure 4. Quartz occurrence modes in coal. (A) Fine-grained quartz grains appear as angular fragments or corroded
particles restricted to organic matter in plane-polarized light (PPL); (B) Photomicrographs of (A) under polarized light (XPL);
(C) Discrete larger well-developed quartz in organic matter in PPL; (D) Discrete authigenic quartz particle in organic matter
SEM BSED; (E) Quartz as cleat/fracture infillings closely associated with chamosite SEM BSED; (F) Quartz as cleat/fracture
infillings closely associated with chamosite SEM BSED; (G) β-tridymite arranged in clusters and shingles SEM BSED;
(H) β-tridymite arranged in clusters and shingles SEM secondary electron images (ETD); (I) EDS data for β-tridymite;
(J) β-tridymite occurring as hexagonal plates and arranged in clusters and shingles SEM ETD; (K) Magnification of (J) SEM
ETD; (L) Authigenic quartz particles SEM ETD. Q, quartz; Ch, chamosite; OM, organic matter. (D,G,H,J–L) naturally
exposed surface; (E,F) ion-polished surface.
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Figure 5. Chamosite occurrence modes in coal. (A) Fibrous aggregate that envelops organic matter and occurs as
cleat/fracture infillings in PPL; (B) Photomicrographs of (A) under XPL; (C) Chloritic matrix associated with volcanic matter
in PPL; (D) Chamosite as cleat/fracture infillings within pyritic coal balls in PPL; (E) Photomicrographs of (D), reflected
light in air; (F) Chamosite as cell infillings SEM BSED; (G) Fibrous aggregate that envelops organic matter and occurs as
cleat/fracture infillings SEM BSED; (H) Fibrous aggregate that envelops carbon microparticle SEM BSED; (I) Chamosite as
cleat/fracture infillings closely associated with quartz component SEM BSED; (J) Chamosite as cleat/fracture infillings
closely associated with quartz component SEM BSED; (K) EDS data for chamosite; (L) Chamosite as cleat/fracture infillings
closely associated with quartz component SEM BSED. Py, pyrite; Q, quartz; Ch, chamosite; OM, organic matter; VM,
volcanic matters. (G–I) the naturally exposed surface; (F,J,L) ion-polished surface.

4.2.3. Pyrite

Pyrite is the only sulfide mineral detected by XRD in the C1 coal seam. Pyrite can be
found to replace some of the maceral components owing to a large amount of pyrite on the
surface of Lepidodendron (Figures 1(D6) and 6C,D). The SEM images show that the pyrite form
on the bedding surface has a good crystalline structure, which indicates that it might have
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been formed during the epigenetic stage. Pyrite nodules in the C1 coal seam can occur as
individual euhedral grains (Figures 1(D3) and 6A,B,E) or in a chain arrangement (Figure 6G).
Notably, pyrite also occurs as coal balls, accounting for a large proportion in pyrite nodules.
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coal balls originated late in the peat stage, but before the peat was strongly compacted 

Figure 6. Pyrite occurrence modes in coal. (A) Pyrite occurring as isolated euhedral particles in plane-polarized light
(PPL); (B) Photomicrographs of (A), reflected light in air; (C,D) Pyrite on the surface of Lepidodendron. SEM back-scattering
images (BSED); (E) Pyritic coal balls SEM BSED; (F) Magnification of (E), vegetative organs and reproductive organs with
well-preserved plant cell tissue SEM BSED; (G) Pyrite aggregates in bands that are parallel to the stratification direction
SEM BSED; (H) Pyritic coal balls as isolated anhedral bodies in collodetrinite SEM BSED; (I) Magnification of (H), pyritized
tissues with different form SEM BSED; (J) Magnification of (H), pyrite enclosed by the Fe-Mg-rich siliceous material SEM
BSED; (K) EDS data for pyrite; (L) Magnification of (H), the remnants of organic matter SEM BSED. Py, pyrite; Q, quartz;
Ch, chamosite; OM, organic matter. (C–G) naturally exposed surface; (H–J,L) ion-polished surface.

The SEM images show that vegetative organs and reproductive organs of plant cell
tissues are well preserved inside the pyritic coal balls (Figure 6E,F), indicating that pyritic
coal balls originated late in the peat stage, but before the peat was strongly compacted [54].



Minerals 2021, 11, 1230 10 of 16

The SEM images (Figure 6H–J,L) of ion-polished surfaces show that organic matter or
plant tissues are replaced by pyrite. Pyrite within coal balls is enclosed by the Fe-Mg-
rich siliceous material (Figure 6J), and minor remnants of organic matter can be seen
(Figure 6L). These could have been formed either during late syngenetic stages or early
epigenetic stages.

5. Discussion
5.1. Evidence of Wildfires

A fire requires an ignition source, oxygen supply and fuel to burn [55]. Natural fires
can be caused by spontaneous ignition, lightning, volcanic eruption, friction [55] and, on
rare occasions, by meteorite impacts [56]. Late Permian rocks contain numerous records
of volcanic episodes [42], which could have provided ignition conditions for wildfires.
Atmospheric composition models of the latest Permian indicate an oxygen level of 22% [57],
which is very similar to that of today. This is particularly important because atmospheric
oxygen levels are related to the frequency and intensity of wildfires [58], and higher oxygen
levels are associated with more intense and more frequent fires. The Xuanwei Formation
floras in South China are dominated by the species of both Gigantopteris and Gigantonoclea,
other kinds such as Annularia shirakii and Lepidodendron acutangulum are also commonly
present [25]. The last coal seam from the Longmendong section is rich in lycopsid plants,
which could provide fuel for wildfires.

Wildfire activity can preserve intricate organic structures such as charcoal [55,59–61],
whereas charring can cause the organic tissues to change chemically and structurally [62].
Inertinite macerals are always replaced by pyrite in the C1 coal seam (Figure 7A–C), being
embedded within collodetrinite. In some cases, pyrofusinite and semifusinite macerals are
associated with clay minerals and embedded within collodetrinite (Figures 2G–K and 7D–F).
This points to an allochthonous origin of inertodetrinite transported by wind or water into
the palaeomire [3]. The SEM images provide anatomical evidence of charring, including
the homogenization of the cell walls and three-dimensional cellular preservation in the C1
coal (Figure 7G,H). These characteristics provide anatomical criteria for recognizing the
formation of charcoal from the burning of living trees [63]. To some extent, pyrofusinite can
be used as direct geological evidence of a wildfire during peat mire accumulation. Some
carbon microparticles can also be seen in the coal seam (Figures 2L and 7I–L), which occur as
the chaotic accumulation associated with chamosite (Figure 7I). The carbon microparticles
occurrence modes could be formed during wildfires in the adjacent areas. Although there
is no standard definition, carbon microparticles are generally considered to be a type of
carbon-containing particulate matter produced by the incomplete combustion of biological
matter or fossil fuels.

5.2. Emeishan Basalt as a Primary Source Region

A major source of the inorganic constituents of coal is detrital material [64], which
supports the conclusion that the Late Permian coal seam had a terrestrial source area in the
Longmendong section. The Kangdian Upland is mostly composed of Emeishan basalts
and provided terrigenous materials for the majority of the coal-bearing areas of the Late
Permian age in southwestern China [7,29,65].

Kaolinite is the most common clay mineral in these coals and tonsteins in the Late
Permian deposits throughout southwestern China [36,66,67]. However, chamosite is the
only clay mineral that can be observed in the C1 coal seam. Dai and Chou [22] reported
that kaolinite was replaced by chamosite in the cell cavities of a semianthracite specimen
from the Zhaotong Coalfield (southwestern China). They suggested that the chamosite
formed during early diagenesis owing to a reaction between kaolinite and Fe-Mg-rich
fluids. Chamosite was also suggested to have formed in the thermally metamorphosed
Bukit Asam coal from reactions between kaolinite and Fe and Mg ions, which were likely
derived from the organic matter of higher-rank coals [68]. Chamosite occurs mainly as
cleat/fracture infillings, which clearly show that their formation was epigenetic. Chamosite
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also occurs as a fibrous aggregate that envelops organic matter (Figure 3G,H), which may
be evidence of the circulation of Fe-Mg-rich solutions. The Longmendong section is the
closest terrestrial section to the Kangdian Upland in previous studies. The formation of
the chamosite in the C1 coal seam may thus be by direct precipitation from Fe-Mg-rich
hydrothermal fluids.
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Figure 7. Charcoal and carbon microparticles in coal. (A) Pyritized fusinite embedded within collodetrinite in PPL;
(B) Photomicrographs of (A), reflected light in air; (C) Inertinite (linear) under reflected light (dry objective); (D) Pyrofusinite
with well-preserved cell structure under reflected light (oil immersion); (E) Inertinite associated with clay minerals under
reflected light (dry objective); (F) Magnification of (E), semifusinite with well-preserved cell structure under reflected light
(oil immersion); (G) Micrograph of charcoal SEM BSED; (H) Magnification of (G), transverse view of a fragment of charcoal,
showing homogenized cell walls and three-dimensional cellular preservation SEM BSED; (I) Carbon microparticles in
PPL; (J) Carbon microparticle under reflected light (oil immersion); (K) EDS data for carbon microparticle; (L) Carbon
microparticle SEM ETD. Py, pyrite; Q, quartz; Ch, chamosite; Fus, fusinite; SF, semifusinite; CM, carbon microparticle.
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5.3. Input of Felsic Volcanogenic Matter

Previous studies have reported that alkali tonsteins developed during the early part
of the Late Permian in southwestern China [51,69]. However, the geochemistry of several
coal tonsteins of the Late Permian age worldwide indicates that they originated from
volcanic ash fallout of silicic to intermediate composition [70–76]. The systematic investi-
gation of volcanic tuff/ash is focused on the marine environment, but their origin is still
uncertain [42,77,78]. The last appearance of coal, as a thin seam, is taken as the beginning
of the terrestrial end-Permian mass extinction event in South China, basically consistent
with Bed 25 at the marine Meishan section [49]. Radiometric dating of the ash bed (Bed 68)
at the Chahe section is 252.30 ± 0.07 Ma [46]. It is noteworthy that there are two tonstein
layers in the C1 coal seam in the Xuanwei area, eastern Yunnan Provinces [75,76], which
could provide a unique perspective on the end-Permian mass extinction event.

Although no tonstein layers were identified in the C1 coal seam in our study area, the
high proportions and occurrence modes of quartz (angular quartz and corroded quartz
arranged in a random direction) in the C1 coal seam indicate a volcanic origin during the
peat accumulation phase. Previous studies have shown that β-quartz crystals generally
exhibit only a bipyramidal habit [79] without additionally developed prism faces [11].
High-temperature quartz is common in the Late Permian coals of southern China and
exhibits well-developed crystal forms [21,65]. The β-quartz is considered to have originated
from the in situ alteration of syngenetic-acidic or acidic-intermediate volcanic ashes in the
coal seams [11,79]. The β-tridymite occurrence modes in the C1 coal seam thus suggest that
they originated from a felsic volcanic source. Hexagonal β-tridymite is formed only when
the crystallization temperature is higher than 1117 °C, and because there is no evidence
of such high-temperature fluids, its formation can likely be attributed to magma chamber
growth rather than dissolution following its precipitation in the peat mire. The common
presence of β-quartz polymorphs in the coals of southern China indicates that frequent
felsic volcanic eruptions likely occurred during the Late Permian. This further suggests
that felsic ashes from within the Late Permian coals likely resulted from a range of felsic
magma chambers or different stages of evolution within the same magma chamber.

5.4. Formation of Pyritic Coal Balls and Its Geological Significance

Pyrite is common in coal and coal-bearing strata influenced by marine activity [11,54],
whereas pyrite deposited in coals and/or host rocks under terrestrial environment condi-
tions is typically considered to have formed from epithermal solutions [54,80–84]. Previous
studies have shown that hydrothermal fluids tend to dominate the local enrichment of
certain minerals and trace elements in the Late Permian coals of southwestern China
that were deposited in terrestrial conditions [85–90]. While the modes of occurrence of
pyritic coal balls in the C1 coal seam suggest that they could have been authigenically
precipitated within palaeomires, without any framboidal pyrite grains, they can be seen
to imply neutral to weak alkaline conditions in the paleomires [91]. A sulfur source is
inherent in coal-forming plants [54]. The source region of the mire’s sediment was basaltic
rocks, which provided an abundant supply of Fe to the basinal fluid. The pyrite coal balls
occurrence modes in the C1 coal seam is thus likely the result of coal-forming plants and
Fe-Mg-rich siliceous solutions in neutral to weak alkaline conditions during late syngenetic
stages or early epigenetic stages within paleomires. Since the formation of pyrite coal balls
requires specific sedimentary conditions, it thus can provide a basis for the comparison of
palaeomires developed within marine-terrestrial transitional conditions. Besides, further
research on the pyritic coal balls can play an important role in studying the flora and the
paleontological evolution at the end of the Paleozoic.

6. Conclusions

The C1 coal seam is anthracite, and the dominant maceral group in the coal seam is
vitrinite, which is mainly composed of collotelinite and collodetrinite, followed by liptinite
and inertinite macerals. The minerals in the C1 coal seam are mainly dominated by quartz;
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chamosite is the only clay mineral that can be observed, and pyrite is the only sulfide
mineral. The characteristic mineral assemblage in the last coal seam of the Longmendong
section records important information regarding the evolution of the mass extinction
event that occurred at the end of the Permian. The pyrofusinite and carbon microparticles
occurrence modes could have been formed during wildfires in the adjacent areas. The
high proportions and occurrence modes of magmatic quartz combined with the presence
of β-tridymite indicate that felsic volcanic activity occurred during the accumulation of
the peat mire. This appears to be the first report of β-tridymite in coals. The chamosite
and detrital quartz occurrence modes imply that they mainly precipitated from Fe-Mg-rich
siliceous solutions owing to the weathering of Emeishan basalt. The pyrite coal balls
occurrence modes in the C1 coal seam are likely the result of coal-forming plants and
Fe-rich siliceous solutions in neutral to weak alkaline conditions during late syngenetic
stages or early epigenetic stages within paleomires. This appears to be the first report of
pyritic coal balls in terrestrial coal seams in South China. Since the formation of pyritic
coal balls requires specific sedimentary conditions, it thus can provide a basis for the
comparison of nonmarine transitional and terrestrial coal seams.
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